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Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas.
VII. Simultaneous fits to masses and fission barriers
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(Received 20 December 2006; revised manuscript received 27 March 2007; published 19 June 2007)

We present a new Hartree-Fock-Bogoliubov mass model, HFB-14, that is fitted to the fission data through
adjustment of a vibrational term in the phenomenological collective correction. The rms deviation of the model
from the 2149 measured masses of nuclei with Z, N � 8 is 0.729 MeV. The rms deviation for all 77 primary
barriers listed in the RIPL-2 data compilation is 1.31 MeV, and only 0.67 MeV for the 52 primary barriers of
nuclei lower than 9 MeV, the ones of greater astrophysical interest. A similar accuracy is obtained (0.65 MeV)
for the 45 secondary experimental barriers necessary for a reliable calculation of fission probabilities.
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I. INTRODUCTION

The r-process of stellar nucleosynthesis is known to depend
on the masses and fission barriers (among other quantities) of
nuclei that are so neutron rich that there is no hope of being able
to measure them in the laboratory in the foreseeable future. It
is thus of the greatest importance to be able to make reliable
extrapolations of these quantities away from the known region,
relatively close to the stability line, out toward the neutron drip
line. To put these extrapolations on as rigorous a footing as
is feasible at the present time, we have constructed a series
of mass models based on the Hartree-Fock-Bogoliubov (HFB)
method with Skyrme forces and a δ-function pairing force.

Of all our mass models, it is model HFB-8 (for which the
corresponding set of force parameters is labeled BSk8) [1]
that gives the best fit to the mass data: for the 2149 measured
nuclei with Z,N � 8 [2], the rms error is 0.635 MeV. Using
this force, we then calculated most of the measured fission
barriers of nuclei with Z � 80 [3]. For nuclei with Z � 92
the rms deviation of the calculated heights of the primary
barriers from the experimental values was only 0.72 MeV,
but the results were much poorer for the primary barriers of
nuclei with Z < 92: they were never less than 1.1 MeV too
high and could be as much as 5.7 MeV too high, a much worse
performance than that of the ETFSI method [4]. The sudden
deterioration in the HFB primary barriers of Ref. [3] as we
pass from Z = 92 to Z = 91 was found to be correlated with
a rapidly growing third barrier lying at very large deformation.
Clearly, fitting a model to nuclear masses does not explore all
the regions of deformation space that are relevant to barriers,
from which it follows that a good mass fit will not necessarily
guarantee good barriers. In this note we show that it is possible,
through adjustment of a phenomenological vibrational term
that we have included for the first time in our model, to obtain
drastically improved barriers without any deterioration of the
mass fit.

Since the publication of the HFB-8 mass model we have
generated several new mass models, but the direction of our
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work has shifted. Rather than seek ever better fits to the
mass data our concern has been more with the construction
of a universal force for all the various astrophysical applica-
tions, and to this end we have been imposing on our mass
models extra constraints. Our latest published model [5],
HFB-13 (force BSk13), was subjected to the two following
constraints: (i) The energy-density curve of neutron matter
was fitted, a requirement that is relevant not only to neutron-
star applications but also to the reliability of finite-nucleus
extrapolations out toward the neutron drip line. (Actually,
the HFB-8 model was itself subjected to a weak constraint,
namely the requirement that neutron matter not collapse at
subnuclear densities. Without this constraint a still better fit to
the mass data could have been obtained, but there would have
been a contradiction with the undisputed existence of neutron
stars.) (ii) The pairing force was considerably weakened with
respect to that of all our previously published mass models,
for which the pairing was excessively strong, in the sense
that despite their good mass fits the calculated spectral pairing
gap was much bigger than the experimental even-odd mass
differences. Even if this excessively strong pairing had not
impaired the mass fits—indeed, it had arisen automatically
in the process of optimizing the mass fit—it was believed to
be at least partially responsible for the unsatisfactory results
found in the fission-barrier calculations of Ref. [3] and in the
level-density calculations of Ref. [6] (another nuclear quantity
of astrophysical importance).

Despite the imposition of these two conditions, the quality
of the mass fit was only slightly worse with HFB-13 than with
HFB-8, the rms deviation rising to an acceptable 0.717 MeV
for the same data set. That the deterioration was not worse
might be due to our adoption of the Bulgac-Yu procedure [7]
for regularizing the pairing force, with the additional feature
of a low cutoff.

Already it has been shown that the reduced pairing strength
of force BSk13 leads to the expected improvement in level
densities [8], and we turn now to the question of the fission
barriers. Unfortunately, we cannot use the force BSk13 as the
starting point, because we used there the value of 0.92M for
the isoscalar effective mass M∗

s at the equilibrium density ρ0

of symmetric infinite nuclear matter, this being the value found
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by Zuo et al. from extended Brueckner-HF calculations using
realistic nucleon-nucleon forces [9]. Very recently, after the
publication of Refs. [5,8], it was learned that this value of
M∗

s must be drastically modified when three-nucleon forces
are taken into account, a value of 0.825M at the density ρ0

now being found [10]. This lower value is also favored by
measurements of the giant quadrupole resonance [11,12]. Thus
we must first construct a new mass model that takes account
of this reduction in the value of M∗

s , while maintaining the
neutron-matter and pairing constraints of the HFB-13 model.

In Sec. II we present this new model, labeled HFB-14.0
(force BSk14), whereas in Sec. III we describe our fission-
barrier calculations with this model. Our results in this respect
are far from satisfactory, in large part because of the behavior of
the collective correction at large deformations (see especially
Sec. III of Ref. [1]). We show in Sec. IV that with an
appropriate modification of this correction the same BSk14
force leads to drastically improved barriers with only a minimal
impact on the quality of the mass fit. This new correction, along
with the force BSk14, defines model HFB-14.

II. THE HFB-14.0 MODEL

We calculate masses in essentially the same way as for the
HFB-13 model [5], retaining in particular the neutron-matter
and pairing constraints, but reducing M∗

s to 0.8M . The only
other difference is that we now make provision for subtracting
a much more general form of collective correction from the
calculated masses,

Ecoll = Ecrank
rot

{
b tanh(c|β2|) + d exp

[ − l
(
β2 − β0

2

)2]}
, (1)

in which Ecrank
rot denotes the cranking-model value of the

rotational correction and β2 the quadrupole deformation,
whereas all other parameters are phenomenological. In the
actual mass fit, labeled model HFB-14.0, we drop the second
term here, leaving just the rotational correction that we have
always made (the role of the second term will be to fit to fission
barriers, without any further change in the force determined
by the mass fit, determining thereby model HFB-14). The
set of force parameters for the Skyrme, pairing, and Wigner
components resulting from the mass fit is labeled BSk14 and
is shown in Table I. The only exceptional feature in this table
is the very small value of t2 and the very large value of x2,
signifying that the 1P and 3P interactions have strengths of
comparable magnitude but opposite signs, the former being
repulsive. As far as the signs of these two states are concerned
there is no change here from the force BSk13, but the 1P

repulsion is now much stronger than before [5]. The values of
the parameters b and c emerging from the mass fit are shown in
the first column of Table II. Despite the change in M∗

s , the rms
deviation given by the model HFB-14.0 for the same data set
of 2149 measured nuclei is virtually the same as for HFB-13:
σ = 0.716 MeV (mean deviation ε̄ = 0.02 MeV).

Table III shows the parameters of infinite (INM) and semi-
infinite (SINM) nuclear matter for the force BSk14, defined as
in Ref. [5]. These parameters are independent of the collective
correction and thus hold equally well for models HFB-14.0
and HFB-14.

TABLE I. Parameter set BSk14 (for mass
models HFB-14.0 and HFB-14).

t0 (MeV fm3) −1822.67
t1 (MeV fm5) 377.470
t2 (MeV fm5) −2.41056
t3 (MeV fm3+3γ ) 11406.3
x0 0.302096
x1 −0.823575
x2 61.9411
x3 0.473460
W0 (MeV fm5) 135.565
γ 0.3
V +

n (MeV fm3) −240.0
V −

n (MeV fm3) −265.5
V +

p (MeV fm3) −252.4
V −

p (MeV fm3) −261.5
ε� (MeV) 7.0
VW (MeV) −1.70
λ 400.0
V ′

W (MeV) 0.75
A0 30.0

TABLE II. Parameters of collective cor-
rection for models HFB-14.0 and HFB-14.

HFB-14.0 HFB-14

b (MeV) 1.25 0.8
c 8.0 8.0
d (MeV) 0.0 0.4
l – 6.0
β0

2 – 0.3

TABLE III. Macroscopic parame-
ters for force BSk14 (mass models HFB-
14.0 and HFB-14). The first 12 lines
refer to infinite nuclear matter, the last 2
to semi-infinite nuclear matter.

av (MeV) −15.853
ρ0 (fm−3) 0.1586
J (MeV) 30.0
M∗

s /M 0.80
M∗

v /M 0.78
Kv (MeV) 239.3
L (MeV) 43.91
G0 −0.63
G′

0 0.51
G1 1.49
G′

1 0.44
ρfrmg/ρ0 1.24
asf (MeV) 17.6
Q (MeV) 35.0
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TABLE IV. Fission barriers and isomeric states: rms (σ ) and mean (ε̄) deviations
(in MeV) between data and predictions for models HFB-14.0 and HFB-14. The
numbers in parentheses correspond to the number of cases.

HFB-14.0 HFB-14

σ ε̄ σ ε̄

80 � Z � 96 Primary (77) 1.61 1.05 1.31 −0.72
– Secondary (45) 2.00 1.87 0.65 0.17
– Isomers (30) 2.22 2.17 0.76 0.63
88 � Z � 96 Primary (52) 1.22 0.80 0.67 −0.36

The energy-density curve of neutron matter for force
BSk14, corresponding to J = 30 MeV, is indistinguishable
from the realistic [13] curve up to the supernuclear density of
0.2 neutrons per fm3, as are all our other forces (BSk9 to 13)
that have been fitted to J = 30 MeV (see Fig. 13 of Ref. [5]).
Slight differences do emerge for higher densities, but this is a
domain in which there is no reason to expect Skyrme forces to
be valid anyway.

III. FISSION BARRIERS IN THE HFB-14.0 MODEL

The constrained HFB calculations that we report here were
performed in essentially the same way as with the barrier
calculations for the model HFB-8 [3], with the following
important difference: whereas before we constrained the HFB
calculations to different given values of the quadrupole,
octupole, and hexadecapole moments, Q2,Q3, and Q4, re-
spectively, we now follow the usual practice (see, for example,
Refs. [14,15]) of constraining only Q2, making, for different
fixed values of Q2c, an unrestricted variation of the modified
energy

Ē = E + 1
2cq(Q2 − Q2c)2, (2)

where E = 〈H 〉, the expectation value of the unconstrained
model Hamiltonian H , and cq is a somewhat arbitrary
strength constant. Thus for each value of Q2c we will be
implicitly minimizing with respect to Q3 and Q4 (and all other
multipoles) rather than holding them at fixed values. It turns
out that the converged value of Q2 always lies very close to its
target value Q2c, much closer than can sometimes be the case
when other constraints are applied at the same time. We believe
that this procedure is safer than the one we followed earlier [3],
and we stress that the way in which we compute the fission
path in the (Q2,Q3,Q4) hyperplane ensures that there can be
no discontinuities of the fission path, i.e., no unseen flips from
one hypervalley to another [3,16]. However, there may be the
occasional possibility of branching up the wrong valley. For
example, when confronted with a choice between two valleys
our procedure will choose the more gently climbing one, which
later, however, might start to climb more steeply and lead to
a higher saddle point than the other valley might have done.
This implies that our calculated barriers could be higher, but
never lower, than the true barriers corresponding to the given
force.

We calculate barriers for all the 77 nuclei for which barrier
data are given in the RIPL-2 compilation [17]. The deviations
(experiment-theory) for model HFB-14.0 are displayed in
Fig. 1, the upper panel showing the 77 primary barriers
that have been measured, the middle panel the 45 secondary
barriers, and the lower panel the 30 isomeric states (the data
for these come from Table I of Ref. [1]). The rms and mean
values of these deviations are shown in the first and second
columns, respectively, of Table IV. The first three lines refer
to the complete RIPL-2 data set of 77 nuclei, for which
80 � Z � 96: the first line corresponds to the primary barriers,
the second to the secondary barriers, and the third to isomeric
states. It will be seen from Fig. 1 that the errors tend to be
larger for the lighter nuclei. What does not appear on this
figure is that the barriers themselves tend to be much higher
for the lighter nuclei. In fact, the data we have used fall into two
distinct groups: for Z � 88 no barrier is higher than 8.5 MeV,

FIG. 1. Deviations between model HFB-14.0 and experiment
for (a) upper panel: primary barriers; (b) middle panel: secondary
barriers; (c) lower panel: isomeric states.
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TABLE V. Rms (σ ) and mean (ε̄) deviations between data and predictions for model HFB-14;
for convenience we also show models HFB-8 [1], HFB-13 [5], FRDM [18], and FRLDM [18].
The first pair of lines refers to all the 2149 measured masses M , the second pair to the masses
Mnr of the subset of 185 neutron-rich nuclei with Sn � 5.0 MeV, and the third pair to charge
radii (782 measured values). The last line shows the calculated neutron-skin thickness of 208Pb
for these forces.

HFB-14 HFB-8 HFB-13 FRDM FRLDM

σ (M) (MeV) 0.729 0.635 0.717 0.656 0.769
ε̄(M) (MeV) −0.057 0.009 −0.039 0.058 −0.403
σ (Mnr ) (MeV) 0.833 0.838 0.813 0.910 0.955
ε̄(Mnr ) (MeV) 0.261 −0.025 0.257 0.047 −0.078
σ (Rc) (fm) 0.0309 0.0275 0.0296 0.0545 0.159
ε̄(Rc) (fm) −0.0117 0.0025 −0.0099 −0.0366 −0.151
θ (208Pb) (fm) 0.16 0.12 0.16 – –

whereas for Z < 88 no barrier is lower than 13.5 MeV. Now
barriers as high as those of the second group play no active
role in astrophysics, and it is less necessary to have precise
knowledge of their heights. Accordingly, in the last line we
show the deviations for the primary barriers of the subset of 52
nuclei with Z � 88 (all the secondary barriers and isomers fall
into this subset, and their deviations will be as given in the two
preceding lines). We see that the results are somewhat better
for this important subset, but the secondary barriers as well as
the isomeric states remain systematically and unacceptably too
low. The overall accuracy is not sufficient to inspire confidence
in the use of this model for calculating barriers of nuclei in the
far neutron-rich region.

IV. THE HFB-14 MODEL

An inspection of the barriers calculated in the HFB-14.0
model shows that the problem can be attributed to its purely
rotational collective correction of Eq. (1) being too high at
the large deformations relevant to barriers. (This can be seen
from the middle panel of Fig. 1 for secondary barriers, most
of which are outer barriers.) So far we have made no attempt
to include explicitly a vibrational correction, but rather have
simply absorbed any such neglected effect into the mass fit of
the force. That the precision of our mass fits has been so good
simply reflects the fact that vibrational effects contribute to all
nuclei, and in particular to spherical nuclei. However, it is too
much to expect that the renormalization of the force that we
have implicitly made in the mass fit will continue to represent
correctly vibrational effects at deformations larger than those
encountered in ground states. To correct for this missing part
of the vibrational correction we activate the second term in
Eq. (1), our final choice for the parameters being given in the
second column of Table II; note particularly that b has changed
from its original value for model HFB-14.0. The physical
meaning of the new collective correction will be discussed
in more detail below.

We find that with this new collective correction the force
BSk14 that was determined once and for all in the mass fit
HFB-14.0, i.e., with the purely rotational collective correction,
gives much improved barriers, with the mass fit being only

slightly affected, the rms deviation rising from 0.716 to
0.729 MeV. This defines our model HFB-14, and we now
comment in more detail on its predictions for masses and
barriers.

A. Masses

The rms and mean (data-theory) values of the deviations
between the usual data set of 2149 measured nuclear masses
and the HFB-14 predictions are given in the first and second
lines, respectively, of Table V, where we also compare with
our “best-fit” model HFB-8 [1], with HFB-13, with the FRDM
(finite-range droplet model) [18], and with the FRLDM (finite-
range liquid-droplet) model [18]. It will be seen that as far as
the agreement with the complete set of mass data is concerned,
we continue with this new model to lose the advantage over
the FRDM that we held with HFB-8. However, of crucial
importance for extrapolating to the unknown neutron-rich
region is the performance of the model in question for the
most neutron-rich measured nuclei. Accordingly, in the next
pair of lines we show the rms and mean deviations for the
subset of the mass data consisting of the 185 neutron-rich
nuclei having a neutron-separation energy Sn � 5.0 MeV. In
this respect the HFB-Skyrme models continue, with HFB-14,
to perform better than the FRDM. As for the FRLDM, which
is now preferred to the FRDM for barrier calculations [16],
its mass fits are unequivocally inferior to those of our present
model.

For completeness we also show in Table V the rms and
mean deviations between the theoretical and experimental
rms charge radii for the 782 nuclei with Z,N � 8 listed
in the 2004 compilation [19] (lines 5 and 6, respectively). The
excellent agreement with experiment for a physical quantity
that was not included in the fitting of the force is a test
(necessary, but by no means sufficient) of the underlying
soundness of our HFB mass models. The last line shows
the model value for 208Pb of the neutron-skin thickness
θ ≡ Rrms

n − Rrms
p , where Rrms

n is the rms radius of the neutron
distribution and Rrms

p that of the point-proton distribution.
Within the framework of conventional Skyrme forces θ appears
to be rigorously determined by the value of the symmetry
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FIG. 2. Differences between model HFB-8 and HFB-14 mass
predictions as a function of (left) N and (right) Sn.

coefficient J . Experimentally, θ is not very well determined
in a model-independent way, but the forthcoming Jefferson
experiment using parity-violating electron scattering [20,21]
should improve the situation considerably in this respect.
However, the expected accuracy of ±0.05 fm will not tie down
J to better than ±2 MeV.

We have constructed for model HFB-14 a complete mass
table going from one drip line to the other over the range Z

and N � 8 and Z � 110. In Figs. 2 and 3 we compare these
predictions with those of our “best-fit” model HFB-8 and with
those of the FRDM, respectively, plotting the differences as
a function of both the neutron number N and the neutron-
separation energy Sn. In both cases we see that despite the close
similarity in the quality of the fits to the data given by these
different models, large differences emerge as the neutron-drip
line is approached, although the divergence is much larger in
the latter case (a large part of the divergence between HFB-8
and HFB-14 can be attributed to the imposition of the neutron-
matter constraint in the latter but not the former).

FIG. 3. Differences between the FRDM and HFB-14 mass pre-
dictions as a function of (left) N and (right) Sn.

FIG. 4. N0 = 82 shell gap as function of Z for mass model
HFB-14.

1. Neutron-shell gaps

We have calculated the neutron-shell gaps, defined by

�n(N0, Z) = S2n(N0, Z) − S2n(N0 + 2, Z), (3)

as a function of Z for the magic numbers N0 = 50, 82, 126,
and 184, respectively, for the model HFB-14. The shell gaps
are qualitatively similar to the ones obtained previously with
our HFB models. The major change of interest is in Fig. 4
for the N0 = 82 shell gap, where the predicted shell gap
is seen to be in excellent agreement with experiment: it is
particularly to be noted that this is the first of our HFB models
to correctly reproduce the enhancement associated with the
double magicity at Z = 50, i.e., for 132Sn. Consequently, the
shell gap remains much higher when going down the N0 = 82
isotone chain toward lower proton numbers, remaining above
4 MeV even for 122Zr; a strong shell quenching appears only for
lighter elements. However, we still do not correctly reproduce
the double magicity in the vicinity of 208Pb.

B. Barriers

Figure 5 and the last two columns of Table IV show that
model HFB-14 has led to a significant improvement over
model HFB-14.0. In particular, the rms deviation for the 52
primary barriers of nuclei with 88 � Z � 96, which are
always less than 9 MeV high, is as low as 0.67 MeV. A
similar accuracy is obtained (0.65 MeV) for the secondary
barriers, good values for which are necessary for a reliable
calculation of fission probabilities. Model HFB-14 definitely
outperforms the ETFSI model [4] and is well suited for a new
calculation of all the barriers involved in the r-process. Such
an extrapolation from the measured barriers, when it becomes
available, will have to be considered as more reliable than the
similar compilation made with the ETFSI model [22]. As a
first result of the new compilation, we find for the primary
barrier of the crucial semimagic (N = 184) nucleus 276U a
height of 13.2 MeV, which is to be compared with the value
of 17.7 MeV found with the ETFSI method [22].

C. Comments on the collective correction of model HFB-14

We show in Fig. 6 the collective correction Ecoll in 240Pu
for the two models HFB-14.0 and HFB-14 as a function of
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FIG. 5. Deviations between model HFB-14 and experiment for
(a) upper panel: primary barriers; (b) middle panel: secondary
barriers; (c) lower panel: isomeric states.

the quadrupole deformation β2. The required reduction of the
HFB-14.0 correction at large deformations, realized in Eq. (1)
for model HFB-14, will be seen. Our confidence in this latter
model as a tool for extrapolation will be enhanced if we
can acquire some understanding of the physical origin of the
collective correction of Eq. (1), especially the second term:
the improvement over the barriers of model HFB-14.0 brought
about by model HFB-14 is entirely a result of the three extra
fitting parameters provided by this term.

Concerning the first term of Eq. (1), we recall that it is
intended to represent the rotational correction, the cranking-
model value of which is given by

Ecrank
rot = 〈MF|Ĵ 2|MF〉

2Icrank
, (4)

FIG. 6. Collective corrections for models HFB-14.0 (upper
curve) and HFB-14 (lower curve).

where |MF〉 denotes the mean-field state, Ĵ is the total angular
momentum operator in the intrinsic frame, and Icrank the
moment of inertia in the cranking model. Then taking into
account the normalization factor b, we can write

b Ecrank
rot = 〈MF|Ĵ 2|MF〉

2I ′ , (5)

where I ′ = Icrank/b. It turns out that with the value b = 0.8
found for model HFB-14 the values of I ′ are consistent with
the experimental values of the moment of inertia (see Table 1
of Ref. [23] for a compilation of the latter values). This value
of b is also in agreement with the value of 0.75 obtained
in Ref. [24] for the dynamical correction to the standard
Inglis-Belyaev expression, this value being shown in addition
to remain almost deformation-independent. This suggests that
the first term of Eq. (1) is indeed representing a rotational
correction. On the other hand the value of b = 1.25 found in
model HFB-14.0 is quite inconsistent with the experimental
values of the moment of inertia, which suggests that the fit
was in some way attempting (not altogether successfully) to
simulate the missing second term.

With the first term of Eq. (1) thus being identified with
a rotational correction Erot, it is tempting to regard the
second term as representing a vibrational correction, or rather
quasi-vibrational correction E“vib”, in the sense that it only has
to correct for the high-deformation part of the real vibrational
correction that is not absorbed into the Skyrme part of the
interaction BSk14 by the mass fit. This interpretation is
strengthened by the microscopic calculations of Ref. [25],
where it is shown that the vibrational correction decreases
with increasing deformation (see Fig. 16 of that article).

It should be stressed that although we allow for left-right
asymmetry in our model, we take no account of triaxiality.
Because this is probably not a phenomenon that is sufficiently
widespread to influence the force through the mass fit, its role
in fission will be absorbed by the collective correction, the
major share being taken by E“vib” if Erot is truly a rotational
term. The E“vib” term will likewise have to absorb other
neglected effects, such as a possible dependence of the pairing
strength on deformation (through a surface dependence).

V. CONCLUSIONS

We have presented a new mass model, HFB-14, that has the
following advantages over our “best mass-fit” model HFB-8:
(a) it fits neutron matter, (b) it has minimal pairing strength,
and (c) it gives significantly improved fission barriers (better
than those given by both the ETFSI method [4] and the model
HFB-8 [3]). Despite these extra physical constraints and the
requirement of much better barriers, the rms deviation of the
mass fit is only slightly worse than that of HFB-8: 0.729 rather
than 0.635 MeV. This slight loss in quality of the mass fit
is well worth the much greater applicability of the model to
astrophysical problems. In particular, we believe that no other
mean-field model fits both masses and barriers so well.

A key element in the improvement of the barriers is the
use of a more elaborate collective correction, simulating
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both rotational and vibrational effects. This device has made
possible a decoupling of the mass fit from the fit to barriers,
thereby avoiding the computationally daunting task of refitting
the force parameters to both masses and barriers. It is important
to realize that this success has been achieved without resort to
a deformation-dependent Wigner term, of the type used in
Ref. [16]; as discussed in Sec. II of Ref. [3] the independent
evidence points against the existence of such a term.

It is to be hoped that ultimately a deeper understanding of
the collective correction used here will become available in
terms of a complete microscopic treatment of vibrations and
a thorough analysis of triaxiality (including a simultaneous
left-right asymmetry). Even though such a program presents

a serious challenge, it will have to be realized if one is to
claim that one has a complete understanding of fission. In
the meantime, however, we believe that with HFB-14 it is
already possible to reliably calculate with the same model
both the masses and the fission barriers of the experimentally
inaccessible nuclei that are involved in the r-process of
nucleosynthesis.
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