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The quasicontinuum of γ rays from the feeding and decay of superdeformed and normal bands in 152Dy
have been extracted in one- and two-dimensional spectra. The Eγ -Eγ correlations in the latter reveal strong
ridges associated with superdeformed and normal states in this nucleus. The entry distributions for normal and
superdeformed bands have been extracted from measured fold and sum-energy distributions. A Monte Carlo
model was developed to simultaneously describe all the quasicontinuum and ridge spectra as well as the feeding
intensity of the superdeformed bands. The rotational damping widths in the normal and superdeformed wells
were derived based on a comparison of the data with model calculations of the continuum of γ rays at finite
temperature.
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I. INTRODUCTION

In several regions of the chart of nuclei, shell effects
lead to the presence of an excited minimum in the total
energy surface associated with a large prolate deformation.
The major to minor axis ratio may be as as large as ∼2:1
in this minimum [1,2]. The properties of the excitations
occurring in this superdeformed (SD) minimum continue to
be a subject of much interest. Superdeformation in 152Dy
was originally discovered by studying correlated ridges, i.e.,
structures parallel to the diagonal in γ -γ coincidence matrices
[3,4]. Only afterward was the first discrete SD band discovered
[5]. It took as many as 16 years to find the links of this SD
band to the normal deformed (ND) states it decays into [6],
and recently the excited SD band 6, built on an octupole
vibration, was linked to the yrast SD band as well [7]. These
two discoveries were only possible because a very large data
set was collected with Gammasphere (GS) [8]. This data set

also makes it possible to take a new look at the continuum of
γ rays with much higher precision than was the case earlier
[3,4].

After the last particle has been evaporated, the cooling of a
nucleus, formed in a heavy-ion fusion evaporation reaction, is
by emission of γ rays (or converted γ rays, at low energy). At
finite temperature above the yrast line, the level density is high
and the γ rays form a quasicontinuum (QC) spectrum from
which individual γ rays cannot be resolved. Only when the
γ cascades reach states on or near the yrast line are discrete
transitions observed. The QC spectra from the hot region above
the yrast line contain not only information about the feeding
mechanism of ND and SD discrete bands and the properties
of states at finite temperature [9–13], but also, in the case of
SD bands, information about the decay of the SD bands into
ND levels. The latter QC decay spectrum has been used to
determine the spin and excitation energy of SD bands when
discrete linking transitions could not be found [9,10]. It is
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the aim of this paper to fully delineate the QC spectra from
the feeding of ND and SD bands as well as the QC spectrum
associated with the decay of SD band 1 in 152Dy.

Correlations in γ -γ coincidence matrices allow for a
determination of the important rotational damping [14–31]
at finite temperature. In a region where the level density
is high, E2 transitions are no longer just simple intraband
transitions, because the level spacing is smaller than or
comparable to the matrix elements of the residual interaction
(i.e., two or more body interactions beyond the mean field
treatment) [32,33]. The initial and final states are complicated
superpositions resulting from the mixing of a large number of
levels. The ensuing distribution of γ -ray energies out of each
such state acquires a width, the rotational damping width, the
half width at half maximum (HWHM) of which is denoted
by �

(2)
rot [23,25]. In addition, γ -γ correlation matrices also

contain information about more specific two-step correlations,
described by a more narrow width, �µ [19,24,29–31]. This
quantity is often referred to as �comp, the compound damping
width [34]. The connection between the compound damping
width and the narrow rotational damping width was established
by Matsuo et al. [24].

To gain more insight into the physical significance of the
wide (�(2)

rot ) and narrow (�µ) rotational damping parameters,
it may be instructive to consider them in the time domain
as suggested by Døssing et al. [20]. The narrow rotational
damping width �µ describes the spread of simple states, e.g.,
levels described in a shell model, over the nuclear compound
states which include residual interactions. It follows that h̄/�µ

describes the average time the nucleus spends in the simple
shell model states. On the other hand, h̄/�

(2)
rot describes the

average time it takes for the compound state that originated
at spin I to spread into the compound states at spin I -2
through the E2 decay [20,35]. In this time domain, it is easy
to understand the effect of motional narrowing, i.e., the effect
that the wide component starts to decrease at higher excitation
energies after initially increasing as a function of excitation
energy. At some finite excitation energy, �µ becomes large
enough, and thus h̄/�µ small enough, that the nucleus does
not spend sufficient time in a particular shell model state
to have time to spread over the states at spin I -2 before it
“jumps” to another shell model state. Thus, the effective width
of the rotational damping �

(2)
rot will start to decrease again

with increasing excitation energy in analogy with the similar
well-known effects in nuclear magnetic resonances [16,20]
and the damping of giant resonances in hot nuclei [36].

The compound damping width �comp increases monoton-
ically with the excitation energy above the yrast line (also
known as heat energy or the intrinsic excitation energy), U [15].
On the other hand, the wide rotational damping width �

(2)
rot is

expected to reach a maximum and then decrease again as
discussed above (see, e.g., Refs. [15,16,20,34]). When the
estimated �comp is smaller than the spacing D2 of levels,
which can interact via a two-body interaction, discrete bands
of specific structure will be seen. This is generally the case
at the lowest excitation energies above yrast, typically below
U < 1 MeV. Above this energy, band mixing sets in, and this
generally leads to damping of the rotational motion with E2

transitions spreading out of each state to many final levels.
Still higher up in heat energy, the compound damping width
dominates, and the motional narrowing discussed above occurs
[15,34]. Under very special circumstances, the band mixing at
neighboring angular momenta may be correlated, producing
rotational bands with strong E2 transitions, based on mixed
states with many components. Such bands, referred to as
ergodic bands [32,37], requires either very large deformations
or special shell structure for the intrinsic states; this is not
expected to occur for 152Dy but has been observed for excited
SD states in 194Hg [38]. However, the regions of rotational
damping and motional narrowing are both expected to be
probed by the γ cascades that cool the nucleus and feed the
ND and SD discrete levels.

Under the condition �µ > �
(2)
rot > D, when U is of the order

of 8 MeV, the distribution of excited levels is expected to be
chaotic and can be described by a full Gaussian orthogonal
ensemble (GOE) distribution [14,32,39]. At lower excitation
energies, sparse GOE distributions might provide a better
description [39]. However, in the treatment described below,
only the full GOE description, implying chaos [40], is used.
In fact, it should be possible to relate the strength of rotational
damping to chaos in nuclei at finite temperature [20,41].

Besides investigating the one-dimensional (1D) ND and SD
QC spectra and two-dimensional (2D) ridges, the main aim of
this work was to extract the rotational damping parameters
�

(2)
rot , �µ and the relative intensities of the narrow damping

component, Inar, for 152Dy. The general outline of this paper
is as follows. First, the QC spectra and ridges in coincidence
with ND and SD discrete γ rays in 152Dy are presented. This is
followed by a discussion of results of a dedicated experiment
in which the (total) entry distribution was measured with GS.
The extraction of the entry distribution will also make use
of the results of a decomposition of the QC spectra, where
coincidence gates are placed on discrete ND transitions. The
measured entry distribution will subsequently be the starting
point for γ cascades that are followed in Monte Carlo (MC)
simulations, in an attempt to simultaneously reproduce the ND
and SD QC and ridge spectra. The reproduction of these spectra
allows the determination of the rotational damping strengths in
the SD and ND wells of 152Dy. Furthermore, the simulations
also elucidate the mechanisms associated with feeding and
decay of SD bands in the A ∼ 150 mass region. For simplicity,
first fixed (average) values of �

(2)
rot , �µ, and Inar will be used in

the MC calculations (referred to as MC1 calculations). Then,
simulations of these quantities incorporating more realistic
variations with spin and excitation energy (referred to as
MC2 calculations) will be discussed. Finally, the SD entry
distribution will be extracted and compared with the total entry
distribution for 152Dy.

II. EXPERIMENT DETAILS

The ND and SD bands in 152Dy were populated with the
reaction 108Pd(48Ca,4n)152Dy at 191 MeV (midtarget). In the
first experiment, the 48Ca beam was delivered by the 88-in.
cyclotron facility at the Lawrence Berkeley National Labora-
tory, and the target consisted of a stack of two ∼0.4 mg/cm2
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self-supporting 108Pd foils. The γ rays were measured with
the GS array [8], comprised of 100 Compton suppressed Ge
detectors. As described in Ref. [6], events associated with the
152Dy reaction channel were selected (tagged) by detecting the
decay of the 86-ns, 17+ yrast isomer [42,43] on a Pb stopper
foil placed about 30 cm downstream from the target, amid the
most forward BGO detectors [44] of the GS array. The beam
drilled a hole in the stopper foil while most of the residues
of interest were deposited on the foil because of small angle
scattering. The tagging efficiency was measured to be ∼80%.
A total of 1.6 × 109 152Dy events were isomer tagged during
a 12-day run.

In the second, shorter follow-up experiment, the Hevimet
shields, an alloy of tungsten, were removed from the BGO
detectors in GS in order to measure the ND and SD entry
distributions. This time, the 48Ca beam was delivered by
the Argonne Tandem-Linac Accelerator System (ATLAS) at
Argonne National Laboratory. The reaction and setup were
otherwise identical. This experiment ran for 6 days during
which time a total of 4.8 × 108 isomer-tagged events were
collected.

In the first experiment, the BGO detectors had the Hevimet
shields on, and the Ge crystals had thick 1.27-mm Pb absorbers
in front of them to attenuate low-energy γ rays. In the second
experiment, the absorbers consisted of 0.05-mm Ta, 0.51-mm
Cd and 0.25-mm Cu sheets, while the BGO detectors had
1.27-mm Pb absorbers in front of them to shield against target
x rays. In both experiments, the timing discriminators for the
Ge detectors were operated in constant-fraction mode with
slow-rise-time rejection.

III. DECOMPOSITION OF NORMAL DEFORMED
QUASICONTINUUM SPECTRA

Pairs of double coincidence gates were placed on the
following ND lines in 152Dy: 1114.5, 779.6, 684.9, 388.6,
and 967.0 keV, covering the spin range 28–37h̄ (see
Refs. [42,43,45] for a suitable level scheme). The resulting
γ rays were sorted “spike free” [46] into 1D spectra asso-
ciated with the 17 polar angles of GS [8]: 17.27◦, 31.72◦,
37.38◦, 50.07◦, 58.28◦, 69.82◦, 79.19◦, 80.71◦, 90.00◦, 99.29◦,
100.81◦, 110.18◦, 121.78◦, 129.93◦, 142.62◦, 148.28◦, and
162.73◦. So-called local background spectra, i.e., coincidence
spectra with gates placed in the direct vicinity of the lines
themselves in the Eγ -Eγ plane, were subtracted for each gate
combination and each angle, using the procedure described
in Ref. [47]. The statistical errors were carefully propagated.
These spectra were then corrected further for a number of
effects described below.

First, the contributions due to coincidence summing were
removed [48]. The summing factor was estimated as

R = 1 − (1 − �)M−2; � ≡ εp

PT

, (1)

where εp is the absolute photopeak [49] efficiency (see
Appendix A) at the mean energy of the unfolded spectrum,
PT is the photopeak to total ratio (also at this energy), and M

is the multiplicity of the unfolded spectrum described below.

The PT value is found from the response function, which is
described below as well. Since M and the mean energy of the
unfolded spectrum have not been determined at this point of
the analysis process, estimates are made and the final values
are found in an iterative process. A final adjustment of R is
made until the summed peaks in the spectrum are reduced
as much as possible. A small contribution associated with
neutron interactions in the Ge detectors, predominantly seen in
detectors located at forward angles, was subtracted next using
a measured neutron interaction spectrum. This spectrum was
found by placing Hevimet shields in front of the Ge detectors
such that they only register γ rays generated by neutrons from
a heavy-ion fusion reaction striking the detectors [50].

Even with efficient BGO Compton suppression shields,
some Compton events are still present in the spectra and must
be subtracted in order to extract the true QC contributions.
By recording the spectra from (i) single-line sources and
(ii) sources emitting two γ rays in coincidence, all placed at the
target position, the response function of GS was measured. For
the latter sources, single-line spectra were obtained by apply-
ing appropriate coincidence gates. Table I lists the sources used
to measure the response of the array; i.e., the total spectrum
observed in GS when a γ ray of a given energy was emitted
in its center. In all cases, the room background was subtracted
before the source data were used to construct the response of
GS. By interpolating between the measured response functions
at neighboring discrete energies, the Compton contributions
over the entire spectrum were deduced and subtracted using
the unfolding technique described in Ref. [48]. How well this
procedure works is demonstrated in Appendix B. Despite the
use of 2D energy-dependent time gates, there was a small
reduction in the efficiency at low energy, which was corrected
for in the response function. The corrections to the spectra
described above are illustrated in Fig. 4 of Ref. [9] in the case
of 192,194Hg.

The efficiency of GS was measured using the multiline
calibration sources [51]152Eu, 182Ta, 243Am, and 56Co, with the
procedure described in Ref. [48]. The spectrum in each polar

TABLE I. Sources used to determine
the response function for GS. Background
spectra were measured and subtracted from
the single-line source data before the latter
were used to calibrate the response function
used subsequently to unfold the 1D γ -ray
spectra.

Source Eγ (keV)

57Co 122
141Ce 145
113Sn 392
85Sr 514
137Cs 662
54Mn 835
65Zn 1116
111In 171, 145
88Y 898, 1836
60Co 1173, 1333
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angle was corrected for efficiency, before applying corrections
for Doppler shifts using the relativistic formula [52]

ELAB(θ ) = ECM × F (β, θ ); F (β, θ ) ≡
√

1 − β2

1 − βcosθ
. (2)

Here β ≡ v/c, v is the velocity of the nucleus at the time of γ

emission, ECM the γ -ray energy in the center-of-mass system,
and ELAB(θ ) the corresponding γ -ray energy in the laboratory
at the polar angle θ . At the same time, the spectra were also
corrected for relativistic aberrations [52], i.e., the spectra in
the laboratory frame were scaled with [F (β, θ )]2, where the
F (β, θ ) factor is defined in Eq. (2).

The angle-sorted spectra were then fitted with the function

W (θ ) = A0 + A2P2(cosθ ) + A4P4(cosθ ) (3)

at each energy channel in order to extract the true intensity
(A0) spectrum presented in Fig. 1. The mean γ -ray energy in
Fig. 1 is ∼1130(40) keV, and the total multiplicity is 21.3(7),
corrected for γ rays missing due to the effect of coincidence
gating but not for internal conversion. The latter correction
would add to the multiplicity and lower the mean energy
slightly.

The discrete lines were then removed (at each angle) in
an iterative procedure, which uses the information in the
propagated statistical error spectra, and both identified and
unassigned γ rays were removed. A new A0 spectrum was then
extracted; it is presented, contracted to 32 keV per channel,
in Fig. 2. This figure shows the QC of γ rays (or unresolved
γ rays) emitted before the 152Dy nucleus has cooled to the
point where only discrete γ rays are emitted from the decay
of states located on or near the yrast line [9].

The spectra of Figs. 1 and 2 have also been normalized to
the number of γ cascades that produced them. Thus, the area
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FIG. 1. Sum of angle-sorted spectra after double coincidence
gates were placed on ND lines in 152Dy. The data were processed as
described in the text and normalized to the number of γ cascades
in the data. A distinct continuum, displayed in greater detail in
Fig. 2, is clearly visible under the discrete peaks.
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FIG. 2. Same as Fig. 1, but with the discrete peaks removed.
The spectrum has been contracted to 32 keV/channel, and the three
components of the QC spectrum have been identified through the
decomposition procedure described in the text.

of the spectra, or of any parts in them, is equivalent to the
associated multiplicity. The 540-keV line (25− → 23−) [43]
was used for the normalization. It was found that 76(2)% of
the yrast band intensity is contained in the ND 540-keV line,
which is not part of any of the double gates used to produce
the spectra in Figs. 1 and 2. Thus, the area of this 540-keV
transition divided by 0.76(2) was used to normalize the spectra
in Figs. 1 and 2 to the number of cascades they represent [9].

As in the A ∼ 190 mass region [9], the QC spectrum was
then decomposed into its different multipole components;
i.e., its E2 quadrupole, E1 statistical, and M1/E2 dipole
constituents. These three components are presented in
Fig. 2 as well. First, the statistical spectrum is fitted to the
high-energy part of the QC spectrum with the functional
form [50,53–56]

f (E) = CENe− E
T . (4)

A fit was performed from E = 2.9–5.1 MeV, and the fit
parameters were found to be C = 3316(34), N = 3.054(8),
and T = 0.517(1) MeV, where the errors reflect only the
statistical uncertainty. The multiplicity and mean energy of
the fitted statistical spectrum are given in Table II. After
correction for the angular distribution [Eq. (3)] and relativistic
aberration [Eq. (2)], this component was then subtracted
from the QC spectrum at each polar angle. As a result,
only the E2 quadrupole and M1/E2 dipole components
remain, which were further decomposed using the angular
distribution analysis carried out using Eq. (3). The resulting
A2/A0 spectrum is displayed in Fig. 3.

The A2/A0 coefficient is sensitive to the multipolarity of the
emitted γ rays [57]. Two limits to the value of this coefficient
can be specified, as shown in Fig. 3. If the measured A2/A0

coefficient at a given energy is at or above the upper limit
of +0.365, characteristic of stretched E2 transitions, then the
content of the corresponding A0 spectrum is considered to
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TABLE II. Decomposition of the normalized QC spectrum of Fig. 2 obtained with double
coincidence gates placed on ND lines in 152Dy. To arrive at the mean entry point, the contributions
from the isomer and from the lines missed because of gating are added. The last row corresponds
to the mean spin and energy of the entry distribution measured by the HK method described in
Sec. VI. The error estimates contain contributions from statistical uncertainties and systematic
errors from the background subtraction, unfolding, and normalization.

Component Multiplicity M 〈E〉 (MeV) δI/M(h̄) �I (h̄) �E (MeV)

QC:stat 2.9(2) 2.08(2) 0.6(1)a 1.7(3) 6.0(3)
QC:E2 6.8(4) 1.36(1) 2.0 13.6(7) 9.2(5)
QC:M1/E2 1.1(1) 0.75(3) 0.9(1)a 1.0(1) 0.9(1)
a/14 ns 6.4(3) 9.0(6) 4.2(3)
b/14 ns 0.9(1) 1.2(1) 0.33(3)
Unassigned 0.59(5) 1.4(1)b 0.8(1) 0.55(6)
Grass 1.4(1) 1.06(1) 1.4(1)b 1.9(2) 1.5(1)
Missed/g 2.0 0.81(1) 1.40(1) 2.80(2) 1.63(2)
Isomer 17.0 5.088
QC 49.0(1.0) 29.3(7)
HK 49.5(1.0) 28.0(6)

aEstimate from MC calculations of the feeding of ND bands in 152Dy described later in this paper.
bAssumed to be the same as for the identified transitions.

be of E2 character. If, in contrast, the A2/A0 value is at or
below the large negative limit of −0.46, characteristic of mixed
M1/E2 transitions [9], the corresponding A0 channel content
is considered to belong entirely to the M1/E2 component.
For spectrum channels with A2/A0 values in between, the
content of the QC spectrum is split proportionally, according
to its position between the two limits. The E2 and M1/E2 QC
spectral components determined with this approach are given
in Fig. 2 along with the E1 statistical contribution.

The discrete peaks of Fig. 1 are from known as well as from
unassigned transitions. The average multiplicities, energies,
and spins removed by each component of the 152Dy γ -ray
ND spectrum are given in Table II. All assigned transitions
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A
2/A
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FIG. 3. Angular distribution coefficient A2/A0 [see Eq. (3)] for
the QC spectrum of Fig. 2 after the fitted statistical component was
subtracted.

were identified and grouped into lines above the 14-ns isomer
(labeled a/14 ns in Table II) and below the isomer (b/14 ns).
The remaining, very weak γ rays above the smooth QC are
classified as either discrete unassigned or “grass” according to
whether they could be identified as clearly separate, distinct
peaks or not. The multiplicity of the grass was determined to
be 1.37(8), and it was assumed that the grass, like the known
discrete lines, carried 1.4(1)h̄ per γ ray on average.

A small fraction of the intensity of the transitions below the
14 ns isomer will appear as a continuum because the nucleus
is moving away from the target while the decay occurs, and
the nominal polar angles of the GS rings are no longer correct.
Such γ rays are not classified as peaks but are still collected
in the QC spectra. Although they are not classified entirely
properly, their intensity is, therefore, not lost.

Table II presents the spins and energies removed by all
the components of Fig. 2. When the effects of isomer tagging
and coincidence gating are included, Table II indicates that
the mean entry point for this reaction is I = 49.0(1.0)h̄ and
E = 29.3(7) MeV. Other measurements of the mean entry
points for 152Dy using different reactions have been reported
[11,12] and are in good agreement with the values reported
here using the 108Pd(48Ca,4n)152Dy reaction.

IV. SUPERDEFORMED QUASICONTINUUM SPECTRUM

The 94 cleanest combinations of coincidence gates placed
on the following SD band 1 transitions in 152Dy [6,42] with
energies 647, 693, 738, 784, 829, 876, 923, 1017, 1065, 1161,
1209, 1257, 1305, 1353, 1402, and 1449 keV, covering the
spin range 28–62h̄, were used to extract the total SD spectrum
of γ rays presented in Fig. 4. As done for the equivalent
ND spectrum in Fig. 1, the data have undergone all the
same corrections and were also normalized to the number of
γ cascades. The SD QC spectrum is visible under the
discrete SD and ND lines. Clearly, the multiplicity of the QC
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FIG. 4. Normalized γ spectrum obtained with double coinci-
dence gates placed on clean combinations of discrete lines of SD
band 1 in 152Dy. The SD QC spectrum is seen under the discrete
SD and ND lines. Decomposition of this spectrum is delineated in
Table VI.

component of the SD total spectrum is smaller than in the ND
case.

For the strong discrete peaks in the SD band, the missed
intensity due to gating, as well as feeding and decay, were
accounted for (see details in Appendix C), and the resulting
average intensity of these peaks was used to normalize the
data of Fig. 4. Thus, the normalization was carried out with
discrete in-band SD transitions rather than with the intensity
of any discrete ND lines from the decay of the SD band.

The SD QC spectrum was extracted using the same
procedure as for the ND QC component and is shown in
Fig. 5. As expected, two contributions are clearly visible. MC
calculations, which will be described in Sec. VII, suggest that
the lower component of Fig. 5 is from the decay of the SD band,
whereas the higher energy component belongs to the feeding of
the SD band, with significant overlap of the two components.
It should be noted that, as opposed to the A ∼ 190 region [9],
there is no sign of additional “statistical-like” QC spectrum
strength at higher energies. This indicates that in the mass
A ∼ 150 region, the decay may be dominated by E2 transitions
as opposed to E1 statistical transitions, partially because the
decay out (DO) happens at higher spins, where E2 transitions
are stronger. An approximate experimental decomposition of
the QC spectra components of the SD QC spectrum in Fig. 5
will be discussed in Sec. VIII.

V. RIDGE EXTRACTIONS

Just as the QC spectra were extracted by placing double
coincidence gates on ND and SD lines, 2D γ -γ matrices were
accumulated using the same combinations of clean gates. In
addition to double-gated matrices, single-gated and ungated
matrices were generated as well so that the double-gated
matrices could be background subtracted with a slightly

0 0.5 1 1.5 2 2.5 3 3.5 4
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exp data
exp-M1/E2
FEED+DO
DO
FEED
ND-FEED

MC1 Calc
SD gated QC

FIG. 5. QC spectrum of γ rays obtained when pairwise coinci-
dence gates are set on clean combinations of lines from SD band
1 in 152Dy [6]. The DO spectrum shows the MC1 calculation (see
Sec. VII H) of the DO QC spectra (sum of statistical E1 and
quadrupole E2 transitions), and the FEED curve is the MC1
calculation of the feeding QC spectrum. The FEED+DO curve is
the sum of the two calculated QC spectra components. Also given is
the subset of the FEED spectrum where the γ rays were emitted in
the ND well. The dashed line provides the experimentally extracted
QC spectrum after the M1/E2 component discussed in Sec. VIII has
been subtracted.

simplified version of the background subtraction method of
Ref. [47], now with 2D matrices instead of 1D spectra.
The 2D γ -γ matrices were updated in such a way that all
increments were statistically significant; i.e., spikes from very
high multiplicity events were eliminated [46] as was done for
the 1D spectra. This also ensured that the statistical errors
could be properly calculated and propagated.

The background-subtracted, double-gated matrices were
unfolded using a 2D version (provided by D. C. Radford)
of an unfolding program based on the procedure described
in Ref. [48]. The matrices were then “COR subtracted” [58];
i.e., an uncorrelated matrix (but only of the relevant local
region) was generated from a projection and subtracted so
that the resulting matrix had no net counts. In the resulting
matrix, positive counts represent areas where γ rays on the
ordinate and abscissa axes are in strong coincidence, and
negative counts are areas where these γ rays are either in
weak coincidence or not in coincidence at all. Examples of
the former regions are areas where discrete γ lines are in
coincidence. On the other hand, as an example of the latter
region, the diagonal in the matrix will in general have negative
counts since γ rays tend not be in coincidence with transitions
of the same energy, at least for rotors.

Before carrying out a projection of the matrix onto an axis
perpendicular to the diagonal, resulting in the so-called ridge
spectrum, it is important to remove any coincidence events
between discrete lines in the region that is projected. For strong
peaks, stripes along the Eγ 1 and Eγ 2 axes are quite often present
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as well—even after the matrices have been unfolded. Both
types of coincidences must be removed in order to improve
the ridge signal with respect to the background.

In the procedure used in this work, no “repairs” are made
in the 2D matrices to account for the discrete coincidence
peaks and stripes that are removed. The associated areas in the
matrices are simply set to zero counts. Instead, the effect of
the missing matrix areas is extracted (as a “bias function”
described below) and used to correct the cross-diagonal
projections from the matrices where the stripes and peak
coincidences were removed. It can be shown that the resulting
ridges are very close to the true ridges (as documented in
Appendix D). Nevertheless, the calculated ridges from the
MC simulations, discussed below, are treated exactly in the
same way so that any possible artifact introduced by removing
peaks and stripes does not affect the comparison between the
experimental data and the MC simulations. Figure 6 shows the
extracted ND-gated ridges, and Fig. 7 presents the SD-gated
ridges obtained in the present analysis, together with the result
from MC calculations discussed in Sec. VII H. The results from
the latter MC calculation for the ND gated QC is displayed in
Fig. 8.

To find the “bias function,” a “unity” matrix is created
where all the elements have a value of unity. A cross-diagonal
projection pj1 is obtained from this matrix using the same
area as was used for the diagonal projection of the (Eγ 1, Eγ 2)
matrix above. Then, the same peaks and stripes are removed
from the unity matrix, and a new cross-diagonal projection
pj2 is obtained. The bias spectrum is then B ≡ pj2/pj1. The
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FIG. 6. (Color) Ridges obtained when coincidence gates are
placed on the same ND lines in 152Dy as in Fig. 1. The histogram
presents experimental data. Solid red line is from the first MC
calculation (MC1) of the ridges, discussed below in Sec. VII H. As
discussed in the text, part of the narrow ridge structure is from γ rays
emitted while the nuclear shape is prolate SD. Only the more slowly
changing underlying ridge structure (particularly the valley) is from
γ rays emitted when the nucleus is ND (mostly slightly oblate). The
ridge represents a cut of 1450 ± 350 keV along the diagonal in the
Eγ 1 × Eγ 2 matrix.
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FIG. 7. (Color) Ridges obtained when coincidence gates are
placed on clean pairs of SD lines in 152Dy. At least four narrow
ridges can be seen as well as a shallow valley. The solid line is
from the first MC calculation (MC1) of the ridges, discussed in
Sec. VII H. The ridge represents a cut of 1450 ± 350 keV along
the diagonal in the Eγ 1 × Eγ 2 matrix.

diagonal projection from the (Eγ 1, Eγ 2) matrix is corrected
by dividing it by the B spectrum. It has been verified, using
simulated ridges, that the corrected ridges from this procedure
are very close to the true ridges, except for a scaling factor (see
discussion in Appendix D).

At least four narrow ridges are clearly seen along with a
shallow valley in Fig. 7. Thus, the γ cascades that feed the
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FIG. 8. QC γ rays when double coincidence gates are placed on
a combination of ND transitions in the 152Dy nucleus. The spectrum
is similar to that reported in Refs. [11,12]. The curve marked ND
(SD) indicates the γ rays emitted in the ND (SD) well, according
to the MC1 calculation discussed in Sec. VII H. The dashed line
provides the experimentally extracted QC spectrum after the M1/E2
component shown in Fig. 2 has been subtracted.
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discrete SD band 1 contain a significant number of events
where many γ rays are emitted in the SD well. The ND-gated
ridge of Fig. 6 exhibits even more overall structure. However,
the narrow width and position of the ridges as well as the
ensuing MC calculations suggest that the very narrow ridge
structure stems from γ rays that are emitted while the nucleus
resides in the SD well.

VI. MEASURING THE TOTAL ENTRY DISTRIBUTION

A. The (H, K ) extraction

In the standard GS configuration, the seven BGO detectors
surrounding each Ge crystal [44] are used exclusively to
suppress any γ ray scattered from the Ge crystal. The BGO
detectors, therefore, are equipped with Hevimet absorbers to
prevent direct hits from γ rays coming from the target, which
would cause false Compton suppression. In this standard
configuration, GS has a photopeak efficiency of 8.9(2)%
and a total efficiency of 17.8(3)% for 100 detectors (see
Appendix A).

There is another mode of operation of GS with the Hevimet
absorbers removed, where the γ rays from the target (in
addition to the γ rays scattered from the Ge crystals) are
detected with high efficiency in the BGO counters, albeit with
lower energy resolution [44]. In this mode, GS can be used as
a powerful calorimeter, with a detection efficiency of 78(2)%
(see Fig. 10). Furthermore, this second GS mode also provides
an efficient means of measuring the γ -ray multiplicity because
of the high granularity of the array. For the reaction under
investigation here, there are about four times as many detector
modules as the mean number of emitted γ rays (above the
isomer). This makes GS suitable for the determination of the

FIG. 9. Measured sum energy H vs module multiplicity K , when
pairwise coincidence gates are placed on ND lines above the 17+

isomer in 152Dy. The data are background subtracted as described
in the text. On the average, after isomer tagging, 19.1(4) Ge-BGO
modules are hit, and a total energy of 18.1(5) MeV is detected by GS
in this reaction.

entry distribution, i.e., of the location in the spin-energy plane
from which γ deexcitation starts after the last particle has
been evaporated. The procedure used to measure the entry
distribution is described below.

Pairwise coincidence gates were placed on ND transitions
in the nucleus, and the sum energy H and number K of detector
modules (each comprised of a Ge crystal and seven enveloping
BGO scintillator detectors) that fired were recorded. An isomer
tag, as described in Ref. [9], was required as well to make
the extraction of the entry distribution exclusive to the 152Dy
reaction channel. The 720 BGO crystals in GS were calibrated
in energy so that the best possible total sum energy could be
determined. Only the hit pattern and the sum energy of the
seven BGO crystals in a module were available in the GS data
stream. As a result, the energy calibration of the measured
sum energy in a module could only be carried out exactly
when single BGO crystals were hit. However, when more than
one BGO crystal fired, appropriate averages of the calibration
coefficients were used, based on the hit pattern.

The observed array multiplicity K and sum energy H

were sorted into 2D histograms, known as (H,K) matrices.
In addition to these double-gated (H,K) matrices, single-
gated and ungated (H,K) matrices were collected as well,
locally around each discrete double γ gate combination in the
Eγ 1 × Eγ 2 matrix, in order to enable background subtraction
using a modified version of the procedure described in
Ref. [47], now with 2D (H,K) histograms instead of 1D
spectra. The measured, background-subtracted, module mul-
tiplicity vs sum energy matrix is presented in Fig. 9. This
distribution is, however, not the true entry distribution since
corrections for the response of GS and the effect of the isomer
tagging were not taken into account. The multiplicity must,
moreover, be translated into the corresponding spin in order to
arrive at the actual entry distribution. The procedures used to
extract the entry distribution from the background-subtracted
(H,K) matrix are described below.

B. The (H, K ) response function

To measure the H (sum energy) and K (multiplicity)
efficiency of GS, a 88Y source was placed in the center
of the array, and data were acquired in singles mode. This
source emits two γ rays, with energies of 898 and 1836 keV,
predominantly in coincidence [51]. A weak source (∼2µ Ci)
was used in order to minimize pileup effects. Yet, this strength
was sufficient to ensure that random background events
were not a problem. The contribution of random events was
reduced further by requiring a time coincidence. Events were
subsequently selected by demanding that the photopeak of
the 1836-keV 88Y line was observed, hereby ensuring that
the other component of such events is associated with the
emission of a 898-keV γ ray in the center of GS. There is a
certain probability that this 898-keV γ ray will be completely
or partially absorbed in GS or will be missed altogether.

Batches of such events from 1 to 100 were added up
and records kept, at each step in the batch, of the total
energy observed and the number of modules hit [59]. Two-
dimensional contour maps of the energy H and multiplicity K
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FIG. 10. Energy response H of GS, in its calorimeter mode with
100 detectors, as described in the text. The abscissa is the energy
injected in GS. The ordinate gives the corresponding distribution of
energy observed in GS. The contour plots indicate that the average
calorimetric energy efficiency of GS is 78(2)%. The plot also presents
the spread in the observed energy.

response of GS obtained in this way can be found in Figs. 10
and 11, respectively. A correction to these data was applied to
take into account a small side feeding directly to the 898-keV
state in 88Y, i.e., bypassing the level emitting the 1836-keV line
[51]. An additional small correction takes into account the fact

FIG. 11. Multiplicity response K of GS, in its calorimeter mode
with 100 detectors, as described in the text. The abscissa is the number
of γ rays emitted from the center of GS. The ordinate represents the
corresponding distribution of hits in the Ge-BGO modules. As more
γ rays are injected into GS, the number of multiple hits in the same
modules increases. Thus, the response function curves over as the
multiplicity becomes large.

that one detector in GS is used to measure the 1836-keV line.
For each event generating the GS response, it is ensured that
the γ rays are in coincidence with the 1836-keV transition by
placing the same gates on time that were used for the observed
(H,K) distribution of Fig. 9. It can be seen from Fig. 10
that GS, in its calorimeter mode, has a sum-energy efficiency
of 78(2)%. In Fig. 11, the effect of multiple hits in a single
module is clearly visible as a deviation of the response function
from a straight line at higher multiplicities. A competing
effect originates from events where one γ ray scatters from
a Ge-BGO module into a neighbor, thus producing two hits.
Such effects and any others are taken into account through the
measured response functions.

The mean energy of all 152Dy γ rays of Fig. 1 is ∼1130 keV
after the data have been corrected for γ rays missing due
to the effect of gating, but not for internal conversion. The
latter correction would add to the multiplicity but lower the
mean energy slightly. This justifies the use of the 88Y 898-keV
γ ray to measure the response function. In addition, a Monte
Carlo N-particle transport code (MCNP) simulation [60] of the
Ge-BGO modules indicates that the total efficiency is nearly
constant over the range ∼0.6–1.8 MeV. Thus, the simulated
GS calorimetric efficiency changes by at most a few percent
over this range.

C. The (H, K ) unfolding

The unfolding of the measured (H,K) distribution, shown
in Fig. 9, is carried out following an MC-based procedure
described in Ref. [59]. From an initial guess of an entry
distribution, random E (sum energy) and M (multiplicity)
points are selected in 2D, and the response functions provided
in Figs. 10 and 11 are used to fold these (E,M) entries into
what would be observed in GS in terms of the number of
modules (also referred to as fold) K and the observed sum
energy H . Thus, for each value of M and E, the observed
K and H are selected (randomly) from the 1D ordinate
projections in Figs. 10 and 11 corresponding to the appropriate
abscissa for E and M . It follows that in addition to accounting
for the finite efficiency for observing the multiplicity and total
energy of a γ -ray cascade in GS, this folding adds the spread
in K and H reflected in the response functions. If the point
folded in this way falls inside the observed (H,K) distribution,
(i) the selected (M,E) point is stored in the next generation,
improved (M,E) entry distribution and (ii) one is subtracted
from the observed (H,K) distribution in the particular (H,K)
location that was selected. On the other hand, if the observed
entry distribution does not contain any counts (or does not have
any counts left at this point in the folding/unfolding procedure)
in the selected (H,K) channel, then nothing is done, and a new
random M and E point is selected and the same procedure is
repeated.

When all (or nearly all) of the counts in the observed
(H,K) distribution have been selected (eliminated) in this
MC procedure, the next generation (M,E) distribution that
was accumulated in the process represents a better approx-
imation to the true (M,E) entry distribution. The process
is then repeated with the same MC procedure described
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above, and an even better, true (M,E) entry distribution is
generated. This iterative procedure quickly converges toward
a final, best approximation to the (M,E) entry distribution
that folds into the measured (H,K) entry distribution of
Fig. 9.

The initial guess of an entry distribution is usually taken
to be a simple, flat, unbiased distribution in M and E, and
from five to ten iterations of the MC unfolding procedure
are performed. One should be aware that it is not possible
to find a unique distribution that is the true (M,E) entry
distribution from the measured (H,K) distribution in GS.
However, it is expected that the (M,E) distribution found
in the MC unfolding procedure described above (Fig. 12) is
a fair representation of the (M,E) distribution that would be
observed in an ideal calorimeter with 100% efficiency and
infinite granularity of γ -ray detectors.

D. Normal deformed (I, E) entry distribution

To arrive at the final (I, E) entry distribution for the
48Ca+108Pd reaction, the effect of the isomer tagging has
to be taken into account, and the multiplicity dimension of
the measured multiplicity–sum-energy (M,E) distribution of
Fig. 12 must be translated into the associated spin–total-energy
distribution. This can be done by inspecting Table II. The mean
spin removed by observed γ rays (above the isomer) is 32.0(4),
and their multiplicity is 22.0(1). Thus, the mean spin removed
per observed γ ray in GS is 1.45(3)h̄, and the conversion of M

to I is I = 1.45(3)×M , in good agreement with Refs. [11,12].
To arrive at the complete (I, E) entry distribution, one must
also add the effect of tagging on the isomer. It follows that the
complete (I, E) entry distribution is derived from the unfolded

FIG. 12. (M,E) distribution from the unfolded (H,K) distribu-
tion of Fig. 9. The mean multiplicity is 22.3(5) and the mean energy is
23.2(6) MeV.

FIG. 13. Measured (I, E) entry distribution for the γ cascades
feeding ND states above the 17+ isomer in 152Dy. The two lines are
the ND and SD yrast lines used in the MC calculations described
below. The line starting at the center of the entry distribution
indicates the calculated mean decay vectors for the statistical and
quadrupole transition components of the QC of γ rays (from the
MC2 calculation discussed in Sec. VII I). The mean entry spin and
energy are 49.5(1.0)h̄ and 28.0(6) MeV, respectively.

(M,E) distribution as

I = 1.45(3) × M + 17.0, (5)

E = E + 5.088, (6)

where the units are h̄ and MeV, respectively, since the isomeric
state has a spin of 17h̄ and an energy of 5.088 MeV. The
final (I, E) entry distribution for the 152Dy channel in this
reaction, under the gating conditions used, is presented in
Fig. 13 along with the ND and SD yrast lines that were used
in the MC calculations described below. The mean entry spin
and energy are measured to be 49.5(1.0)h̄ and 28.0(6) MeV, in
excellent agreement with the mean values obtained from the
QC spectrum analysis presented in Table II. With respect to
the ND yrast line, the mean feeding excitation energy over the
ND yrast line, U , is 7.0(6) MeV, which is quite consistent with
the neutron binding energy of 9.4 MeV [61].

VII. MONTE CARLO CALCULATIONS

A. Introduction

A Monte Carlo (MC) calculation is used to simultaneously
reproduce both the QC spectra of Figs. 2 and 5 and the
correlation ridges of Figs. 6 and 7. As was mentioned in
the Introduction, the MC calculation contains the rotational
damping parameters �µ, �

(2)
rot , and Inar for the SD and ND

wells. Thus, reproducing the experimentally measured QC
spectra and ridges constitutes a determination of the rota-
tional damping in the two wells—within the validity of the
model.

MC simulations based on the model outlined below were
previously used successfully to describe data on (SD) nuclei in
the mass A ∼ 190 region [9]. As a matter of fact, simulations
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with this model placed constraints on the excitation energy and
spin of SD bands at a time when discrete transitions linking
the SD bands to the ND states they decay into had not yet
been observed [62]. The present code is based on an earlier,
much simpler version which only handled deexcitations in the
ND well [11,12]. It is worth noting that an independent MC
calculation of the QC in 152Dy has been presented by Schiffer
et al. [13].

For the present work, the MC code was improved to
handle the two components of the damping, �µ and �

(2)
rot ,

which theory [24] now suggests are necessary to reproduce
the observed ridges of Figs. 6 and 7. The calculation follows
the γ cascades from the measured entry distribution until they
come close (∼1 MeV) to either the ND or SD yrast line. At this
particular point of the decay, M1/E2 γ rays are predominantly
emitted in the last few steps linking the QC to the discrete
states [9]. These last-step γ transitions are not included in the
MC simulations. A brief outline of the model calculations is
given below; additional details are presented in the following
subsections.

For each step in the γ decay, a total of eight decay widths
are calculated, namely, those associated with quadrupole E2
transitions (�I = 2) and statistical E1 transitions (�I =
−1, 0, 1) in both the ND and SD wells. If the nucleus is SD
at the time of decay, the four decay widths in the ND well are
attenuated by the penetration probability through the barrier
that separates the levels in the two wells. The attenuation is
large if the SD state resides deep in the SD well, and near unity
at the top of the barrier. Conversely, if the nucleus occupies a
state in the ND well, the four calculated decay widths in the
SD well are attenuated. The subsequent decay path is selected
in a MC fashion from values of the eight decay widths. If
a ND(SD) decay width is selected, the decay occurs in the
ND(SD) well.

For E2 transitions, the wide or narrow damping component
is first selected based on the value of the Inar parameter. An
additional deviation with a Gaussian shape around the mean γ

transition energy [Eq. (20) below] is then added, with a width
based on the input value of the rotational damping widths,
�µ or �

(2)
rot . This step is actually done before the final E2

decay widths are calculated, since the E5 term in the decay
width formula [see Eq. (19) below] strongly favors the E2
deexcitations where the (mostly) wide component adds to the
decay γ -ray energy, giving rise to a very important additional
cooling of the γ cascades.

In this work, �µ, �
(2)
rot , and Inar are considered to be

independent parameters. Thus, the correlation between �µ

and �
(2)
rot that is often implicit in theory, see, e.g., Ref. [15],

is ignored. This is justified since rotational damping is, in
principle, independent of compound damping [24]. As was
discussed in the Introduction, the origins of �µ and �

(2)
rot

are different, with h̄/�µ representing the mean time that
the nucleus spends in an intrinsic configuration and h̄/�

(2)
rot

the mean time that it takes a state to get distributed over
the compound eigenstates [20]. The approach in this work
is to independently vary �µ, �

(2)
rot , and Inar, either as values

independent of I and U (in the MC1 calculation in Sec. VII H)
or as renormalized functions (MC2 in Sec. VII I), until the best

simultaneous fit to the measured ND and SD ridges and QC
spectra (four spectra in total) is found.

In the simulations, the γ rays in the cascades are binned,
forming the calculated QC spectra displayed in Figs. 2 and 5.
For the ND spectrum of Fig. 2, all calculated γ cascades are
used independent of the well they were trapped in. For the SD
QC spectrum (Fig. 5), only cascades trapped in the SD well are
considered. The latter happens about 1–2% of the time [5]. The
MC calculations also reproduce this feeding intensity of the
discrete SD bands. As a matter of fact, Ebs, the height of
the barrier separating the SD from the ND well [see Eq. (39)
below] is adjusted to get the proper feeding of the SD band in
the simulations.

The calculated γ -γ coincidences in the cascades are binned
in 2D γ -γ matrices after correcting for the experimental
detector efficiency. These simulated matrices are processed
in exactly the same way as the measured data; i.e., peaks
and stripes are removed (even though discrete peaks are not
included in the model), and a COR subtraction is performed
[58]. Subsequently, the calculated ridge spectra are extracted
by projecting the simulations on an axis perpendicular to the
diagonal for the same γ energy region as the experimental
matrices. Figures. 6 and 7 present the simulated ridges obtained
in this way.

The following subsections give more details about how
the cooling of the nucleus toward the ND and SD lines, by
emission of QC γ rays, is treated in the model. In this work,
the mixing theory of Vigezzi et al. [63,64] is used. Another
approach has been proposed by Weidenmuller et al. [65–67],
and the two methods have been discussed in detail by Stafford
and Barrett [68]. The Vigezzi model is expected to be more
appropriate in the regime of finite temperatures (U > 1 MeV),
e.g., in the regime for which the QC γ rays are calculated in
the MC simulations, because Fermi’s golden rule applies here.

B. Yrast lines

To perform the MC calculations, both the ND and SD yrast
lines must be extrapolated beyond the known states toward
higher spin. For the SD band, this is done by fitting the known
yrast levels to the functional form

E(I ) = E(0+) + a[I (I + 1)] + b[I (I + 1)]2, (7)

and using the fitted values beyond a spin of 66h̄. The yrast
energies corresponding to the odd spins are determined from
this fit as well. This procedure is straightforward, and barring
any irregularities in the feeding region due to alignments (for
example), the extrapolated SD yrast line is quite reliable in
the spin range covered by the entry distribution. On the other
hand, the ND yrast line is less well known. Indeed, above
a spin value of ∼38h̄, information on the 152Dy ND level
scheme is more fragmentary. Work is currently in progress to
extend the level scheme beyond spin 38h̄ using the present
data set [69], with the potential of reducing the uncertainties
inherent in the determination of the ND yrast line used here.
Preliminary results identify part of the yrast line at high spins.
All in all, to extend the ND yrast line beyond spin 38h̄, a
fit was carried out with the functional form of Eq. (7) to the
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lowest known energy levels with the spins 14–38h̄. Three states
near spin 50h̄, from the preliminary level scheme mentioned
above, were included as well to improve the reliability of the
fitted yrast line at higher spins. The levels below spin 14h̄ are
excluded from the fit, since they are clearly lowered in energy
by pairing effects. The resulting ND yrast line, presented in
Fig. 13 (along with the SD yrast line) for spin �38h̄, is from
this fit. This approach suggests that the ND yrast line crosses
the SD yrast line around spin ∼54h̄, in excellent agreement
with the theoretical predictions of Refs. [70,71].

C. Entry point and initial shape selection

Each γ cascade in the MC simulation is started by
randomly selecting a spin and excitation energy according to
the measured entry distribution of Fig. 13. Because a measured
entry distribution is used, the competition with fission at large
angular momenta is automatically accounted for.

The initial shape of the nucleus is selected according to the
ratio of level densities in the ND and SD wells at the selected
entry point. Thus, if ρSD and ρND are the level densities in
the two wells, for the selected (I, E) point, the probability for
occupation of the SD well is taken to be

PSD(initial) = ρs(USD)

ρs(USD) + ρND(UND)
, (8)

where UND and USD are the excitation energies above the
ND and SD yrast lines, respectively. The level densities are
calculated using Eq. (9) below, with parameters explicitly
specified for the two wells.

The level density for definite values of the spin and parity
can be evaluated as [13,72,73]

ρI (U ) = (2I + 1)
√

a

24

(
h̄2

2�r

)3/2
e2

√
a(U−�)

(U − � + U ′)2 ,

(9)

where I is the spin of the level and U the excitation energy
above the yrast line. In this so-called back-shifted Fermi gas
model (BFSG) expression, the back-shift parameter, which
stems from pairing [74], is denoted by � and causes the level
density to approach zero for U → �. Other possible choices
of level density formulas are discussed in Appendix F. The
(2I + 1) scaling with spin breaks down at high spins [75].
However, the particular choice of level density formula in the
MC calculations is not expected to be critical for the extraction
of the rotational damping values. No energy dependence of �

was considered in the calculations described here.
Systematics of the value of � at zero spin can be found on p.

170 in Ref. [74] (� ∼ 24/
√

A MeV for even-even nuclei). At
higher spins, the pairing is quenched [76]. The level density
parameter is denoted by a, and systematics of the value of
this parameter is given on p. 187 in Ref. [74]. For the Dy
region, a ∼ A/7 MeV−1 [11,12] is used; the general trend for
a wider mass region is a ∼ A/8 MeV−1 (see also Ref. [77]).
Thus, in this work, a was set to 21.7 MeV−1 in the ND well.
There are several indications that the level density in the SD
well is smaller than in the ND well (see, e.g., [70]). Based on

fits to experimental data, Schiffer et al. [13] suggest that a ∼
A/10 MeV−1 is more appropriate in the SD well. Thus, a value
of 15.2 MeV−1 for the level density parameter in the SD well
is adopted in this work. The U ′ parameter used in Eq. (9),

U ′ = 3

2

(√
U

a
+ 9

16a2
+ 3

4a

)
, (10)

is related to the thermodynamical temperature of the Fermi
gas [73,77] and is included to improve the behavior of the
level density formula at low excitation energies. The rigid
moment of inertia is denoted �r , and for low deformation, it
is evaluated as (Ref. [74], p. 75)

�r = 0.0276 A5/3
(
1 + 1

3δ
)

[h̄2/MeV]; δ ≡ 0.946 β2,

(11)

where β2 is the nuclear quadrupole deformation parameter.
For larger deformation, the expression from Ref. [78] is used,
that is,

�κ = 1.37610−2A5/3

[
1 −

√
5

4π
βcos

(
γ − 2π

3
κ

)]
,

(12)

where �κ is in units of h̄2/MeV, and κ takes the values 1, 2, and
3 according to the axis around which the rotation takes place.
For prolate nuclei, with no triaxiality (i.e., γ = 0), κ = 3
corresponds to the quantum-mechanically forbidden rotation
about the symmetry axis (�z). With κ = 1, 2 the rotation takes
place around the short axis of the nucleus. The latter rotation
is associated with �r in Eq. (11).

The MC code is also used to calculate the DO QC spectrum
which takes place from the bottom of the SD band toward the
states near the ND yrast line. This is accomplished by simply
replacing the (I, E) entry distribution described above with
the discrete points in the (I, E) plane from which the decay
of SD band 1 occurs. In the MC process, the initial entry
point is selected randomly according to the experimentally
observed decay branch. Except for this special discrete entry
distribution, the MC calculations are carried out in exactly the
same way. Thus, the same MC simulation consistently handles
both the feeding and decay of SD bands.

D. Statistical decay

The total radiative decay width for a statistical E1 transition
can be written as the sum of the �J = ±1, 0 decay widths,
that is,

�E1 =
J+1∑

I=J−1

�
I

E1,

�
I

E1 =
∫ EI

λ

0
E3

γ fE1(Eγ )
ρI (Eλ − Eγ )

ρJ (Eλ)
dEγ ,

(13)

where EI
λ is the maximum transition energy, Eγ the energy of

the γ ray, and J and I the spins of the initial and final states,
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respectively. The level density is denoted by ρ [Eq. (9)], and
the γ strength function fE1(Eγ ) is taken to be of the Lorentzian
form [79–83]

fE1(Eγ ) = 3.29 × 10−6 × NZ

A
(1 + 0.8x)

× Eγ �GDR(
E2

γ − E2
GDR

)2 + �2
GDRE2

γ

(14)

for spherical nuclei. A more realistic decay strength function
(described below) is used for deformed nuclei in the MC code.
N and Z are the number of neutrons and protons in the fusion
evaporation residue, and EGDR and �GDR represent the mean
energy and width of the giant dipole resonance (GDR). The
factor x is the fraction of exchange forces present in the nuclear
force, assumed to be 1/2 in this treatment [84]. A number
of temperature-dependent E1 strength functions have been
proposed, see Refs. [82,83,85,86]. However, only the standard
E1 strength function, first proposed by Axel [79], has been
used in this work.

If a partial decay width �
p

E1(Eγ ) is defined as

�
p

E1(Eγ ) = E3
γ fE1(Eγ )

ρI (Eλ − Eγ )

ρJ (Eλ)
, (15)

it is seen that the total decay width in Eq. (13) can be written
as

�E1 =
J+1∑

I=J−1

∫ Eλ

0
�

p

E1(Eγ )dEγ . (16)

Moreover, the spectral distribution of the statistical γ rays can
be written as

νJ
E1(Eγ )dEγ = �

p

E1(Eγ )

�E1
dEγ . (17)

The upper integration limit Eλ in Eq (16) is determined as

Eλ = U ± h̄2

�(1)
I, I = J ∓ 1, Eλ = U, I = J,

(18)

where U is the excitation energy above the yrast line for the
excited state with spin J . The symbol �(1) represents the static
(not rigid) moment of inertia, which is different for the two
possible shapes (ND and SD).

E. Collective decay

Rotational damping ([14,15]) can be incorporated into the
collective (stretched) E2 decay by the addition of a Gaussian
spread in the γ -ray energy. This yields a partial decay width
in analogy to Eq. (15) of

�
p

E2(Eγ ) [MeV] = E5
γ

Q2[e fm2]〈J020|(J − 2)0〉2

1.25 × 1013

× 1√
2πσrot

e

(Eγ −Eγ )2

2σ2
rot , (19)

where Eγ is the collective E2 mean γ energy

Eγ = h̄2(2J − 1)

�(1)
, (20)

and the rotational damping width is either σrot = 0.8493 × �µ

or 0.8493 × �
(2)
rot , depending on whether the narrow or wide

rotational damping width is selected. The nuclear quadrupole
moment is denoted by Q (see also Ref. [87]). The �(1) moment
in Eqs. (18) and (20) is not necessarily the rigid moment of
Eq. (11). The static moment of inertia �(1) is adjusted to
reproduce the energy spacing between the center of the valley
and the first ridge in the ridge spectra and the mean energy of
the E2 component of the QC spectrum.

The total decay width for the collective E2 transition is thus

�E2 =
∫ Emax

0
�

p

E2(Eγ )dEγ , Emax = U + h̄2(2J − 1)

�(1)
;

(21)

and the spectral distribution is

νJ
E2(Eγ ) dEγ = �

p

E2(Eγ )

�E2
dEγ . (22)

It should be noted that if the moments of inertia �(1)

describing the states on the yrast line and in the QC are equal,
then in the absence of rotational damping, an E2 γ decay
will not cool the nucleus. In contrast, if rotational damping
is included, then the E2 transitions will on average cool the
cascade with respect to the yrast line because of the E5

γ term in
Eq. (19). This cooling is, however, less than that accomplished
by E1 transitions. The MC calculations clearly indicate that the
γ cascades must pass through a region where �

(2)
rot is substantial

compared to the mean γ -ray energy [see Eq. (20)]. Otherwise,
the reproduction of the QC spectra would require that the
γ deexcitation be terminated at unrealistically high excitation
energies above the yrast line.

F. Giant dipole resonance strength function for deformed nuclei

In this work, the GDR strength function in Eq. (14) is
evaluated with the following adopted GDR parameters [88,89]:

EGDR [MeV] = 40

A1/3
+ 7.5, (23)

�GDR [MeV] = 0.029 ∗ E1.6
GDR. (24)

These values are appropriate for spherical nuclei. For deformed
nuclei, the symmetry is broken, and the GDR strength function
parameters depend on the quadrupole deformation parameter,
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β2, and asymmetry parameter, γ , as [88]

δi =
√

5

4π
β2 ∗ cos

(
γ + 2

π

3
i
)

, (25)

Ei
GDR = EGDR ∗ e−δi

, (26)

�i
GDR = �GDR

(
Ei

GDR

EGDR

)δi

, (27)

f i
E1(Eγ ) = 3.2910−6 × NZ

A
(1 + 0.8x) (28)

× Eγ �i
GDR(

E2
γ − (

Ei
GDR

)2)2 + (
�i

GDR

)2(
Ei

γ

)2 , (29)

where i ∈ {1, 2, 3} and refers to the three principal axes of the
nucleus. The total strength function is then the sum

fE1(Eγ ) =
∑

i=1,2,3

w(i)f i
E1(Eγ ), (30)

where the weights, w(i), are determined as

w(i) = wo

3∗Ar (i)
, (31)

Ar (i) =
∫

f i
E1(Eγ )dEγ , (32)

with wo being the integral of the spherical strength function
in Eq. (14). To render the ND and SD strength functions
even more realistic, they are generated as energy weighted
sums over appropriate areas of the (β2, γ ) potential energy
planes for the 152Dy nucleus in either its ND or SD shape.
Figure 14 provides the final strength functions used in the MC
calculations. Note how the long axis of 152Dy in its SD shape
brings down the lowest component in the SD GDR strength
function and, correspondingly, the two shorter axes give rise
to the strength at higher energy.
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FIG. 14. ND and SD GDR strength functions used in MC
calculations [see Eq. (30)].

G. γ -decay selection

For simplicity, let the decay widths associated with
the eight possible γ deexcitation decays be denoted as:
�(1), �(2), . . . , �(8), where 1, 2, 3 relate to the E1 decay
widths in the ND well, 4 is the E2 decay width in the ND
well, and indexes 5 to 8 likewise characterize the E1 and E2
decay widths in the SD well. A total decay width can then be
calculated as

�(total) = p1

4∑
i=1

�(i) + p2

8∑
i=5

�(i), (33)

p1 + p2 = 1, (34)

where the weight factors p1 and p2 are determined by the
mixing between the states in the SD and ND wells. The weight
factors explicitly depend on the well from which the γ decay
takes place, i.e., whether the deexciting level is in the SD or in
the ND well.

To calculate the p1 and p2 parameters, the mixing theory
developed by Vigezzi et al. [63,64] is used in this work. In this
approach, the probability for decay out of the SD well, Nout,
is calculated assuming that the nucleus starts from the ground
state in the SD well. In this theory, the decay out probability
Nout depends only on two quantities: (i) the ratio

�

D
= �

DND
, DND = 1

ρND(UND)
, (35)

where DND is the mean distance between levels in the normal
well, while � is a (tunneling) spreading width; and (ii) the
ratio of the decay widths in the two wells:

�ND

�SD
=

4∑
i=1

�(i)

/
8∑

i=5

�(i). (36)

The coupling between the SD level and the ND states, v,
is found by equating the spreading width from Fermi’s golden
rule � and the tunneling width �tunn [63]:

� = 2πv2

DND
, �tunn = h̄ωsT

2π
(37)

⇒ v ≈
√

h̄ωsDNDT

4π2
, (38)

where ωs is the tunneling frequency and T is the transmission
coefficient through the barrier separating the two wells. The
transmission coefficient is taken to be (see Refs. [90] and [91],
p. 746)

T = 1

1 + eγ
, γ = 2π (Ebs − E)

h̄ωb

. (39)

This is the so-called inverted parabolic barrier approximation.
The parameter h̄ωb is always assumed to be 0.6 MeV in this
work, typical of what is used in Ref. [91] (see also Ref. [71];
changing h̄ωb effectively translates into a renormalization of
Ebs). The barrier height, which is measured from the bottom
of the SD well, is considered to be a function of spin, that is,

Ebs(I ) [MeV] = (I [h̄] − 15) × 0.061 + 0.12 [MeV], (40)
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within the feeding and DO regions covered by the MC
calculations. The parameters in Eq. (40) were chosen so that
Ebs is ∼0.7 MeV in the spin region ∼20–29h̄, where SD band 1
decays out of the SD well [6,92]. On the other hand, the slope
used in Eq. (40) was adjusted so that in the ∼42–66h̄ spin
region, where SD band 1 is fed, the MC simulations reproduce
the experimentally observed SD population probability of
∼2% [93]. The MC calculation suggests that, in the latter
region, the barrier height Ebs is of the order of ∼2.5 MeV.

In this work, Ebs is considered to be independent of
the excitation energy. In reality, however, the shell effects
responsible for the barrier are expected to vanish at higher
excitation energies; e.g., Ref. [76] suggests that the barrier
is about 2.5 MeV at zero excitation energy and vanishes at
a temperature T = 0.7 MeV in the feeding region. The
temperature is related to the excitation energy U as T = √

U/a

[15,94]. Thus, for the present case, Ebs is evaluated to be ∼0
at U = 7.5 MeV, which is just above the value associated
with the entry distribution, 7.0(6) MeV (see Sec. VI D). The
effective Ebs value for the γ cascades might then be expected to
be of the order of 1–2 MeV in the feeding region, in reasonable
agreement with the ∼2.5 MeV used in these MC calculations.
In Ref. [71], the barrier is calculated to be ∼2.9 MeV at spin
∼56h̄, in good agreement with 2.6 MeV from Eq. (40).

In this MC model, Nout, the probability for decay out of the
SD well, is calculated by placing the initial SD (ND) level in
the middle of a distribution of 99 ND (SD) levels with a GOE
having a mean level spacing of DND (DSD) [14,39]. This is done
by first finding the eigenvalues of a matrix with on-diagonal
elements having a variance of 2σ 2 and off-diagonal elements
having a variance of σ 2, where σ is randomly selected from
Gaussian distributions with a spread of DND,SD

√
99/π (i.e.,

the final states are assumed to be fully chaotic in nature).
The SD (ND) state, |1〉, is then placed in the middle of the
GOE distribution, and the coupling between the SD (ND) and
ND (SD) states is turned on: |〈n|1〉|2 = v2 for n �= 1,
and |〈n|j 〉| = 0 for j �= i �= 1. The system is diagonalized
and the component of the SD (ND) state, |1〉, in the resulting
eigenvectors, c(i), determines Nout as [63,64]

Nout =
∑

i

|c(i)|2 (1 − |c(i)|2)

(1 − |c(i)|2) + |c(i)|2�SD/�ND
(41)

for a decay from the SD well to the ND well. For a decay from
the ND well to the SD well, the same expression applies, but
�ND/�SD is used instead of �SD/�ND.

It follows that p1 and p2, in addition to �/DND (�/DSD)
and �ND/�SD, also depend on the particular GOE ensemble
that was selected. A large number of random GOE ensembles
are used in the MC calculations to effectively average over this
dependence. For �/D < 0.001, the spreading width is so low
that a simple two-level model is used; for �/D > 20, the 100
levels used in the diagonalization are no longer sufficient, and
a Breit-Wigner approximation is used instead [63,64].

The symbol v in Eq. (38) represents the coupling strength
between the SD state located at the bottom of the SD well and
the levels in the ND well. A more general expression for v,

applicable to all states in the SD well, is ( [91], p. 768)

v ≈
√

DSDDNDT

4π2
. (42)

This expression also applies when calculating the decay from
a ND state.

Having determined the total decay width from Eq. (33), an
actual decay time is selected randomly from an exponential
decay function with mean decay time:

τ = h̄

�(total)
. (43)

The actual decay channel is selected according to the proba-
bility distribution

p(i) = px(i)�(i)∑8
1px(i)�(i)

, (44)

where

px(i) = p1, i = 1, 2, 3, 4 (45)

px(i) = p2, i = 5, 6, 7, 8. (46)

If the selected decay channel number is less than or equal to
4, the decay took place in the ND well. If the decay channel
number is 5 or higher, the nucleus decayed to a SD state. For
the selected channel, the γ emission energy is selected using
the γ spectral distribution for this channel, calculated using
Eq. (17) or Eq. (22), depending on whether the decay was
statistical (E1) or collective (E2) in character.

Starting from the entry point, the above procedure is
repeated until the γ decays lead to an energy location that
is under the cascades cutoff energy, U0, for the well in which
it occurs. The cutoff energy can be different in the two wells
and is of the order of 1–2 MeV. At present, the last decays
into the states on or near the ND and SD yrast lines, some of
which give rise to discrete γ transitions, are not included in the
MC calculations, as they occur in a region of low level density
where a statistical treatment is no longer appropriate. However,
as will be shown in Sec. VIII, it is possible to experimentally
extract these γ rays associated with the last steps (dominated
by the M1/E2 QC component) from the QC spectra (see
Figs. 2 and 26).

H. Monte Carlo calculations with average rotational damping
width parameters (MC1)

In a first attempt to use the MC simulations (MC1) to
reproduce the measured QC and ridge spectra, the rotational
damping parameters �µ, �

(2)
rot and the fraction of narrow to

wide selection, Inar, were kept constant with respect to spin
and excitation energy above the yrast lines. In Sec. VII I, other,
possibly more realistic, functions suggested by theory [15]
for the rotational damping parameters, will be considered.
However, using simple average values first simplifies the
calculations and, furthermore, provides a baseline for the
values of the rotational damping parameters, without much
theoretical bias. In addition, it is interesting to simply probe
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TABLE III. (Fixed) rotational damping parameter values used in
MC1 simulations to reproduce the experimentally extracted ridge and
QC spectra of Figs. 5–8. These values represent average values in
the relevant spin and excitation energy regions. �µ and �

(2)
rot , which

are HWHM measures, are related to �nar and �wid as shown [24,29].

Parameter ND well, DO ND well, Feed SD well, Feed

�µ ∼ 1
2 �nar ∼25 keV ∼5 keV

�
(2)
rot ∼ 1

2 �wid 125 keV 240 keV 240 keV
Inar 0% 17% 36%

how well the QC and ridge spectra can be reproduced with
fixed rotational damping values.

Using fixed values is tantamount to ignoring such effects
as (i) motional narrowing [15], the effect that reduces �

(2)
rot

at higher excitation energies, and (ii) the spin dependence
of �

(2)
rot . Preliminary results of these MC1 calculations were

presented in Ref. [95], before a measured entry distribution
was available and the barrier height and ND yrast line (among
other parameters) had been properly adjusted.

The �µ, �
(2)
rot , and Inar values in the ND and SD wells

(a total of six parameters) were varied over a wide range
until all the spectra of Figs. 5–8 were reproduced. Table III
gives the best values of the parameters obtained in the MC1
calculations.

For the SD QC spectrum, the MC code was also used to
calculate the DO spectrum. It was necessary to introduce a
back-shift � [see Eq. (9)] of about 1.5 MeV in the MC
calculations to restrict the γ -decay phase space. This was
done to reproduce the overall SD QC spectrum of Fig. 5;
i.e., the MC calculation suggests that in the region in spin of
∼20–29h̄, where the DO from the SD band occurs, pairing in
the ND well is not yet quenched significantly. As expected,
there was no need to consider introducing any pairing in the
∼42–66h̄ spin region where the feeding occurs. These obser-
vations are in qualitative agreement with the calculations in
Ref. [76].

For the calculations describing the DO of the SD band
toward the ND levels, Inar is set to zero in the ND well.
The ridges cannot be extracted in this spin region. Here, the
E2 γ -ray energies are so low that too many strong discrete
transitions are present in the associated region of the γ -γ
matrices. As a result, the associated ridges are obscured, and
it is not possible to extract the rotational damping parameters
with any confidence.

In the MC calculations describing the DO of the SD band,
it was also found to be necessary to reduce the value of �

(2)
rot

in the ND well compared with the value used in the feeding
region (see Table III) in order to reproduce the SD QC spectra.
Thus, the simple MC1 simulations with fixed values of the
parameters indicate that over a large spin range, from the SD
feeding region to the DO of the SD band, �

(2)
rot in the ND well

does in fact vary. As can be seen from Table III, the SD narrow
rotational damping width is very small. The wide rotational
damping widths, especially in the ND well, are more in line
with what might be expected [15].

It is remarkable that the overall features in the spectra of
Figs. 5–8 can be reproduced so well in the MC1 calculations
with the simple assumption of (at least locally) constant
rotational damping parameters in the SD feeding region and
the DO region. However, some features are missed, such as
the high-energy tail, from ∼1.8 to ∼2.7 MeV, of the ND QC
spectrum in Fig. 8.

I. Monte Carlo calculations with rotational damping width
functions (MC2)

As stated earlier, theory suggests that �µ, �
(2)
rot , and Inar are

functions of spin and, especially, excitation energy. Below is
an account of calculations, labeled MC2, which incorporate
more evolved descriptions of these damping widths.

According to Ref. [15], the narrow rotational damping
width �µ(U ) depends on the mass and the excitation energy
above the yrast line U as

�µ(U ) ∼ 0.039

(
A

160

)− 3
2

U
3
2 , (47)

where U and �µ(U ) are in units of MeV and �µ(U ) is a
HWHM measure. Thus, according to Ref. [15], �µ(U ) does
not depend on the spin or on the deformation of the nucleus.
On the other hand, the wide rotational damping width depends
on �µ(U ) as well as on the deformation, δ = 0.946 × β2, and
the spin I of the nucleus. With the following two limits defined
as

l1 = 0.7

(
A

160

)− 3
2

, (48)

l2 = 1.5
I

40

(
A

160

)− 3
2
(

δ

0.3

)− 2
3

, (49)

the wide rotational damping width �
(2)
rot is approximately [15]

�
(2)
rot ∼

U < l1: 0,

l1 < U < l2: 0.13
I

40

(
A

160

)− 5
2
(

δ

0.3

)− 2
3

U
1
4 ,

U > l2: 0.22

(
I

40

)2 (
A

160

)− 13
3

(
δ

0.3

)−2

U−1

+ 0.00044

(
A

160

)− 5
2
(

δ

0.3

)−2

U
3
2 .

(50)

In the present MC calculations, interpolations are used near
the boundaries l1 and l2 in order to produce a smooth realistic
distribution of �

(2)
rot as a function of I and U . The parameter l1

defines the onset of rotational damping, which in this treatment
does not depend on the deformation of the nucleus. In reality,
l1 depends on the level density. Thus, because the level density
is lower in the SD well, l1 might be somewhat higher in
the SD well [23]. The parameter l2 indicates where motional
narrowing starts to dominate the rotational damping.

Lastly, the functional form of the relative intensity of the
narrow rotational damping width component is taken from
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Refs. [24,27]:

Inar(U ) ∼ 1

ρI (U )�µ(U )
, (51)

where ρ is the level density given in Eq. (9). Clearly, the
narrow rotational damping width component should only be
observed at rather low excitation energies, considering the
strong dependence on U in the ρI (U ) and �µ(U ) functions
[see in Eqs. (9) and (47)]. It should be noted that Eq. (51) is
only valid below the energy region where motional narrowing
sets in.

When the rotational damping widths and narrow fractions
given by Eqs. (47), (50), and (51) were used directly in the MC
calculations, i.e., not scaled or modified, it was found that the
experimentally observed QC and ridge spectra could not be re-
produced. Thus, in these MC2 calculations, the approach cho-
sen consisted in (i) accepting the functional forms of the damp-
ing widths and narrow fraction of Eqs. (47), (50), and (51),
but (ii) renormalizing (scale) these functions until the best
simultaneous fits of the experimental spectra of Figs. 15–18
were achieved.

The narrow rotational damping width in the SD well is
determined by the observed width of the narrow ridge in
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Ridges
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FIG. 15. (Color) Upper panel: comparison of experimentally
extracted ND/ALL ridges with the best MC2 calculation using
functions of the rotational damping parameters �µ, �

(2)
rot , and Inar given

by Eqs. (47), (50), and (51). The distributions have been multiplied
by the renormalization factors given in Table IV. The ridge represents
a cut of 1358 ± 212 keV along the diagonal in the Eγ 1 × Eγ 2

matrix. Same data as in Fig. 6, but here the statistical errors from
the experimental extraction of the ridge are indicated with error bars.
Lower panel: calculated ridges from γ rays emitted exclusively in
either the ND or SD well. Mixed emissions are not shown, but are
included in the total calculated ridge in the upper panel. It is clear
that the sharpest features of the experimental ridges originate from γ

rays emitted while the nucleus is in the SD well.
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FIG. 16. (Color) Experimentally extracted SD ridges with the
MC2 calculation using the �µ, �

(2)
rot , and Inar functions given by

Eqs. (47), (50), and (51) for both the ND and SD wells. The distri-
butions have been multiplied by the renormalization factors given in
Table IV. The ridge represents a cut of 1450 ± 350 keV along the
diagonal in the Eγ 1 × Eγ 2 matrix. Same data as in Fig. 7. However,
now only half the (symmetric) spectrum is shown, and the propagated
statistical errors in the experimental extraction of the ridges are
indicated by error bars.

Fig. 16. However, it should be noted that this damping width
is slightly narrower than the HWHM observed in the data,
since the distribution in moments of inertia also adds to the
experimental width. The wide rotational damping width in the
SD well is determined mostly by comparison with the broad
component in the data (Fig. 16).

The fraction of selected narrow rotational damping width in
the SD well can, in principle, be determined from the spectrum
of Fig. 16. However, because the wide rotational damping
width produces a rather flat component, the narrow fraction
is not determined well from the SD ridges of Fig. 16 alone.
Fortunately, the ND ridges, associated with γ rays emitted in
the ND well as well as in the SD well, are a smoothly varying
spectrum, and the sharp ridges in Fig. 15 depend on the narrow
fraction in the SD well. Thus, the SD Inar renormalization
factor in Table IV is determined by reproducing both SD and

TABLE IV. To reproduce the ND and SD QC spectra and
ridges of Figs. 15–18 in the MC2 calculations, it was necessary to
multiply the rotational damping widths and narrow fractions given by
Eqs. (47), (50), and (51) by the factors shown in this table. The
resulting mean values of the distributions of �µ, �

(2)
rot , and Inar

presented in Figs. 19–21 are also provided. See text for further
details.

Quantity Eq. ND ND SD SD
factor mean value factor mean value

�µ (47) 0.22 21 keV 0.06 4.6 keV

�
(2)
rot (50) 0.55 208 keV 3.5 238 keV

Inar (51) 26 16% 3.2 35%
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FIG. 17. Same as Fig. 8, but with the calculated QC spectra from
the MC2 simulation where the (renormalized) functions of �µ, �

(2)
rot ,

and Inar given in Eqs. (47), (50), and (51) are used rather than fixed
rotational damping values.

ND ridges simultaneously. Even though the ridge spectrum in
this figure appears to have a rather flat background under the
sharp ridges, the value of the wide rotational damping width
is by no means zero, nor is the narrow fraction in the SD
well 100%. The wide rotational damping width is simply so
large that the wide rotational damping component under the
sharp narrow ridges appears to be nearly flat after the COR
subtraction.

The rotational damping width parameters needed to re-
produce the ND/ALL ridges in Fig. 15 are a challenge to
determine, because the MC calculations suggest that about
7% of the E2 γ -ray emission occurs while the nucleus is in
fact in the SD well. This occurs despite the fact that only a
small fraction (∼1%) of the γ cascades eventually get trapped
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FIG. 18. Same as Fig. 5, but for the MC2 calculation.

in the SD well. Consequently, as discussed above, the sharp
parts of the experimental ridges seen in Fig. 15 (upper panel)
are associated with the SD well and are superimposed on those
associated with the ND well. This is illustrated in the lower
panel of Fig. 15. Here only γ rays emitted exclusively in the
ND or SD wells in the MC2 calculation are used to extract the
associated ridges.

In Fig. 18, the spectrum labeled ND-FEED is from QC
γ rays emitted while the nucleus resides in the ND well.
Comparing this spectrum to the TOTAL spectrum reveals that
∼33% of the γ rays that form the SD feeding QC and SD ridge
spectra are emitted while the nucleus resides in the ND well.

Thus, the rotational damping parameters in the ND and SD
wells are effectively correlated in the fits to the ND and SD
QC and ridge spectra. Ultimately, it proved necessary to vary
all the renormalization factors in Table IV independently in
order to find a combination that simultaneously reproduces the
ND and SD ridges of Figs. 15 and 16 properly as well as the
ND and SD QC spectra of Figs. 17 and 18. Slight adjustments
of other parameters, such as the ND moment of inertia, were
also required. All in all, the six renormalization factors in
Table IV represent a reasonable set that reproduces, simul-
taneously, both the ridge and QC spectra in the ND and SD
wells using the rotational damping functions determined by
Eqs. (47), (50), and (51). Figures 19–21 show the distribution
of the rotational damping parameters in the ND and SD wells
under different gating conditions.

In the MC2 calculations with the rotational damping
functions, the reductions of the �

(2)
rot values in the region

where the SD band decays out occur naturally from the spin
dependence in Eq. (50). Therefore, no special scaling of �

(2)
rot

was necessary in this type of simulation to reproduce the QC
γ rays associated with the decay of the SD band. Moreover, in
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FIG. 19. Distributions of the narrow and wide rotational damping
widths, �µ and �

(2)
rot , sampled by the γ cascades in the ND well

when coincidence gates are placed on clean combination of discrete
ND lines. A and B mark the associated values obtained in the
MC1 calculations with average rotational damping parameters (see
Table III).
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FIG. 20. Distributions of the narrow and wide rotational damping
widths, �µ and �

(2)
rot , sampled by the γ cascades in the SD well when

coincidence gates are placed on clean combinations of discrete SD
lines. The narrow fraction has been down scaled by a factor of 5 with
respect to the wide components distribution.

contrast with the MC1 calculation, there was also no need to set
�µ and Inar to zero in the region where the SD band decays out.
The mean values of the rotational damping parameters in the
DO region were found to be �µ = 30 keV and �

(2)
rot = 72 keV,

and the narrow fraction was 15%. However, just as in the first
MC1 calculation, it was necessary to introduce a back shift of
about 1.8 MeV in the level density parameter formula [Eq. (9)]
in this DO region in order to reproduce the combined feeding
and decay QC spectrum (Fig. 18).
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FIG. 21. Distributions of the narrow to wide rotational damping
width fractions in the ND and SD wells. The ‘A’ and ‘B’ symbols
mark the values obtained in the MC1 calculations with the average
rotational damping parameters of Table III.

TABLE V. Miscellaneous input and output parameters associ-
ated with the MC calculations (1 e2 b2 = 100 e2 fm2). See text for
a detailed description.

Quantity ND, DO ND, feed SD, feed

MC1 and MC2
�(1) (h̄2/MeV) 71 71 85
σ� (h̄2/MeV) 3.0 2.0 1.4
� (MeV) 1.8 0 0
Q (e2 fm2) 700 700 1900
�r (h̄2/MeV) 62.3 62.3 70.0

MC1 Calculations
U0 (MeV) 3.15 1.53 1.77
Mean exit U (MeV) 2.7 = 0.9+� 1.0 1.0
SD feeding 3.7%
Exit time (fs) 101 13

MC2 Calculations
U0 (MeV) 3.15 1.52 1.45
Mean exit U (MeV) 2.7 = 0.9+� 0.9 0.8
SD feeding 2.8%
Exit time (fs) 128 13

Table V provides some of the other input parameters of
the MC calculations, along with miscellaneous output results.
The parameter �(1) is the static moment of inertia, which for the
SD band is adjusted to fit the narrow ridges in Figs. 7 and 16.
For the ND well, �(1) is adjusted to fit the high-energy edge of
the E2 component in Fig. 8 and 17, since the ND ridges shown
in Figs. 6 and 15 are, to a large degree, obscured by the ridges
associated with the SD well. The moments of inertia are given
random Gaussian deviations around the mean �(1) values with
the σ values given in Table V. Since both σ�(1) and �µ affect
the width of the narrow ridge, they may be correlated, even
though they are treated as independent parameters in the MC
calculations presented here. In Table V, the parameter � is the
back shift in Eq. (9), and Q is the quadrupole moment used
in the calculations [11,12,96], see Eq. (19). The parameter �r

refers to the rigid moment of inertia used in Eq. (9). When a
γ cascade decays into a state below U0 MeV above the yrast
line, the deexcitation process is stopped. The mean exit energy
(above the yrast line) at which this actually occurs (which has
to be less than U0) is given next in the table. The fraction of
the cascades trapped in the SD well in the MC calculations is
provided along with the associated mean exit spin and decay
times. In the MC calculations, successful trapping in the SD
well at lower spins seems to require that the last transition of
the γ cascade be a high-energy E1 transition in the SD well.
In this spin and excitation energy region, E2 transitions are
more probable.

J. Cross-diagonal cuts at different Eγ energies

More insight into the ridges can be obtained from cross-
diagonal cuts in the Eγ 1 × Eγ 2 matrices at different energies.
A number of such cuts are presented in Figs. 22 and 23 for
the ND- and SD-gated matrices, respectively. All the cuts are
made from the central energies shown in the plots, ±107 keV
along the diagonal.
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FIG. 22. (Color) Ridge spectra from the ND gated Eγ 1 × Eγ 2

matrix. All cuts are ±107 keV around the central energies indicated.
Both the data and the MC2 calculations are shown for each cut. The
results from the MC2 calculations are shown with the same offset and
scaling used to reproduce the wide data cut shown in Fig. 16.

The low-energy cuts exhibit the most structure by far.
As the cut energy is increased, the mean E2 γ -ray energy
increases, and the ridges are clearly attenuated. It should be
noted that the experimental low-energy cuts are, in general,
more uncertain than the higher energy ones. Discrete peaks
are more prominent here and introduce uncertainties in the
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FIG. 23. (Color) Same as Fig. 22, but for the SD ridges.

experimental extraction of the ridges (see Sec. V). On the
other hand, the statistics are typically better at low energy.

The MC2 calculations (presented in Figs. 15 and 16)
were performed with fits to wide cross-diagonal cuts in the
Eγ 1 × Eγ 2 ND and SD matrices. The cuts were 1358 ± 212
and 1450 ± 350 keV, respectively. In this way, the rotational
damping parameters, in the whole region of the spin and
energy plane that the QC γ cascades traverse, are probed and
extracted.

Figures 22 and 23 show how the ridges from the MC2
calculation compare with the cuts made in the experimental
matrices. The agreement between the experimental data and
the MC2 calculations for the SD-ridge cuts is remarkably good.
For the ND ridges, the overall trend of the MC2 calculation
follows the data well, but the offsets are not always perfect,
because the experimental and calculation COR backgrounds
are not completely identical. The slightly different offsets are
exacerbated by the fact that one common COR background
region is used for all the slices in Figs. 22 and 23 rather than
more appropriate local regions for each slice.

The moment of inertia for the SD ridges, corresponding to
the cuts shown in Fig. 23, are presented in Fig. 24, where they
are compared with the �(1) and �(2) moments of inertia for the
discrete SD band 1. Only the narrow SD ridges are used to
evaluate the �(2) moment of inertia for the SD ridges. These
�(2) values are slightly larger (by ∼3%) than those of the SD
band 1.

VIII. DECOMPOSITION OF THE SUPERDEFORMED
TOTAL SPECTRUM

The SD total spectrum was extracted in the same manner as
discussed in Sec. IV. The associated QC spectrum portion can
be found in Figs. 5 and 18. The experimental decomposition of
the latter spectrum is impeded by the fact that the contribution
from the DO of the SD well cannot be extracted independently
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FIG. 24. Plot of the �(1) (static) and �(2) (dynamic) moments of
inertia (in units of h̄2/MeV) for SD band 1 and �(2) for the SD ridges.
ω is the rotational frequency, which is equal to Eγ /2.
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from the feeding QC spectrum, as it was possible in the mass
∼190 region [9]. As shown in either of the two figures, both
MC calculations clearly indicate that the feeding and decay
components overlap too much to be fully disentangled.

An approximate total statistical feeding and DO component
spectrum can be determined by adding (i) the calculated DO
statistical component at lower energies to (ii) the feeding
statistical component at higher energies. The latter was
determined from the spectrum of Fig. 5 using a fit with the
functional form given in Eq. (4) for energies �2 MeV (the
fit indicates that N = 3.1 and T = 0.52 MeV). Subtracting
this total statistical component from the QC spectrum does
allow for the decomposition of the remaining stretched E2
and M1/E2 dipole components of the resulting spectrum
through an angular distribution (A2/A0) analysis, just as it
was carried out for the ND QC spectrum (Fig. 25). Within
this approximation, the multiplicities and mean energies of
the statistical, E2 and M1/E2 components of the SD QC
spectrum (both from the feeding and DO of SD band 1) were
determined. They are presented in Fig. 26, and the relevant
information is also tabulated in Table VI. This table further
provides the energy and spin removed by the discrete lines
in the total spectrum of Fig. 4 and accounts for the effect
of isomer tagging (marked “isomer”) and coincidence gating
(“missed/g”).

The discrete SD lines dominate the total spin and excitation
energy removed by γ rays after the last particle has been
evaporated. Thus, the approximations made to experimentally
extract the QC spectral components do not add significant
uncertainty to the determination of the mean entry point for γ

cascades feeding the SD band (Table VI). Compared with
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FIG. 25. Angular distribution coefficient A2/A0 [see Eq. (3)] for
the QC spectrum of Fig. 5 after the approximate statistical component
has been subtracted as described in the text.

the ND QC spectrum analysis in Table II, it is clear that
SD band 1 is fed at significantly higher spins and relatively
lower excitation energies (with respect to the yrast lines)
than those of γ cascades that are not trapped in the SD
well. This will become even more evident when the entire
SD entry distribution is extracted, as described in the next
section.

TABLE VI. Decomposition of all the components of the normalized QC spectrum obtained
when double coincidence gates are placed on SD lines in 152Dy. To arrive at the mean entry point,
the contributions due to the isomer and to the lines missed because of coincidence gating are added.
The last three rows provide the mean entry points from the HK analysis (see Sec. VI) and from the
two MC simulations. The error estimates contain contributions from statistical uncertainties as well
as systematic contributions from the background subtraction and the unfolding and normalization
procedures.

Component Multiplicity M 〈E〉 (MeV) δI/M(h̄) �I (h̄) �E (MeV)

QC:stat 1.7(1) 1.82(1) 0.6(1)a 1.0(3) 3.0(2)
QC:E2 2.8(2) 1.14(1) 2.00 5.6(3) 3.2(2)
QC:M1/E2 1.9(2) 0.90(3) 0.5(1)a 0.9(2) 1.7(2)
SD disc. 12.5(7) 24.8(1.4) 12.6(7)
a/14 ns 0.9(1) 1.9(1) 0.62(5)
b/14 ns 0.87(6) 1.1(2) 0.29(3)
Unassigned 0.82(6) 1.4(2)b 1.2(2) 0.50(5)
Grass 1.05(6) 0.83(1) 1.4(2)b 1.5(2) 0.87(5)
Missed/g 2.00 0.96(1) 2.00 4.00 1.92(2)
Isomer 17.0 5.088
QC 58.8(1.5) 29.8(8)
HK 56.5(1.5) 29.1(8)
MC1 55.6 30.2
MC2 55.9 30.2

aEstimates based on MC2 calculations.
bAssumed to be the same as for the known lines in the ND analysis.
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FIG. 26. Experimental decomposition of the SD QC spectrum
into the statistical E1, quadrupole E2, and M1/E2 components (see
text for details). Components contain both the feeding and the DO
γ rays associated with SD band 1 in 152Dy.

IX. THE SUPERDEFORMED ENTRY DISTRIBUTION

The entry distribution for γ cascades feeding SD band 1
in 152Dy was measured in the same way as for the ND
states. The measured (H,K) distribution, obtained with clean
double coincidence gates placed on discrete SD transitions,
was unfolded as described in Sec. VI C. The mean number of
Ge-BGO modules hit was determined to be 19.8(6) [23.3(8)
unfolded] and, on average, 18.7(6) MeV of energy [24.0(8)
unfolded] was detected.

The multiplicity must be translated to spin in order to find
the SD entry distribution. The mean spin removed by the
observed γ rays for cascades trapped in the SD well can be
determined by inspecting Table VI. On average, 41.8(1.5)h̄
of angular momentum is carried away by the 24.5(7) γ rays
observed in GS, when SD band 1 is populated. This excludes
γ rays emitted below the 17+ isomer due to the tagging
procedure. Therefore, the mean spin removed by each γ ray is
1.70(8)h̄. Because longer cascades of stretched E2 transitions
are involved, the mean δI/M value is significantly larger than
for the equivalent γ cascades that end up in the ND well
[1.45(3)h̄, see Sec. VI D]. The SD (I, E) entry distribution
was obtained from the unfolded (M,E) distribution using the
translation in Eqs. (5) and (6), but now with a coefficient of
1.70 in front of the multiplicity M . The resulting SD (I, E)
entry distribution is found in Fig. 27. Obviously, the part of
the entry distribution below the lowest of the two yrast lines is
unphysical and attributed to uncertainties in the measurement
and detector resolution. The mean entry spin and energy
are 56.5(1.5)h̄ and 29.1(8) MeV, which compares well with
the mean values obtained from the QC spectrum analysis
presented in Table VI. Compared to the ND (I, E) entry
distribution of Fig. 13, the SD entry distribution has clearly
moved toward higher spins and lower excitation energies with
respect to the yrast lines (heat energy U ).

FIG. 27. Contour plots of the measured normal deformed
(dashed) and superdeformed (solid) entry distributions. The normal
deformed and superdeformed yrast lines used in the Monte Carlo
calculations are shown as well. The mean entry spins and energies
are [49.5(1.0)h̄, 28.0(6) MeV] and [56.5(1.5)h̄, 29.1(8) MeV] for
the normal deformed and superdeformed distributions, respectively.
Thus, the superdeformed distribution is higher by 7.0(1.8)h̄ in spin,
but only 1.1(1.0) MeV in energy, with respect to the normal deformed
entry distribution.

The SD entry distribution can also be extracted from the
MC2 calculation by binning the entry points of the γ cascades
trapped successfully in the SD well. This entry distribution
exhibits the same behavior as the experimentally extracted one
(Fig. 27), with a mean spin of ∼56h̄ and an excitation energy
of ∼30 MeV. This is also in good agreement with (i) the mean
entry point determined from the total SD γ spectrum and (ii)
the mean of the measured SD entry distribution as shown in
Table II. This demonstrates that the MC model calculations
also reproduce the special selection of entry points of Fig. 27
leading to the population of SD band 1.

The maximum angular momentum that can be transferred
to the compound nucleus in a heavy-ion fusion reaction is
roughly given by [55,97,98]

Lmax[h̄] = 0.219 × (RCB[fm] + Rt [fm]) (52)

×
√

µ(ECMS[MeV] − ECB[MeV]), (53)

where

RCB = 1.2
(
A

1
3
1 + A

1
3
2

)
[fm], (54)

ECB = 1.44
Z1Z2

RCB[fm] + Rt [fm]
[MeV], (55)

Rt ≈ 2.0 fm, (56)

µ = A1A2

A1 + A2
, (57)

ECMS = M2

M1 + M2
E1. (58)

Thus, assuming that the four neutrons evaporated in this
reaction each, on average, remove ∼1.5h̄ of spin, the maximum
angular momentum imparted to the 152Dy residue with the
present reaction is ∼66h̄. This value is very close to the upper
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edge of the measured (I, E) entry distribution for the SD γ

cascades presented in Fig. 27. The spin of the highest discrete
SD state in band 1 is, incidentally, also 66h̄ [6]. The maximum
energy transferred to the 152Dy residue is ∼2 MeV assuming
that the four neutrons each remove about 1 MeV of kinetic
energy. This places an even more stringent upper limit on the
energy of the entry distribution in Fig 27; i.e., SD band 1 in
152Dy is indeed fed at the limits of both the spin and excitation
energy provided in the heavy-ion fusion process.

X. CONCLUSIONS AND FUTURE DIRECTIONS

Well-defined ridges, resulting from γ -γ correlations at
finite temperature in the cooling of 152Dy by quasicontinuum
γ rays, have been extracted in this work. The quasicontinuum
γ rays were likewise extracted with double coincidence
gates placed on clean combinations of normal deformed
and superdeformed discrete lines. The entry distribution for
the reaction 108Pd(48Ca,4n)152Dy at 191 MeV (midtarget)
was measured and used as a starting point for Monte Carlo
simulations of these γ cascades. Through these simulations, it
was possible to ascertain the strength of the rotational damping
widths in the normal deformed and superdeformed wells of
152Dy. Very few other measurements of the rotational damping
properties in a superdeformed well in the mass A ∼ 150
region have been made [99]. Only recently have the rotational
damping properties in the superdeformed well in the mass
A ∼ 190 region been probed [38]. Finally, the superdeformed
entry distribution was extracted and compared with the total
entry distribution. As expected, the superdeformed band is fed
at higher spins and at lower excitation energies with respect to
the yrast lines than are the normal deformed bands.

All the available data, i.e., the normal deformed and
superdeformed quasicontinuum and ridge spectra, can be
reproduced reasonably well by the Monte Carlo simulations.
Thus, the Monte Carlo model seems to contain most, if not
all, the physics ingredients necessary to describe the cooling
of the 152Dy nucleus. This instills some confidence in the
extracted values for the rotational damping width parameters in
the normal deformed and superdeformed wells. Those values
are summarized in Tables III and IV.

In general, the theoretical �µ, �
(2)
rot , and Inar rotational

damping functions must be renormalized by rather large
factors (see Table IV) in order to reproduce the experimental
data. This suggests that more theoretical work needs to be
carried out to fully understand rotational damping. The large
value of the scaling factor for the normal deformed narrow
fraction damping component could be reduced significantly if
a larger level density parameter a [see Eq. (9)] was used (e.g,
A/8 or A/9 instead of A/7 MeV−1). Furthermore, with the
very small value of �µ in the superdeformed well, it cannot
be ruled out that the observed narrow ridges are from either
ergodic bands [32,37] or unmixed bands.

It will be important to determine rotational damping values
in other regions of the nuclear chart, using the methods
described in this work, to aid in the theoretical understanding.
For the 152Dy superdeformed well, Matsuo et al. calculated
values of 59 and 67 keV for �µ and �

(2)
rot , respectively [25].

These predictions are in poor agreement with the present
results.

Superdeformed ridge spectra in an experiment on 149Gd
[99] display a narrow ridge 20 keV wide, corresponding
in the present interpretation to �µ ∼ 10 keV. This is
only slightly larger than the small value found in this
work, ∼5 keV. In the analysis of the same experiment, a
wide width of �

(2)
rot ∼100–150 keV was applied, together

with a distribution of in-band probabilities corresponding
to Inar of about 30–40%. Reference [23] calculates �

(2)
rot =

30–70 keV in the superdeformed well, which is less than
the width found in this work, ∼240 keV and 238 keV (see
Tables III and IV).

The average of the rotational damping width values in the
MC2 calculations agree well with the fixed values used in
the MC1 simulations. The MC2 results reproduce the exper-
imental data only slightly better than the MC1 calculations.
Thus, another test is needed to demonstrate that the spin and
excitation energy dependent rotational damping functions used
in the MC2 simulations are more suitable than the simple
average or fixed values employed in the MC1 approach.
Populating the nucleus using the same reaction, but at different
beam energies, would provide such a test. Furthermore, to
better determine the rotational damping parameters in the
normal deformed well, the normal deformed ridges should
be measured at lower beam energies as well, since fewer
γ rays would then be emitted while the 152Dy nucleus resides
in the superdeformed well. In this way, the normal deformed
rotational damping parameters could be extracted with less
“interference” than was found to be the case here. Moreover,
such experiments would also probe wider regions in spin and
excitation energy of the rotational damping distributions [given
by Eqs. (47), (50), and (51)] than the cuts in Figs. 22 and 23
did.

It would also be interesting to investigate whether the
E2 high-energy tail in the normal deformed quasicontin-
uum spectrum (Fig. 17) disappears when the beam energy
is reduced, i.e., whether this feature originates from the
superdeformed or normal deformed well. This high-energy
tail most likely stems from γ cascades that pass through
a region with a larger rotational damping width than is
currently included in the Monte Carlo simulations. A delayed
onset of motional narrowing, see l1 in Eq. (50), might
also help to reproduce this feature of the quasicontinuum
spectrum.

Very narrow ridges have recently been found in 194Hg as
well [38]. Moreover, in this case, it was found that the intensity
of the narrow ridges exhausts the total E2 decay strength. This
implies that Inar is nearly 100% in the superdeformed well of
194Hg.

Having found that the decay-out quasicontinuum spectrum
associated with the decay of the superdeformed band 1 in
152Dy is quite different from the corresponding spectrum in
the mass ∼190 region [9], work is in progress to characterize
the decay-out quasicontinuum spectrum for superdeformed
bands in the A ∼ 130 region [100]. It will be interesting to
see if the decay out of superdeformed bands in this mass
region occurs primarily through statistical γ rays (∼90%)
as is the case in the mass ∼190 region [9] or if E2
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transitions play a significant role, as found here in the nucleus
152Dy. Indeed, the MC2 calculations suggest that about 68%
of the decay-out quasicontinuum γ rays are of this E2
character.
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APPENDIX A: EFFICIENCY OF GAMMASPHERE

The photopeak efficiency of GS can be found from a
spectrum collected with a 60Co [51] source placed in the center
of the array [101]. If εp(Eγ ) is the photopeak efficiency at the
energy Eγ , then the counts (peak areas in associated spectrum)
A in the two 60Co peaks at 1173 keV, 1333 keV and their sum
peak are related as

A(1173) = C ∗ εp(1173)(1 − Coεc(1333) ∗ Cf ), (A1)

A(1333) = C ∗ εp(1333)(1 − Coεc(1173) ∗ Cf ), (A2)

A(2506) = C ∗ εp(1173)εp(1333) ∗ Cf , (A3)

with εT = εp + εc (A4)

and PT = εp/εT , (A5)

where εT is the total efficiency, PT the photopeak to total ratio,
and εc the Compton scattering efficiency. The factor Cf takes
into account the angular correlation between the 1173 and
1333 keV γ rays striking the same detector, summing up to
2506 keV. The factor (1−Coεc()∗Cf ) corrects for the fact that
one of the γ rays may Compton scatter in the same germanium
detector and thus will remove counts that should belong to the
photopeak of the other γ ray. If only this effect is included,
Co ≡ 1. Scattering of one of the two γ rays from, e.g., the
nearby Hevimet shields into the germanium detector may be
taken into account by setting Co > 1.

It follows that the efficiency of GS at 1333 keV for 100
detectors in the array can be determined as

εp(1333) = 100 × A(2506)/A(1173)/Cf/ (
1 + Co

A(2506)

A(1173)

(1 − PT (1333))

PT (1333)

)
. (A6)

For the 60Co source, Cf is found to be (1 + 0.1023 +
0.0086) = 1.1109 [102] at 0◦. Taking into account the opening
angle of the Ge detectors (±7.5◦), the effective Cf value is
determined to be 1.109. The response function shows that the
photopeak to total ratio, PT , at 1333 keV is 0.50. For the first
experiment, where the Hevimet shields were shielding the
BGO detectors, the total photopeak efficiency was found to

be 8.9(2)% with Co = 1.25(25). It follows that the total γ -ray
efficiency, εT , for GS in this experiment, with 100 detectors,
was 17.8(4)% at 1333 keV. The average photopeak efficiency
of the Ge detectors, measured with respect to the efficiency of
a standard 3 × 3 NaI(TI) at 25 cm (0.0012), was 74(2)%.

The data used to determine the εp(1333) photopeak
efficiency of GS was sorted so that only events with a
multiplicity of one or two were accepted, eliminating many
scattered events. Any events with “defects” of any kind (e.g.,
honeycomb suppression, a missing time signal, or low energy
signal) were rejected, and the data were carefully background
subtracted.

APPENDIX B: UNFOLDING

To properly extract the QC spectra, the sorted spectra must
be unfolded; i.e., the scattered γ rays that are not suppressed
by the BGO suppressor shields surrounding the Ge crystals
must be removed (using the unfolding procedure described
in Sec. III). The quality of the unfolding is critical for the
present analysis; the true QC γ rays can only be extracted if
the unsuppressed contribution from Compton events can be
removed reliably.

The quality of the procedure can be ascertained by un-
folding the γ -ray spectrum from a 152Eu source placed in
the center of the GS. Because this source has many lines,
it is a good representation of a typical spectrum obtained
when coincidence gates are placed on γ rays from an
in-beam experiment. The 152Eu source has no continuum
associated with it. Thus, after proper background subtraction
and unfolding, the spectrum should contain only peaks and no
continuum. Figure 28 illustrates just how well the unfolding
works when a response function is measured with great care.
The response function does not change much at higher γ -ray
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FIG. 28. γ -ray spectrum from a 152Eu source as observed in GS
and after it was unfolded using the response functions measured
immediately after the experiment.
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energies [48]. Thus, even though the highest energy at which
the GS response function was measured was 1836 keV (see
Table I), the unfolding of the measured spectra at high γ -ray
energies is very reliable.

It has been found that the Compton suppression of the
Ge detectors in GS tends to deteriorate over time as the
performance of the BGO detectors deteriorates. It is, therefore,
important to obtain a current response function just before or
after experiments when the unfolding of 1D and 2D spectra is
needed, as done in this work.

APPENDIX C: OBSERVED BAND INTENSITY

A portion of the intensity profile of SD bands, as a function
of spin, is typically flat [1,2]. In this spin region, there is
no longer any feeding of the band and the DO has not yet
begun. To find this “plateau,” it is necessary to first place
(double) coincidence gates on very high spin transitions in
order to determine the location within the SD cascade where
the intensity profile decreases due to the DO process. Then,
(double) coincidence gates must be placed on very low spin
transitions to determine the upper edge of the intensity plateau
in the same manner. Once the plateau portion of the intensity
profile has been established, more precise low and high spin
(double) coincidence gates can be placed, leaving a common
set of plateau lines untouched, i.e., they are not used as
gates. The high-spin and low-spin portions of the intensity
profiles so measured can then be normalized on these common
plateau lines to determine the total intensity profile for the
SD band. Using this procedure, the total intensity curve was
determined for SD band 1 in 152Dy, as populated in the
108Pd(48Ca,4n)152Dy reaction at 191 MeV (midtarget). The
result, I 0, is given in Table VII along with the spin of the SD
states [6] and the energy of the γ rays.

The intensity I 0 in Table VII gives the yield in the SD
band if none of the SD band transitions are used in the process
of gating. In practice, this can never be the case. The SD
bands that are measured are always from the sum of spectra
where a (large) number of combinations the SD transitions
have been used as double coincidence gates. As a result,
the intensities of the SD lines in such spectra are distorted.
Likewise, the intensity profile itself is altered by the particular
choice of double coincidence gates. A procedure describing
how both of these effects can be calculated is given below.
It will also be shown how a SD band can be normalized to
the number of γ cascades forming the summed coincidence
spectrum by using the intensity of the gating SD lines
themselves.

For a particular coincidence gate combination (i, j) the
proper relative intensity curve of the gated spectrum can be
found from the I 0 values in Table VII:

For k � Pl, Ii,j (k) = max(1, I 0(k)/I 0(i)).

For k � Ph, Ii,j (k) = max(1, I 0(k)/I 0(j )).

Here, Pl and Ph indicate the lower and higher edges of the
plateau, respectively. Only if both coincidence gates are in
the plateau region will the intensity profile have the shape
given in the I 0 column of Table VII. In all other cases,

the profile is different with a plateau that stretches between
the gates.

The total intensity of the sum of spectra where double
coincidence gates have been placed is found through the sum

IG(k) =
( ∑

(i,j )∈Q

Ii,j (k)
εp(i)

1 + ICC(i)
× Ii,j (k)

εp(j )

1 + ICC(j )

)
/ ( ∑

(i,j )∈Q

εp(i)

1 + ICC(i)
× εp(j )

1 + ICC(j )

)
, (C1)

where Q denotes the particular ensemble of double coinci-
dence gates in use, in this particular case the cleanest 94 of
120 possible combinations of coincidence gates, see Sec. IV.
The internal conversion coefficient is ICC, and εp is the
(relative) photopeak efficiency at the energy of the gate. IG(k)
is, however, not the observed intensity of the SD band, because
the gates forming the individual profiles do not contain the
gating transitions themselves, i.e., they appear in the summed
spectrum only as contributions of combinations of gates that do
not contain them. This gating effect can be taken into account
using the same sum as in Eq. (C1), but for each (i, j ) double
coincidence gate intensity profile, removing the intensity of
the coincidence gates i and j themselves in the Ii,j (k) profiles.
If this modified sum is called I nG(k), the factors that should be
used to correct for the missing coincidence gates, when areas
of SD lines are extracted, is simply

Gf = IG(k)/I nG(k). (C2)

To find the intensity of the SD band based on the individual
coincidence gates, the actual band intensity should be divided
out as

Tf = (1 + ICC(k)) × Gf /IG(k)

= (1 + ICC(k))/I nG(k), (C3)

where it is assumed that the area of the SD peak, Ag ,
has already been extracted from a spectrum that has been
corrected for (relative) efficiency, but not corrected for internal
conversion (which is usually the case). The Ag × Tf product
for any of the SD lines should give the same value within
propagated errors, namely, the number of γ cascades that
formed the spectrum (which can be used for normalization
purposes).

Table VII gives the unbiased band intensities and correction
factors found in the present case. Figure 29 illustrates how
well the normalization works. The curve marked [oi] shows
the observed intensity in the sum of double coincidence gated
specta. Curve [gci] provides the intensity when a correction for
the missing intensity in the coincidence gates is applied using
the Gf factor, while [cbi] presents the intensity profile that
was calculated for the SD band using the procedure denoted
above as IG(k). The [gci] and [cbi] curves agree well with
one another but, because of the effects of gating, are quite
different from the unbiased intensity curve, I 0 (labeled [ub]).
Finally, the line labeled [sdn] shows the Ag×Tf product which
determines the number of γ cascades that formed the SD band
and, thus, allows the SD band to be normalized to multiplicity,
see Fig. 4. Note that the extracted areas labeled [oi], [sdn], and
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TABLE VII. Spins of levels and energies of γ rays in SD band 1 of 152Dy. I 0 is the unbiased intensity of
the band determined as described in the text. IG is the effective intensity of the summed coincidence spectra,
where double coincidence gates have been placed on the cleanest 94 of 120 possible combinations of gates.
Notice how IG differs significantly from I 0 because of the coincidence gating. Gf and Tf factors are discussed
in the text. States marked with asterisk are considered to be in the plateau region discussed in the text. Correction
factors are only calculated for transitions used as gates.

Spin(h̄) Energy (keV) I 0 IG Gf Tf F/D0(%) F/DG(%)

24 −13 −15
26 601.2 0.13 −27 −31
28 646.2 0.40 0.46 1.09 2.39 −40 −44
30 691.5 0.82 0.89 1.29 1.44 0 0
32 737.1 0.82 0.89 1.27 1.43 −18 −10
34 782.9 0.99∗ 0.99 1.16 1.16 −2
36 828.9 1.02∗ 1.00 1.26 1.26
38 875.5 1.01∗ 1.00 1.27 1.27
40 922.3 0.99∗ 1.00 1.27 1.28
42 969.5 1.00 + 0.24∗ +6.8 +2.3
44 1016.8 0.93 0.98 1.13 1.15 +6.3 +2.0
46 1064.4 0.87 0.95 1.17 1.23 +6.9 +2.5
48 1112.2 0.80 +1.5 +2.5
50 1160.2 0.79 0.90 1.20 1.33 +2.7 +1.4
52 1208.3 0.76 0.89 1.17 1.31 +9.8 +8.3
54 1256.5 0.66 0.81 1.16 1.43 +13.0 +12.7
56 1304.7 0.53 0.68 1.13 1.66 +18.3 +20.0
58 1353.1 0.35 0.48 1.12 2.33 +13.6 +17.5
60 1401.5 0.21 0.30 1.10 3.60 +10.5 +13.7
62 1449.7 0.11 0.17 1.10 6.61 +5.7 +9.0
64 1497.9 0.05 +3.8 +6.0
66 1544.6 0.01 +1.1 +1.7
68 1580

[gci] were normalized to the weighted mean of all the Ag ×Tf

product values in Fig. 29, in order to render the plot more
instructive by showing the various effects discussed above.
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FIG. 29. (Color) Observed and modified intensities of SD
band 1. See text for discussion and definition of the labels.

APPENDIX D: BIAS SPECTRUM TEST

To extract the ridges from the coincidence matrices, it is
of paramount importance to remove any discrete line in the
areas of the matrices from which the cross-diagonal ridges
are projected. In this work, it was also found that it is very
important to remove any strong stripes along the Eγ 1 and Eγ 2

axes in order to improve the sensitivity of the ridge extraction.
A standard procedure, when just peaks are removed, consists
in the use of the level scheme to determine the location
of coincidence peaks in the 2D matrices and subtract them
according to their intensities. However, in the particular case
of 152Dy, the level scheme is not known well enough to
carry out this procedure thoroughly. Moreover, the removal of
the stripes also requires a correction. Thus, a new, different
approach is employed. The peaks and stripes are simply
removed completely in the 2D matrix, and the resulting bias
this causes is extracted, as discussed in Sec. V. The extracted
ridges are then corrected for this introduced bias.

In this Appendix, the distortion of the extracted ridges
using this new bias correction method is explored. Figure 30
presents two ridge spectra. Using the calculated SD γ γ matrix
as a bench mark, one spectrum is projected onto the cross
diagonal in the same manner as done with the experimental
data, but without any removal of peaks or stripes, which is
not necessary in this case since the calculated γ γ matrix does
not contain any discrete peak. This spectrum is labeled “true”
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FIG. 30. (Color) Comparison of (simulated) true SD ridges with
the ridges that are extracted after removing peaks and stripes from the
(simulated) coincidence matrix. The bias correction has been applied
in the same manner as done for the experimental data. See text for
discussion.

and shows how the experimental SD ridges would appear if
it was not necessary to remove peaks and stripes. The other
spectrum, labeled “mod," is the same projection, but this time
the SD peaks and stripes were removed (even though they
are not there) before the projection, and the bias spectrum
was used to correct the cross-diagonal projection accordingly.
Apart from a scaling (the mod spectrum was multiplied by 1.1
before being plotted) the true and mod ridges are essentially
indistinguishable. The mod spectrum has less statistics because
the matrix from which the peaks and stripes have been removed
obviously contains less counts.

Figure 31 presents the same test for the ND QC γ cascades.
Also in this case, the mod spectrum comes quite close to
the true spectrum apart from small details (most notably
close to the diagonal). Nevertheless, for all comparisons of
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FIG. 31. (Color) Same as Fig. 30, but for the ND ridges.

TABLE VIII. Entry and exit points for the ND γ cascades. See
text for details. The column marked UND (USD) indicates the heat
energy above the ND (SD) yrast line.

Point Spin (h̄) E∗ energy
(MeV)

UND

(MeV)
USD

(MeV)

(1) entry (HK) 49.5(1.0) 28.0(6) 6.8(1.0) 6.1(6)
(2) entry (QC) 49.0(1.0) 29.3(7) 8.4(7) 7.7(7)
(3) entry (MC1) 49.9 28.3 6.7 6.3
(4) entry (MC2) 49.9 28.3 6.7 6.3
(5) exit QC (MC1) 34.8 13.1 1.0
(6) exit QC (MC2) 35.4 13.5 0.9
(7) entry ND ∼34

experimentally extracted ridges with ridges calculated in the
MC code, both ridges have been processed identically so that
the comparison between experiment and calculations remains
fair, i.e., they are affected identically by the slight distortion
due to the bias correction procedure.

APPENDIX E: SELECTED MEAN VALUES IN THE
NORMAL AND SUPERDEFORMED DECAY PATHS

Table VIII provides the mean entry points from (1) the 2D
HK analysis and (2) the QC analysis, as well as the mean
entry points (3) and (4) of the γ cascades in the two MC
calculations where the γ cascades feed the ND well directly.
Also shown are the mean end points (5) and (6) of these
calculated γ cascades. Because the level scheme for 152Dy
is not yet known well enough at high spins, the experimental
entry point into the ND discrete states is difficult to determine.
A rough estimate, after making a number of assumptions on
the spins and multipolarities of weaker γ lines in the spectrum
of Fig. 1, yields an estimate of about 34h̄ after the isomer has
been added, which is in good agreement with the values in
lines (5) and (6) of Table VIII.

Table IX gives the mean feeding and decay points for SD
band 1 in 152Dy. The entry points in rows (1) and (2) are from

TABLE IX. Entry and exit points for the SD γ cascades. See text
for details.

Point Spin(h̄) E∗ energy
(MeV)

UND

(MeV)
USD

(MeV)

(1) entry (HK) 56.5(1.5) 29.1(8) 2.3(8)
(2) entry (QC) 58.8(1.5) 29.8(8) 1.1(8)
(3) entry (MC1) 54.9 30.4 1.8
(4) entry (MC2) 55.2 30.4 1.7
(5) exit QC (MC1) 49.7 23.1 1.0
(6) exit QC (MC2) 50.0 23.2 0.8
(7) disc feed (EXP0) 54.1
(8) disc feed (EXPG) 56.7
(9) disc DO0 27.8
(10) disc DOG 27.2
(11) exit QC (MC1) 24.1 10.0 2.7
(12) exit QC (MC2) 24.1 10.0 2.7
(12) exp entry ND ∼22
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the HK and QC analysis, respectively. Rows (3) and (4) provide
the entry points for the γ cascades trapped in the SD well
in the MC calculations. These entry points are different from
the ND γ cascade entry points given in Table VIII in rows (3)
and (4). The mean exit points for the feeding γ cascades in the
MC calculations are given in rows (5) and (6). Rows (7) and
(8) indicate the experimentally determined entry points into
the discrete SD band 1. Row (7) does so without any gating
bias, while row (8) shows the effective entry point forced up
in spin by placing coincidence gates on high spin members of
the SD band. It can be is seen that the MC calculations have
γ cascades that are slightly longer than the values consistent
with entries (7) and (8) in Table IX.

Rows (9) and (10) relate to the mean DO points for the SD
band, again without and with the bias from the coincidence
gates used to extract the SD band of Fig. 4. The mean end
points of the QC γ cascades from the MC calculations are
found in rows (11) and (12); and, finally, an estimate of the
mean spin at which the SD band decays into the ND discrete
states is given in row (13).

APPENDIX F: OTHER LEVEL DENSITY FORMULAS

The level density formula in Eq. (9) is not the only choice
possible for use in the MC simulations of this work. Three
other level density formulas are presented below. The main
effect of changing to any of these other level density formulas
in the MC calculations would be to force a change in the
rescaling parameter for the narrow fraction rotational damping
parameter, see Table IV and Eq. (51). Since Eq. (51) is derived
through a cranking calculation, using expressions (F4), (F5),
or (F6) below is in principle more appropriate.

The main difference between Eq. (9) and the level density
formulas presented below is, besides some scaling of the level
density values, the dependence on spin. Equation (F4) includes
a saturation of the level density above a certain spin, whereas
the formulas (F5) and (F6) have no spin dependence at all.
The ND γ cascades are not affected much by this saturation
since

√
(U − �)/b ∼ 50h̄. On the other hand, in the SD well,√

(U − �)/b ∼ 40h̄ so the γ cascades at very high spins
would be somewhat affected if Eq. (F4) was used.

Changing the level density formula in the MC calculations
would have other effects, such as making the statistical
spectrum slightly softer, i.e., T in Eq. (4) would decrease
in value, because the �I = 1 transitions would no longer be
favored as much over the �I = 0,−1, E1 transitions. As a
result, the γ cascades would cool slightly less before the E2
γ rays were emitted.

It should be noted that the proper level density parameter
a to be used in the (F4), (F5) and (F6) formulas do not have
to be a ∼ A/7 MeV−1 and a ∼ A/10 MeV−1 in the ND and
SD wells, respectively. In principle, those values only apply to

Eq. (9). The proper values to use in the other formulas could be
obtained from information on the level density at the neutron
separation energy [103] and a scaling procedure, or directly
from theoretical calculations [23,33,71].

1. Åberg’s level density formula

A new level density formula has been presented by
Sven Åberg [75]. In his approach, three new parameters are
introduced. The first is

b = h̄2

2�z
r

− h̄2

2�x
r

, (F1)

where �z
r = �r and �x

r are the rigid moments of inertia
around the short and long axis of the nucleus, respectively [see
Eq. (12)]. The second parameter is

I0 =
{

I for I <
√

(U − �)/b,√
(U − �)/b for I >

√
(U − �)/b.

(F2)

The final parameter is

c = b ×
[√

a

U − �
− 3

2(U − �)

]
. (F3)

With these three parameters, the level density at high spin is
evaluated as

ρI (U ) = 1

24

√
h̄2

2�z
r

√
π

c
(U − �)−1.5

× e 2
√

a(U−�) erf(
√

0.5c(2I0 + 1)). (F4)

For the spins governing both the feeding of SD and ND bands
as well as the decay of the SD bands in 152Dy, Eq. (F4) is
assumed to be valid.

2. Cranking level density formulas

In Ref. [20], a level density formula appropriate for use
with the cranking model is given as

ρI (U ) =
√

π

12
(aU)−1/4U−1e2

√
a(U−�). (F5)

In Refs. [23,33,71], the level density formula is proposed to
be

ρI (U ) =
√

π

48
a−1/4U−5/4e2

√
a(U−�), (F6)

which is just 1/4 of the level density given in Eq. (F5). This
factor originates from parity-signature selections. According
to Ref. [23], the proper values of the level density parameter a

in Eq. (F6) are A/10 and A/17 MeV−1 for the 152Dy ND and
SD wells, respectively.
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