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Evolution of nuclear shells with the Skyrme density dependent interaction
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We present the evolution of the shell structure of nuclei in Hartree-Fock calculations using Skyrme’s density-
dependent effective nucleon-nucleon interaction. The role of the tensor part of the Skyrme interaction to the
Hartree-Fock spin-orbit splitting in spherical spin unsaturated nuclei is reanalyzed. The contribution of a finite
range tensor force to the spin-orbit splitting in closed shell nuclei is calculated. It is found that the exact matrix
elements of a Gaussian and of a one-pion exchange tensor potential could be written as a product Skyrme’s short
range expression times a suppression factor which is almost constant for closed shell nuclei with mass number
A � 48. The suppression factor is ∼0.15 for the one-pion exchange potential.
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I. INTRODUCTION

The shell structure is a distinctive feature of nuclei and is
characterized by the existence of magic numbers that are a
consequence of the spin-orbit interaction [1,2]. The spin-orbit
interaction can be understood in a mean-field approach that
leads to a one-body potential containing a central part and
a spin-orbit part. In spin-saturated nuclei the spin-orbit part
stems from the spin-orbit nucleon-nucleon interaction. In spin
unsaturated nuclei there are additional contributions coming
either from the exchange part of the central two-body force
or from the tensor force [3–5]. In view of the recent progress
related to the discovery of exotic nuclei (neutron or proton
rich) a major problem is to understand how the shell structure
evolves from stable to unstable nuclei. Presently there is much
concern about the role of the tensor force in the shell evolution
and the structure of exotic nuclei [6–11].

In a previous work [3] we estimated the contribution of the
tensor part of the Skyrme interaction to the Hartree-Fock spin-
orbit splitting in several magic nuclei and adjusted the strength
of the tensor force such as to obtain a good global fit. In the
present article we extend the previous study to exotic nuclei,
most of which were unknown at that time. This extension sheds
a new light on the previous results.

The tensor term in the Skyrme interaction is written
as a δ function in the internucleon separation multiplied
by momentum-dependent terms (Sec. IV). The momentum
dependence takes the finite range of the interaction into
account. Contrary to the view that it plays a minor role because
of its δ-type structure [6], this interaction has the same effect
as a finite size interaction due to its momentum dependence.
We will show that the Skyrme interaction provides a good
mechanism for describing the evolution of the shell structure
in exotic nuclei.

Otsuka et al. [6] have pointed out that the nuclear tensor
force has a rather long range and that the use of the energy
density (1) may not be justified. The goal of the present article
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is to show that expressions (1) together with Eqs. (16) and
(17), given in Sec. II of this article, can still be used to study
the contribution of finite range tensor forces, even if the range
is that of the one-pion exchange force. Shell gaps are mainly
determined by the spin-orbit splitting of the states with highest
l in any shell and our study is restricted to these states. The
spin-orbit splitting is less important in states with lower l

because it is hidden by pairing effects and other forms of
configuration mixing.

In Sec. II we derive an expression for the leading con-
tribution of the tensor force to the Skyrme energy density
functional using some results from the article of Negele
and Vautherin [12] on the density matrix expansion method.
Section III presents some numerical calculations that show that
the main effect of a longer-range interaction is to introduce a
suppression factor that is almost constant for all nuclei with
mass number greater than A ∼ 28. Section IV recalls the
expression of the tensor for a short-range tensor interaction.
In Sec. V we present results for single-particle levels of
Sn isotopes, N = 82 isotones and Ca isotopes, where the
tensor force considerably improves the agreement with the
experiment when its parameters are properly chosen.

The conclusion is that the Skyrme energy functional with
the tensor force is adequate to describe the evolution of shell
effects.

II. CONTRIBUTION OF
A SHORT-RANGE TENSOR FORCE

The Skyrme parametrization of a short-range tensor force
leads to a contribution to the energy density

�H (r) = 1
2α

[
J 2

n (r) + J 2
p (r)

] + βJn(r)Jp(r), (1)

where the Jq(r) (q = n, p) are spin-orbit densities and α and β

are parameters defined in Sec. V. They represent the combined
effect of the tensor plus central exchange interactions. If the
radial wave functions depend only on the orbital angular
momentum l and not on j , then the spin-orbit densities are zero
if both components of a spin-orbit doublet are filled. Then the
energy density (1) brings contributions only to spin unsaturated
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nuclei. Thus �H (r) would be almost zero in 40Ca, which is a
double closed-shell nucleus. It would be large for 208Pb, which
has spin unsaturated shells for both neutrons and protons.
The energy functional (1) leads to a simple modification of
the single-particle spin-orbit potential for both protons and
neutrons (see Sec. V).

The purpose of the present section is to derive the form of
�H (r) for a short-range tensor interaction. We focus on the
contribution of the neutron-proton interaction. The starting
point is a two-body tensor potential

VT (r) = vT (r)�τ1 · �τ2

[
1

3r2
(�σ1 · �r)(�σ2 · �r) − �σ1 · �σ2

]
(2)

like the one arising from one-pion exchange. The effect of
the isospin dependence in Eq. (2) is to make β ≈ 2α. An
interaction with no isospin dependence would have β = 0.

According to Negele and Vautherin [12] the expectation
value of the tensor interaction with Hartree-Fock wave
functions is

〈
V

np

T

〉 = −
∫

d3r1d
3r2vT (r1 − r2)|�ρn(r1, r2) · �ρp(r1, r2)|.

(3)

The expressions for the nn and pp contributions are similar
but are each multiplied by a factor 1/2 from the isospin depen-
dence of Eq. (2). Negele and Vautherin give a factorization
of the spin-density matrices for spherical nuclei in which
subshells are either completely full or completely empty. It
is

�ρ(r1, r2) = i(r1 × r2)ρ1(r1, r2), (4)

where

ρ1(r1, r2) = ±
∑
njl

1

2πr2
1 r2

2

Rnjl(r1)Rnjl(r2)P ′
l (cosθ ). (5)

P ′
l is the derivative of the Legendre polynomial Pl, θ is the

angle between the directions of r1 and r2 and the ± sign in
Eq. (5) stands for j = l ± 1

2 . For a short-range interaction
θ ≈ 0 in Eq. (5) and P ′

l (cosθ ) ≈ l(l + 1)/2. This is the origin
of the spin-orbit splitting factor in Eq. (6) of Ref. [3]

(2j + 1)[j (j + 1) − l(l + 1) − 3/4] = ±2l(l + 1)

if j = l ± 1/2. (6)

If the radial wave functions Rnjl(r) are the same for j =
l±1/2 then the contribution of a particular l-level to ρ1(r1, r2)
vanishes if both j components are either completely occupied
or completely empty.

When the interaction VT (r) has a sufficiently short range
the 〈V np

T 〉 simplifies to

〈
V

np

T

〉 = π

6

∫
d3rJn(r)Jp(r)

∫
v(s)s4ds, (7)

where

Jq(r) = 2rρ1q(r, r), (8)

which is the spin-orbit density in Eq. (6) of Ref. [3].
Equation (6) shows that Jq(r) > 0 when the lower component
of a spin-orbit doublet is being filled and goes to zero when
both components are filled.

III. A FINITE RANGE SUPPRESSION FACTOR

The analysis in the present section shows that for a tensor
interaction with a range of the order of the one pion exchange
potential and for single-particle states with the largest l for a
given A, the effect of the finite range interaction is to multiply
Eq. (7) by a simple suppression factor that is almost the
same for any nuclei with mass number greater than A = 28.
As a consequence one should be able to parametrize the
contribution of a tensor force to the energy density by the
simple form in Eq. (1) with values of α and β that are constant
for all nuclei. This means that the original short range Skyrme
density-dependent form used in Ref. [3] remains entirely valid
and that finite range effects can be incorporated by using
suitable values of α and β (see Sec. V).

We start with Eq. (3) and make a change of variables in the
expression for 〈V np

T 〉, which becomes

〈
V

np

T

〉 = 8π2
∫ ∞

0
F (r)dr, (9)

where

F (r) =
∫ 2r

0
dsr

∫ π

0
dθsin3θvT (s)(r1r2)4ρ1n(r1, r2)

× ρ1p(r1, r2), (10)

with r1 = r + sr/2, r2 = r − sr/2 and θ the angle between r1

and r2. There are three other angles that have been integrated
out to give a factor 8π2. The formula contains the factor |r1 ×
r2|2 = (r2 − s2

r /4)2sin2θ . The spin densities ρ1q are defined in
Eq. (5). The squared distance |s| between the points r1 and r2

is

|s|2 = |r1 − r2|2 = s2
r + 4

(
r2 − s2

r /4
)
sin2 θ

2
, (11)

For states with maximum l in any shell the function F (r)
has a single peak at rm near the maximum of the radial wave
functions. The short-range approximation to F (r), denoted by
F0(r), holds when the range of the interaction is much less
than rm. The important values of sr are much less than rm and
the angle integral has contributions only from small values
of θ . Then F (r) is replaced by

F0(r) =
∫ ∞

0
dsr

∫ ∞

0
dθθ3vT (s)r8ρ1n(r, r)ρ1p(r, r), (12)

with |s|2 = sr
2 + r2θ2. The short range approximation (7) to

〈V np

T 〉 can be obtained from (12) by using the relation (5).
The numbers in Table I are calculated with oscillator radial

wave function

Rl(r) = Nlr
l+1exp

(
− r2

2b2

)
.
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TABLE I. Values of the suppression factors I (l, rm/a),
SG(rm), SG, SY (rm), and SY for the Gaussian and one-pion exchange
potentials for various values of A and l.

A l rm(fm) I (L, rm/a) SG(rm) SG SY (rm) SY

28 2 3.08 0.550 0.579 0.459 0.197 0.159
48 3 3.89 0.515 0.521 0.436 0.171 0.147
90 4 4.83 0.511 0.507 0.440 0.166 0.146

132 4,5 5.43 0.520 0.511 0.449 0.166 0.147
208 5,6 6.34 0.516 0.504 0.452 0.164 0.145

They have a maximum at rm = b
√

l + 1. The radial suppres-
sion factor S(r) and the total suppression factor S are defined
by

S(r) = F (r)

F0(r)
, S =

∫
F (r)dr∫
F0(r)dr

. (13)

There is a simple approximation I (l, r/a) for the sup-
pression factor SG(r) for a Gaussian interaction V (r) =
V0exp(−r2/a2), which is given by

I (l, r/a) =
(

4r2/a2

l(l + 1) + 4r2/a2

)2 [
1

1 + a2/b2

]1/2

(14)

with l = (ln + lp)/2. The form of Eq. (14) arises from the
replacement of r2 − s2

r /4 and of r1r2 by r2 in Eqs. (10) and
(11), an approximation which is valid when sr ∼ a 	 r . Then
the integral (10) separates into a product of an angle integral
and an integral over sr for a Gaussian interaction. The first
factor is independent of the radial wave functions.

Values of I (l, rm/a) for several closed-shell nuclei are given
in Table I. The range a = 1.2 fm is taken from Ref. [9]. There
is quite a strong dependence on r for fixed l but I (l, r/a) is
almost constant at r = rm because l(l + 1)a2/r2

m does not
change much for all the nuclei considered. The table also
gives values of SG(rm) and the total suppression factor SG

calculated by numerical integration. The approximate formula
(14) for SG(rm) is accurate to within 5%. The results indicate
that, for a Gaussian potential and for states with maximum l,
one can use the short-range approximation (7) with a reduced
interaction strength.

The last two columns of the table give values of SY (rm)
and SY for the tensor part of a Yukawa (one-pion exchange)
potential that has a longer range and a form factor with radial
dependence vT (x) = V0exp(−x)(1/x + 3/x2 + 3/x3), where
x = µs with µ = 0.70 fm−1. It has a 1/s3 singularity at
s = 0 but this is canceled by the sin3θ factor in the integral for
the matrix element. The suppression factors SY (rm) and SY ,
calculated by numerical integration, are almost constant. This
shows that it is reasonable to use the Skyrme parametrization
(1) to study the contribution of the tensor force to spin-orbit
splittings for states with maximum l even for the one-pion
exchange potential.

Our calculations show that the suppression factor S(r) is
an increasing function of r that goes to zero as r → 0 and
to 1 for larger r . The numbers in the table show that the
total suppression factor S is less than the suppression factor

evaluated at rm for both the Gaussian and one-pion exchange
potentials.

Early calculations showed that the Yukawa one-pion ex-
change potential play an important role in describing the 208Pb
levels [13]. Note that the results given above for the Gaussian
potential shape are important in view of the fact that such
interactions are used in shell-model calculations (cf. Otsuka
et al. [9]). The main difference between the values for SG(rm)
and SY (rm) in Table I is due to the range of the Gaussian
interaction. The values become very similar for all the nuclei
in the table if the range of the Gaussian interaction is increased
from 1.2 to 2.1 fm.

IV. THE TENSOR PART OF THE SKYRME INTERACTION

The parameters of the Skyrme interaction were originally
determined in Hartree-Fock calculations to reproduce the total
binding energies and charge radii of closed-shell nuclei [4].
Further extensive calculations were made later [5]. Several
improved parameter sets were found. They differ mainly
through the single-particle spectra. In the present article as
in our previous work, we shall use the parameter set SIII,
which gives good overall single-particle spectra. In Ref. [3] a
tensor force was added and a range of its strength was found
such as to maintain a good quality of the single-particle spectra
of 48Ca,56Ni, 90Zr, and 208Pb.

As in Ref. [3], in the configuration space the tensor
interaction has the following form

VT = 1
2T

{[
( �σ1 · �k′)( �σ2 · �k′) − 1

3k′2( �σ1 · �σ2)
]
δ( �r1 − �r2)

+ δ( �r1 − �r2)
[
( �σ1 · �k)( �σ2 · �k) − 1

3k2( �σ1 · �σ2)
]

× δ( �r1 − �r1)
} + U

{
( �σ1 · �k′)δ( �r1 − �r2)( �σ1 · �k)

− 1
3 ( �σ1 · �σ2)[ �k′ · δ( �r1 − �r2)�k]

}
. (15)

The parameters T and U measure the strength of the tensor
force in even and odd states of relative motion.

V. RESULTS

The analysis in Secs. II and III show that the simple form
(1) is a good approximation to the contribution of the tensor
forces to the energy density. Values of α and β can be taken to
be constant for states with maximum l in nuclei with A � 48
even for forces with a range of the one pion exchange potential.

Both the central exchange and the tensor interactions give
contributions to the spin-orbit single particle potential to be
added to the spin-orbit interaction. The additional contribution
are [3]

�Wn = (αJn + βJp)�
 · �s (16)

�Wp = (αJp + βJn)�
 · �s (17)

with α = αT + αc and β = βT + βc. For the Skyrme SIII
interaction the parameters of the central exchange part are [5]

αc = 1
8 (t1 − t2) = 61.25 MeVfm5, βc = 0, (18)
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where t1 and t2 are two of the Skyrme interaction parameters.
In terms of the tensor parameters T and U one has

αT = 5
12U, βT = 5

24 (T + U ). (19)

Equations (16) and (17) imply that the mechanism invoked
by Otsuka et al. is intrinsic to the Skyrme energy density
formalism. These equations show that the filling of proton
(neutron) levels influences the spin-orbit splitting of neutron
(proton) levels whenever β �= 0. The normal spin-orbit single
particle potential is

Vso = W0
1

r

(
dρ

dr
+ dρq

dr

)
�
 · �s with

dρ

dr
< 0. (20)

When β is positive the neutron (proton) spin-orbit splitting is
reduced as protons (neutrons) fill a j = l + 1/2 level because
Jp(n) > 0. This effect is clearly seen in Fig. 4 of Otsuka
et al. [7].

In Ref. [3] we searched for sets of parameters α and β that
simultaneously fit absolute values of single-particle levels in
the closed-shell nuclei 48Ca, 56Ni, 48Zr, and 208Pb. We found
that the common optimal values were located in a right angled
triangle with sides α = −80 MeV fm5, β = 80 MeV fm5, and
hypotenuse α + β = 0. Here we relax these constraints and
try to analyze single-particle energies some nuclei far from
the stability line. The experimental data did not exist in 1977
when we discussed the global fit for closed-shell nuclei [3]. Our
present choice of parameters is guided by the recent results of
Ref. [10] on the Z = 50 isotopes and N = 82 isotones which
were analyzed in a HF + BCS approach based on the Skyrme
interaction SLy5 [14] with refitted values of T and U plus a
pairing force. To see whether one can obtain the correct trend
in the evolution of single-particle levels we look at energy
differences between them. These differences can give a clear
indication of the formation of closed shells from the size of
the gaps. Absolute values of single-particle energies depend
not only on the tensor but also on other parts of the Skyrme
interaction. Here we are not concerned with making the best
fits to absolute energies.

In the present article we still use the SIII version of the
Skyrme interaction [5] for comparison with the previous work.
We maintain the conditions α < 0 and β > 0 but take values
outside the triangle found before that are not inconsistent
with the previous findings [3]. We show that values αT =
−180 MeV fm5 and βT = 120 MeV fm5, or equivalently
α = −118.75 MeV fm5 and β = 120 MeV fm5, give a
reasonably good fit to Z = 50 isotopes and N = 82 isotones.
These values are similar to the ones fitted by Brown et al. [8] in
a recent article. For a more general orientation we also discuss
the role of this parametrization on Ca isotopes.

We conclude this section with some remarks on 208Pb and
90Zr. The proton h11/2 and neutron i13/2 in 208Pb are filled
and Jp and Jn are both positive with comparable magnitudes.
Because α ≈ −β we have �Wn ≈ �Wp ≈ 0 and the tensor
forces hardly change the spin-orbit splitting. The situation is
different for 90Zr. There Jp = 0 and the effect of the tensor
forces is to increase the spin-orbit splitting for neutrons and
reduce it for protons. The shell gaps for protons and neutrons
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FIG. 1. The proton single particle energy difference between
1h11/2 and 1g7/2 in Sn isotopes (Z = 50, N = 64–82) calculated
without and with tensor force α = −118.75 MeV fm5, β =
120 MeV fm5. Data points are from Ref. [15]. Solid dots give
information from transfer reactions. Open circles are obtained from
methods less sensitive to the single-particle nature. The parentheses
indicate less certain or indirect assignments.

are both increased significantly and the stability of the double
closed shell at 90Zr is enhanced.

A. Sn isotopes

Figure 1 shows the HF results for the proton single particle
energy difference between 1h11/2 and 1g7/2 in Sn isotopes
(Z = 50, N = 64–82) with and without tensor force. One can
see that the effect of the tensor force is indeed important.
The experimental pattern is satisfactorily reproduced with
this simple approach. In the more sophisticated HF+BCS
calculations of Ref. [10] the theoretical results beyond 126Sn
are better. However, in that region the experimental situation
is less certain because the corresponding values have been
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FIG. 2. The neutron single-particle energy difference between
1i13/2 and 1h9/2 in N = 82 isotones calculated with and without tensor
force. Data points are from Ref. [15]. Solid dots give information
from transfer reactions. Open circles are obtained from methods less
sensitive to the single-particle nature. The parentheses indicate less
certain or indirect assignments.
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FIG. 3. The proton single-particle energies in Ca isotopes relative
to 1d3/2 level, calculated with tensor force (nlj + T ): α =
−118.75 MeV fm5, β = 120 MeV fm5 and without tensor force
(nlj): α = 61.25 MeV fm5, β = 0. Data points are from Ref. [16]:
solid dots for 1d5/2 and stars for 2s1/2.

assigned using methods that are less sensitive to the single-
particle nature of the levels [15]. For the double magic nucleus
132Sn the effect of the tensor force and of the central exchange
part cancels out because Jp ≈ Jn. For isotopes with Z = 56–62
the comparison with the experiment is not possible because the
1h11/2 level becomes unbound in these calculations.

B. N = 82 isotones

In Fig. 2 we present neutron single-particle energy differ-
ences between 1i13/2 and 1h9/2 in N = 82 isotones calculated
with and without tensor force and compare them with data from
Ref. [15]. Again the role of the tensor force is considerable,
bringing down the energy difference e(1i13/2) − e(1h9/2) close
to the best known experimental values. For Z � 50 and for
Z � 70 the 1h9/2 level becomes unbound both with and
without tensor force.

C. Ca isotopes

As the Skyrme interaction SIII was fitted to closed shell
nuclei it has the peculiarity that the central exchange inter-
action produces some undesirable effects in the middle of
a shell. The predicted single-particle levels have the wrong
order when compared with the experimental levels and wrong
levels are occupied [5]. This happens in the absence of the
tensor interaction, but when a tensor interaction with adequate
parameters is added the problem is solved. In particular the

parameters α = −118.75 MeV fm5 and β = 120 MeV fm5

remove this anomaly in 50Ca. The reason is a considerable
increase of the spin-orbit in the 1f shell that shifts the 1f7/2

above the 2p levels. However, the anomaly persists for α = 0
and β = 80 MeV fm5 located at the edge of the above
mentioned triangle.

In addition, from Fig. 3 one can see that the effect of the
tensor interaction is important and improves the spin-orbit
splitting in the 1d shell. In the 2s1/2 shell the trend is correct
but the theoretical results are above the experimental points,
with or without tensor. The pattern is quite similar to that
obtained in Ref. [6] in a shell-model approach.

VI. CONCLUSIONS

The short range approximation for the contribution of a
tensor force to the spin-orbit splitting in nuclei was studied in
Secs. II and III for both a Gaussian and a Yukawa (one-pion
exchange) interactions for states with maximum l in any shell
for several nuclei with mass number between A = 28 and
A = 208. It was shown that the exact matrix elements of the
one-pion exchange tensor potential could be expressed as a
product of the short-range expression (7) and a suppression
factor SY ≈ 0.147 that is almost constant for nuclei with mass
number A � 48. It is only slightly larger, i.e., SY ≈ 0.16
for nuclei near 28Si. Thus the short-range formulas (1), (16),
and (17) with constant α and β should give qualitatively good
results for a Yukawa one-pion exchange potential.

We have made a new fit to the parameters α and β in
the parametrization (16) and (17) of the tensor contribution
to the spin-orbit coupling using data on Z = 82 isotopes and
N = 82 isotones. The tensor force makes a dramatic difference
to the single-particle energy difference between the h11/2 and
g7/2 single-particle levels. A similar situation holds for the
energy difference between the i13/2 and h9/2 single-particle
levels in N = 82 isotones. In both cases the calculation with
the addition of the tensor force give a good description of
the experimental data. The case with Ca isotopes is similar
to 90Zr. The tensor force reduces the spin-orbit splitting for
protons and increases it for neutrons. This brings the order of
single particle into a better agreement with experiment.

The mechanism observed by Otsuka and collaborators [6,
7,9] that the filling of neutron levels influences the proton
spin-orbit splitting and vice versa is intrinsic to the Skyrme
energy density approach and is very simple in that theory. In
addition, with the Skyrme density formalism, one can easily
study the combined contribution of the central exchange and
tensor NN interactions to the spin-orbit potential.
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