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Covariant density functional theory, which has so far been applied only within the framework of static and
time-dependent mean-field theory, is extended to include particle-vibration coupling (PVC) in a consistent way.
Starting from a conventional energy functional, we calculate the low-lying collective vibrations in the relativistic
random phase approximation (RRPA) and construct an energy-dependent self-energy for the Dyson equation. The
resulting Bethe-Salpeter equation in the particle-hole (p-h) channel is solved in the time blocking approximation
(TBA). No additional parameters are used, and double counting is avoided by a proper subtraction method.
The same energy functional, i.e., the same set of coupling constants, generates the Dirac-Hartree single-particle
spectrum, the static part of the residual p-h interaction, and the particle-phonon coupling vertices. Therefore, a
fully consistent description of nuclear excited states is developed. This method is applied for an investigation
of damping phenomena in the spherical nuclei with closed shells 208Pb and 132Sn. Since the phonon coupling
terms enrich the RRPA spectrum with a multitude of p-h⊗phonon components, a noticeable fragmentation
of the giant resonances is found, which is in full agreement with experimental data and with results of the
semiphenomenological nonrelativistic approach.
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I. INTRODUCTION

The theoretical analysis of nuclear dynamics by micro-
scopic methods remains undoubtedly a crucial issue of present-
day nuclear physics. Besides the merely theoretical interest, it
is stimulated by new experimental opportunities for the study
of the nuclear many-body system. Along with new possibilities
to investigate more precisely nuclear systems being considered
well known, the recent generation of radioactive-beam facil-
ities enables us to examine exotic systems with extreme spin
and isospin values. For a successful description of nuclei close
to the limits of stability, a powerful and reliable theory should
be provided. It should be based on a consistent treatment of
both ground and excited states, and it should allow predictions
of nuclear properties in areas which are hard or impossible to
access by future experiments.

Ab initio calculations and multiconfiguration mixing within
the shell model can, so far, only be applied to light nuclei. At
present, for a universal description of nuclei over the entire
periodic table, density functional theory (DFT) based on the
mean-field concept provides a very reasonable approach. DFT
was introduced in the 1960s in atomic and molecular physics
[1,2] and shortly after that in nuclear physics, where it has been
called the density-dependent Hartree-Fock theory [3,4]. Today
it is widely used on all kinds of quantum mechanical many-
body systems. Density functional theory can, in principle,
provide an exact description of the many-body dynamics, if
the exact density functional is known; but for such systems
as nuclei, one is far from a microscopic derivation and one is

forced to determine the functional in a phenomenological way.
Starting from basic symmetries, the parameters are adjusted
to characteristic experimental data in finite nuclei and nuclear
matter.

One of the most successful schemes of this type is covariant
density functional theory (CDFT). It is based on Lorentz
invariance, connecting in a consistent way the spin and spatial
degrees of freedom in the nucleus. Therefore, it needs only
a relatively small number of parameters which are adjusted
to reproduce a set of bulk properties of spherical closed-shell
nuclei [5,6]. A large variety of nuclear phenomena have been
described over the years within this kind of model: ground
state properties of finite spherical and deformed nuclei over
the entire periodic table [7] from light nuclei [8] to super-heavy
elements [9,10], from the neutron drip line, where halo
phenomena are observed [11], to the proton drip line [12] with
nuclei unstable against the emission of protons [13]. Rotational
bands are treated within the relativistic cranking approxima-
tion [14,15], and the relativistic random phase approximation
(RRPA) [16] and quasiparticle RRPA [17] have been formu-
lated as the small amplitude limit of time-dependent relativistic
mean-field (RMF) models for a description of collective
and noncollective excitations. This method is successful, in
particular, in describing the positions of giant resonances and
spin/isospin excitations such as the isobaric analog resonance
(IAR) or the Gamow-Teller resonance (GTR) [18]. Recently,
it was also used for a theoretical interpretation of low-lying
dipole [17] and quadrupole [19] excitations.
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With a few exceptions, where the quadrupole motion
has been studied within the relativistic generator coordinate
method (GCM) [20], applications of CDFT to the description
of excited states are limited to the relativistic RPA, i.e., to
configurations of a one-particle one-hole (1p-1h) nature. None
of these methods, however, can be applied to the investigation
of a coupling to more complicated configurations as occurs,
for instance, in the damping phenomena causing the width of
giant resonances. It is also known that in such theories, because
of the low values of the effective mass, the level density of the
single-particle spectrum in the vicinity of the Fermi surface is
considerably reduced as compared with experimental data.

Based on the Fermi liquid theory (FLT) of Landau [21], the
theory of finite Fermi systems (TFFS) of Migdal [22] is another
very successful method for describing low-lying nuclear
excitations [23], which has been known since the 1950s. It has
several general properties in common with density functional
theory. First, both theories are known to be exact, at least
in principle, but in practice the parameters entering these
theories have to be determined in a phenomenological way
by adjustment to experimental data. Second, both theories
are based in some sense on a single-particle concept. DFT
uses the mean-field concept with Slater determinants in an
effective single-particle potential as a vehicle to introduce shell
effects in an exact theory, and FLT is based on the concept of
quasiparticles obeying a Dyson equation, which are defined
as the basic excitations of the neighboring system with odd
particle number. Third, in practical applications both theories
describe in the simplest versions the nuclear excitations in the
RPA approximation, i.e., by a linear combination of particle-
hole (p-h) configurations in an average nuclear potential.

However, there are also essential differences between these
two concepts. First, in contrast to DFT, TFFS does not attempt
to calculate the ground state properties of the many-body
system, but it describes the nuclear excitations in terms of
Landau quasiparticles and their interaction. Therefore, the
experimental data used to fix the phenomenological parameters
of the theories are bulk properties of the ground state in the
case of density functional theory, and properties of single-
particle excitations and of the collective excitations in the
case of finite Fermi systems theory. Second, DFT determines
the mean field in a self-consistent way, and therefore the
RPA spectrum contains Goldstone modes at zero energy.
This is usually not the case in TFFS calculations, which
are based on a nonrelativistic shell-model potential, whose
parameters are adjusted to the experimental single-particle
spectra. Therefore there is no self-consistency in the RPA
calculations of TFFS, and the Goldstone modes are not
separated from the other modes. They are distributed among
the low-lying excitations. Third, modern versions of TFFS go
much beyond the mean-field approximation. Green’s function
techniques have been used to investigate the coupling between
quasiparticles and phonons. Based on the phonons calculated
in the framework of the RPA, one has included particle-phonon
coupling vertices and an energy dependence of the self-energy
in the Dyson equation [24,25]. This leads also to an induced
interaction in the Bethe-Salpeter equation caused by the
exchange of phonons which also depends on the energy.
The coupling of particles and phonons has also been derived

from nuclear field theory (NFT) and its extensions [26–28].
Many aspects of the coupling between the quasiparticles and
the collective vibrations have been investigated with these
techniques [29–38] as well as with other kinds of approaches
beyond RPA [39,40] over the years.

The present work attempts to find a combination of the
basic ideas of density functional theory and Landau-Migdal
theory. The concept is similar to that applied in earlier
work [41–43], which used specific nonrelativistic energy
functionals to construct self-consistent TFFS. We start here
from a covariant density functional E[ρ] widely used in
the literature. It is adjusted to ground state properties of
characteristic nuclei, and, without any additional parameters,
it provides the necessary input of finite Fermi systems theory,
such as the mean field and the single-particle spectrum as well
as an effective interaction between the p-h configurations in
terms of the second derivative of the same energy E[ρ] with
respect to the density. Thus the phenomenological input of
Landau-Migdal theory is replaced by the results of density
functional theory. The same interaction is used to calculate the
vertices for particle-vibration coupling [44]. We then apply the
techniques of Landau-Migdal theory and its modern extensions
to describe vibrational coupling and complex configurations.
In this way, we obtain a fully consistent description of the
many-body dynamics.

Two essential approximations are used in this context.
First, the time-blocking approximation (TBA) blocks in
a special time-projection technique the 1p-1h propagation
through states which have a more complex structure than
1p1h⊗phonon. The nuclear response can then be explicitly cal-
culated on the 1p1h+1p1h⊗phonon level by summation of an
infinite series of Feynman’s diagrams. This approximation has
been introduced in Ref. [34]. Initially it was called the method
of chronological decoupling of diagrams (MCDD), and it is
also discussed in recent review articles [35,36]. Second, a
special subtraction technique guarantees that there is no double
counting between the additional correlations introduced by
particle-vibration coupling and the ground state correlations
already taken into account in the phenomenological density
functional. These two tools are essential for the success of
the present method. TBA introduces a consistent truncation
scheme into the Bethe-Salpeter equation, and without it it
would be hard to solve the equations explicitly. The subtraction
method is the essential tool for connecting density functional
theory, so far used only on the level of mean field theory,
i.e., on the RPA level, with the extended Landau-Migdal
theory, where complex configurations are included through
particle-vibration coupling.

As discussed above, there are several versions of DFT in
nuclear system. In the present work, we use CDFT with the
parameter set NL3 [45]. A first attempt in this direction has
been carried out in Ref. [44], where we treated the level density
problem in the framework of covariant particle-vibration
coupling.

In Sec. II, we discuss briefly the general CDFT formalism,
we introduce the concept of the energy-dependent self-energy
�(ε) and the vertices of particle-vibration coupling in the
relativistic framework, and we discuss the response formalism
and time blocking approximation for the response function. In
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Sec. III, we show how to solve the resulting integral equations
in detail and present recent numerical applications for the
spreading width of the doubly magic nuclei 208Pb and 132Sn;
in Sec. IV, we include a brief summary and an outlook for
future applications. Appendices A–D provide more details on
the formalism used in the calculations.

II. FORMALISM

A. Relativistic mean-field approach

In relativistic mean-field theory, the nucleus is considered
to be a system of nucleons interacting by the exchange of
effective mesons, which characterize the quantum numbers of
the various fields. Conventional RMF theory uses σ, ω, and ρ

mesons and the photon as the minimal set of bosons necessary
to generate realistic nuclear fields [5,46,47]. This concept is
expressed by the following Lagrangian density depending on
the nucleon spinor ψ as well as on the mesons σ, ωµ, �ρµ, and
the electromagnetic fields Aµ:

L = ψ̄(iγ µ∂µ − m)ψ + 1
2∂µσ∂µσ − 1

2m2
σ σ 2 − 1

4	µν	µν

+ 1
2m2

ωωµωµ − 1
4
�Rµν �Rµν + 1

2m2
ρ �ρµ�ρµ − 1

4FµνFµν

− ψ̄
(
�σσ + �µ

ωωµ + ��µ

ρ �ρµ + �µ
e Aµ

)
ψ. (1)

Here m is the bare nucleon mass, mσ ,mω, and mρ are the
corresponding meson masses, and 	µν, �Rµν, Fµν are the field
tensors

	µν = ∂µων − ∂νωµ,

�Rµν = ∂µ�ρν − ∂ν �ρµ,

Fµν = ∂µAν − ∂νAµ.

(2)

As usual, arrows denote isovectors and boldface symbols will
be used for vectors in ordinary space. The vertices � entering
the interaction term of Eq. (1) read

�σ = gσ , �µ
ω = gωγ µ, ��µ

ρ = gρ �τγ µ,

�µ
e = e

(1 − τ3)

2
γ µ, (3)

where gσ , gω, gρ , and e are the corresponding coupling
constants. For the sake of simplicity, we use in the following
discussions the linear version (1) of the Lagrangian. However,
it is well known that one needs an additional density depen-
dence in order to obtain a reliable description of nuclear surface
properties. It is either expressed by a nonlinear self-interaction
between the mesons or by an explicit density dependence of
the coupling constants gσ , gω, and gρ . In all the numerical
applications, we use such modifications, which are discussed
in detail in Appendix A.

The classical variation principle being applied to the
Lagrangian density (1) leads to a system of coupled equations
of motion for the fermions(

iγ µ∂µ − m −
∑
m

�mφm(r, t)

)
ψi(r, t) = 0, (4)

and the mesons(
� + m2

m

)
φm(r, t) = ∓

∑
i

ψ̄ i(r, t)�mψi(r, t). (5)

Here the index i numerates the nucleons, and the index
m = {σ, ω, ρ, e} runs over the set of meson fields φm =
{σ, ωµ, �ρµ

,Aµ}. mm are the corresponding masses and �m are
the vertices (3). The minus sign in Eq. (5) holds for scalar
fields, and the plus sign for vector fields. The set of Eqs. (4)
and (5) defines the standard RMF model, which implies the
following four approximations:

(i) Only the motion of the nucleons is quantized; the meson
and electromagnetic degrees of freedom are described
by classical fields. The nucleons move independently in
these classical fields; i.e., residual two-body correlations
are disregarded and the many-nucleon wave function is
a Slater determinant at all times.

(ii) In time-dependent applications, we use the instan-
taneous approximation, i.e., the time derivatives ∂2

t

in the Klein-Gordon equations and, consequently, the
retardation effects for the meson fields are neglected,
although the Dirac spinors ψi as well as the fields φm are
functions of coordinates and time. This is justified by
the relatively large meson masses and the corresponding
short range of the meson exchange interaction.

(iii) Fock terms are neglected. Because of the short-range
character of the meson exchange forces, they behave
similar to zero range forces, where the Fock terms have
the same form as the direct terms and contribute only in
a change of the relevant strength parameters. Since our
strength parameters are adjusted to experimental data,
Fock terms for the heavy mesons are implicitly taken
into account to a large extent.

(iv) The no-sea approximation means that nucleon states in
the Dirac sea with negative energies do not contribute
to the densities and currents: the sum over i in Eq. (5)
includes only occupied levels with positive energy in
the Fermi sea. This means we do not consider vacuum
polarization explicitly. Since our parameters are adjusted
to experimental data, such effects are taken into account
in an implicit way.

B. Energy-dependent nucleon self-energy

Let us now consider in detail the Dyson equation, which
describes the motion of a single nucleon in the nuclear interior
as

(iγ µ∂µ − m − �)ψi = 0. (6)

Here the total self-energy � contains all the forces acting on
the nucleon. As long as one stays within the RMF approach, the
nucleon self-energy contains only static and local contributions
from the mesons and from the electromagnetic fields.

When we go beyond the mean-field approximation, we have
to take into account that in the general case the full self-energy
� is nonlocal in the space coordinates as well as in time.
This nonlocality means that its Fourier transform has both
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momentum and energy dependence. Let us now decompose
the total self-energy matrix into two components, a static local
and an energy-dependent nonlocal term:

�(r, r′; ε) = �̃(r)δ(r − r′) + �e(r, r′; ε), (7)

where

�̃(r) =
∑
m

�mφm(r) (8)

is the static part known from RMF theory in Eq. (4). The
upper index e in �e indicates the energy dependence. The
Dyson equation for single-particle Green’s function reads

(ε − hD − β�e(ε))G(ε) = β, (9)

where hD denotes the Dirac Hamiltonian in Eq. (4), with the
energy-independent mean field

hD = αp + β(m + �̃s) + �̃0, α = βγ , β = γ 0. (10)

Most of the static calculations are done for cases where
time-reversal symmetry is valid. In all these cases, there are no
currents in the nucleus and, thus, only scalar �̃s and time-like
�̃0 components of �̃ survive in the static Dirac Hamiltonian
of Eq. (10). In the shell-model Dirac basis {|ψk〉}, which
diagonalizes the energy-independent part of the Dirac equation

hD|ψk〉 = εk|ψk〉, (11)

one can rewrite Eq. (9) as∑
l

{
(ε − εk)δkl − �e

kl(ε)
}
Glk′ (ε) = δkk′ , (12)

where

�e
kl(ε) =

∫
d3rd3r ′ψ̄k(r)�e(r, r ′; ε)ψl(r ′), (13)

Gkl(ε) =
∫

d3rd3r ′ψ̄k(r)βG(r, r ′; ε)βψl(r ′). (14)

The letter indices k, k′, l denote full sets of the single-particle
quantum numbers. In the present work, we consider spherical
symmetry, so the spinor |ψk〉 is characterized by the set
k = {(k),mk} and (k) = {nk, jk, πk, τk} with the radial
quantum number nk , angular momentum quantum numbers

jk,mk , parity πk , and isospin τk , that is,

ψk(r, s, t) =

 f(k)(r)�lkjkmk

(ϑ, ϕ, s)

ig(k)(r)�l̃kjkmk
(ϑ, ϕ, s)


 χτk

(t), (15)

where s and t are the coordinates for spin and isospin. The
orbital angular momenta lk and l̃k of the large and small
components are determined by the parity of the state k, that is,

lk = jk + 1
2 , l̃k = jk − 1

2 for πk = ( − 1)jk+ 1
2

lk = jk − 1
2 , l̃k = jk + 1

2 for πk = ( − 1)jk− 1
2 ,

(16)

f(k)(r) and g(k)(r) are radial wave functions, and �ljm(ϑ, ϕ, s)
is a two-dimensional spinor

�ljm(ϑ, ϕ, s) =
∑
msml

(
1

2
mslml| jm

)
Ylml

(ϑ, ϕ)χms
(s). (17)

As in Ref. [44], we use the particle-phonon coupling model
for the energy-dependent part of the self-energy �e(ε). In the
Dirac basis of the spinors |ψk〉 defined in Eq. (11), it has the
form

�e
kl(ε) =

∑
µ,n

γ
µ(σn)
kn γ

µ(σn)∗
ln

ε − εn − σn(	µ − iη)
,

γ
µ(σ )
kn = δσ,+1γ

µ

kn + δσ,−1γ
µ∗
nk ,

(18)

where η → +0. In Fig. 1, we show a graphical representation
of �e

kl(ε). The index n runs over all single-particle states in
this basis. We distinguish occupied states in the Fermi sea
|h〉 (hole states) with σh = −1, unoccupied states above the
Fermi level |p〉 (particle states) with σp = +1, and states in
the Dirac sea |α〉 (antiparticle states) with negative energies.
Because of the no-sea approximation, the orbits with negative
energies |α〉 are left unoccupied; therefore we have σα = +1.
However, as shown in Ref. [44], the numerical contribution of
the diagrams with intermediate states α with negative energy
is very small because of the large energy denominators in the
corresponding terms of the self-energy (18). The index µ in
Eq. (18) labels the various phonons taken into account. 	µ is
their frequency, ρµ is their transition density, and the phonon
vertices γ

µ

kl determine their coupling to the nucleons:

γ
µ

kl =
∑
k′l′

Ṽ kl′,lk′ρ
µ

k′l′ . (19)

p‘ p‘’

p

p‘ p‘’

α

p‘

p‘’

h
+ +Σ        =p‘p’’

e µ µ µ

h‘ h‘’

h

Σ        =h‘h’’
e µ+

h‘

h‘’

p
µ +

h‘

h‘’

α
µ

FIG. 1. Particle �e
p′p′′ and hole �e

h′h′′ com-
ponents of the relativistic mass operator in the
graphical representation. Solid and dashed lines
with arrows denote one-body propagators for
particle (p), hole (h), and antiparticle (α) states.
Wavy lines denote phonon (µ) propagators,
empty circles are the particle-phonon coupling
amplitudes γ µ.
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Ṽ kl′,lk′ denotes the relativistic matrix element of the residual
interaction. It is obtained as a functional derivative of the
relativistic mean field with respect to relativistic density matrix
ρ, that is,

Ṽ kl′,lk′ = δ�̃l′k′

δρlk

. (20)

We use the linearized version of the model, which assumes that
ρµ is not influenced by the particle-phonon coupling and can be
computed within the relativistic RPA approximation. As long
as we neglect the nonlinear self-couplings of the mesons or the
density dependence of the coupling constants gm in Eq. (3),
the matrix elements Ṽ kl′,lk′ in Eq. (19) have a simple Yukawa
form. However, such effects have to be taken into account to
guarantee full self-consistency of the RRPA equations, and
we find more complicated expressions, which are discussed
in detail in Appendix A. In the applications investigated in
Sec. III, we use the nonlinear parameter set NL3 [45] for the
solution of the static Dirac equation (11) as well as for the
calculation of the matrix elements (20).

C. Response function

Nuclear dynamics of an even-even nucleus in a weak
external field is described by the linear response function
R(14, 23) which is the solution of the Bethe-Salpeter equation
(BSE) in the p-h channel. In the beginning, it is convenient
to consider this equation in the time representation. Let us
include the time variable into the single-particle indices, setting
1 = {k1, t1}. In this notation, the BSE for the response function
R reads

R(14, 23) = G(1, 3)G(4, 2) − i
∑
5678

G(1, 5)G(6, 2)

×V (58, 67)R(74, 83), (21)

where the summation over the number indices 1, 2, . . . implies
integration over the respective time variables. The function
G is the exact single-particle Green’s function, and V is
the amplitude of the effective interaction irreducible in the
p-h channel. This amplitude is determined as a variational
derivative of the full self-energy � with respect to the exact
single-particle Green’s function, i.e.,

V (14, 23) = i
δ�(4, 3)

δG(2, 1)
. (22)

Introducing the free response R0(14, 23) = G(1, 3)G(4, 2),
the BSE (21) can be written in a shorthand notation as

R = R0 − iR0VR. (23)

For the sake of simplicity, we will use this shorthand notation
frequently in the following discussions. Since the self-energy
in Eq. (7) has two parts, � = �̃ +�e, the effective interaction
V in Eq. (21) is a sum of the static RMF interaction Ṽ and
time-dependent terms V e,

V = Ṽ + V e, (24)

where (with t12 = t1 − t2)

Ṽ (14, 23) = Ṽ k1k4,k2k3δ(t31)δ(t21)δ(t34) (25)

is the static part of the interaction [see Eq. (20)], and

V e(14, 23) = i
δ�e(4, 3)

δG(2, 1)
(26)

contains the energy dependence. In the space of the Dirac basis
(11), the amplitude V e has the form

V e
kl′,lk′(ω, ε, ε′) =

∑
µ,σ

σγ
µ(σ )∗
k′k γ

µ(σ )
l′l

ε − ε′ + σ (	µ − iη)
. (27)

To make the BSE (21) more convenient for the subsequent
analysis, we eliminate the exact Green’s function G and rewrite
it in terms of the mean-field Green’s function G̃ determined as

G̃(1, 2) = −iσk1δk1k2θ (σk1τ )e−iεk1 τ , τ = t1 − t2, (28)

where θ (t) is the Heaviside function. After a Fourier transfor-
mation in time, this reads

G̃k1k2 (ε) = δk1k2

ε − εk1 + iσk1η
. (29)

Using the connection between G̃ and G in the Nambu form

G̃
−1

(1, 2) = G−1(1, 2) + �e(1, 2), (30)

one can rewrite Eq. (21) as

R = R̃
0 − iR̃

0
WR, (31)

with R̃
0
(14, 23) = G̃(1, 3)G̃(4, 2), and W is a new interaction

of the form

W = Ṽ + We, (32)

where

We(14, 23) = V e(14, 23) + i�e(1, 3)G̃
−1

(4, 2)

+ iG̃
−1

(1, 3)�e(4, 2) − i�e(1, 3)�e(4, 2).

(33)

Since the mean-field Green’s function G̃ in Eq. (29) is known,
one has a more convenient starting point for the solution of
the Bethe-Salpeter equation (31) than with the unknown exact
single-particle Green’s function, but the effective interaction
W in Eq. (32) becomes more complicated. The graphical
representation of Eq. (31) is shown in Fig. 2.

In addition to the static interaction Ṽ , the effective
interaction W contains diagrams with energy-dependent self-
energies and an energy-dependent induced interaction, where
a phonon is exchanged between the particle and the hole.
Hereafter we omit the term i�e(3, 1)�e(2, 4) in Eq. (33) for
the following reasons. This term compensates the multiple
counting of the particle-phonon coupling arising from the two
previous terms in Eq. (33). However, this multiple counting
does not take place within the time blocking approximation
(see below) if the backward-going propagators are not taken
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RR = +

RR R++

+ R
FIG. 2. Bethe-Salpeter equation for p-h re-

sponse function R in graphical representation.
Details are given in Fig. 1; small black circle
means the static part of the residual p-h interac-
tion (20).

into account. Components containing the backward-going
propagators within 1p1h⊗phonon configurations require a
special consideration. They have been analyzed in great
detail in Refs. [34–36]. In the present work, they are fully
neglected, and therefore the term i�e(3, 1)�e(2, 4) has also
to be omitted. However, we have to emphasize that we only
neglect ground state correlations (backward-going diagrams)
caused by the particle-phonon coupling. All the RPA ground
state correlations are taken into account, because it is well
known that they play a central role for the conservation of
currents and sum rules. We consider that this is a reasonable
approximation, which has been applied and discussed in many
nonrelativistic models (see, e.g., Refs. [29–38] and references
therein).

Considering a Fourier transformation of the BSE (31) in
time

Rk1k4,k2k3 (ω, ε)

= G̃k1k3 (ε + ω)G̃k4k2 (ε) +
∑

k5k6k7k8

G̃k1k5 (ε + ω)G̃k6k2 (ε)

×
∫ ∞

−∞

dε′

2πi
Wk5k8,k6k7 (ω, ε, ε′)Rk7k4,k8k3 (ω, ε′), (34)

one finds that both the solution of this equation R and its
kernel W are singular with respect to the energy variables.
Another difficulty arises because Eq. (31) contains integrations
over all time points of the intermediate states. This means
that many configurations which are actually more complex
than 1p1h⊗phonon are contained in the exact response
function. In Ref. [34], a special time-projection technique
was introduced to block the p-h propagation through these
complex intermediate states. It has been shown that for this
type of response it is possible to reduce the integral equation
(34) to a relatively simple algebraic equation. Obviously, this
method can be applied straightforwardly in our case, too.

Starting from the Bethe-Salpeter equation (31), we divide
the problem of finding the exact response function into two
parts. First, we calculate the correlated propagator Re, which
describes the propagation under the influence of the interaction
We,

Re = R̃
0 − iR̃

0
WeRe. (35)

It contains all the effects of particle-phonon coupling and all
the singularities of the integral part of the initial BSE. Second,
we solve the remaining equation for the full response function
R

R = Re − iReṼ R. (36)

Equation (36) contains only the static effective interaction
Ṽ and can be easily solved if Re is known. Thus, the main
problem is to calculate the correlated propagator Re.

D. Time blocking approximation and subtraction method

To calculate the correlated propagator Re, we represent this
quantity as an infinite series of graphs which contain mean-
field p-h propagators alternated with single interaction acts.
This can be expressed by the system of equations

Re = R̃
0 − iR̃

0
�eR̃

0
, (37)

�e = We − iWeR̃
0
�e. (38)

According to the main idea of the time blocking approximation
(TBA), we modify the integral part of Eq. (38) making use of
the time-projection operator in the form [34]

�(14, 23) = δσk1 ,−σk2
δk1k3δk2k4θ (σk1 t14)θ (σk1 t23), (39)

where θ (t) is the Heaviside function. This projection operator

is introduced into the mean-field propagator R̃
0

in the integral
part of Eq. (38) to order the p-h propagation in time and thus
to separate in time the acts of the particle-phonon interaction
from each other and to exclude configurations which are more
complex than 1p1h⊗phonon. We replace in Eq. (38) the mean-

field propagator R̃
0

by

R̃
0
(14, 23) → R̃

0
(14, 23)�(14, 23) (40)

and obtain instead of Eq. (38)

�e(14, 23) = We(14, 23) + 1

i

∑
5678

We(16, 25)R̃
0
(58, 67)

×�(58, 67)�e(74, 83). (41)

After a Fourier transformation in time, we restrict ourselves to
the response function Rk1k4,k2k3 (ω)

Rk1k4,k2k3 (ω) = −i

∫ ∞

−∞
dt1ḋt2dt3dt4δ(t1 − t2)δ(t3 − t4)

× δ(t4)eiωt13R(14, 23), (42)

which depends only on one energy variable ω.
The time projection by the operator (39) leads to a

separation of integrations in Eq. (34), and we find an algebraic
equation for the function (42),

Rk1k4,k2k3 (ω) = R̃
0
k1k4,k2k3

(ω) +
∑

k5k6k7k8

R̃
0
k1k6,k2k5

(ω)

× W̄ k5k8,k6k7 (ω)Rk7k4,k8k3 (ω), (43)

or in shorthand notation,

R(ω) = R̃
0
(ω) + R̃

0
(ω)W̄ (ω)R(ω), (44)
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where

W̄ k1k4,k2k3 (ω) = Ṽ k1k4,k2k3 + �k1k4,k2k3 (ω), (45)

and

R̃
0
k1k4,k2k3

(ω) = R̃k1k2 (ω)δk1k3δk2k4 . (46)

R̃k1k2 (ω) is the mean-field propagator

R̃ph(ω) = − 1

εph − ω
, R̃αh(ω) = − 1

εαh − ω
, (47)

R̃hp(ω) = − 1

εph + ω
, R̃hα(ω) = − 1

εαh + ω
, (48)

εph = εp −εh and � is the particle-phonon coupling amplitude
with the components

�ph′,hp′(ω) =
∑

µ

[
δpp′

∑
h′′

γ
µ

h′′hγ
µ∗
h′′h′

ω − εp + εh′′ − 	µ

+ δhh′

(∑
p′′

γ
µ

pp′′γ
µ∗
p′p′′

ω − εp′′ + εh − 	µ

+
∑
α′′

γ
µ

pα′′γ
µ∗
p′α′′

ω − εα′′ + εh − 	µ

)

−
(

γ
µ

pp′γ
µ∗
hh′

ω − εp′ + εh − 	µ

+ γ
µ∗
p′pγ

µ

h′h

ω − εp + εh′ − 	µ

)]
, (49)

�αh′,hα′ (ω) =
∑

µ

[
δαα′

∑
h′′

γ
µ

h′′hγ
µ∗
h′′h′

ω − εα + εh′′ − 	µ

+ δhh′

(∑
α′′

γ
µ

αα′′γ
µ∗
α′α′′

ω − εα′′ + εh − 	µ

+
∑
p′′

γ
µ

αp′′γ
µ∗
α′p′′

ω − εp′′ + εh − 	µ

)

−
(

γ
µ

αα′γ
µ∗
hh′

ω − εα′ + εh − 	µ

+ γ
µ∗
α′αγ

µ

h′h

ω − εα + εh′ − 	µ

)]
. (50)

Indices p, α, and h traditionally denote the particle, an-
tiparticle, and hole types of the Dirac states, respectively.
There are, in principle, also nonzero amplitudes of the types
�ph′,hα,�αh′,hp which cause transitions of particle-hole (p-h)
to antiparticle-hole (α-h) pairs. However, we neglect them in
the present work because, as investigated in Ref. [44], the
effect of these kinds of terms on self-energy is very small,
whereas they require a lot of numerical effort. The reason is
that these components as well as the component (50) contain
large energy denominators. As already mentioned, amplitudes
of the types �pp′,hh′ and �hh′,pp′ are also disregarded within our

approximation. Therefore, ground state correlations are taken
into account only on the RPA level, because of the presence
of the Ṽ pp′,hh′ , Ṽ hh′,pp′ terms of the static interaction in Eq.
(43). By definition, the propagator R(ω) in Eq. (43) contains
only configurations which are not more complex than 1p1h ⊗
phonon.

An important correction has to be made in Eq. (43).
Having been adjusted to experimental data, the RMF ground
state effectively contains many correlations and, in particular,
admixtures of phonons. Therefore in our approach, as well
as in other approaches beyond RPA where more complex
configurations are taken into account explicitly, these ad-
mixtures would lead to double counting of correlations. In
the present method, all the correlations entering through the
admixture of phonons are taken care of by an additional
interaction term: �(ω). Part of this interaction is therefore
already contained in the static mean-field interaction Ṽ . Since
the parameter of the density functional and, as a consequence,
the effective interaction Ṽ are adjusted to experimental ground
state properties at the energy ω = 0, this part of the interaction
�(ω), which is already contained in Ṽ is given by �(0). To
avoid double counting of correlations, a subtraction procedure
was developed in Ref. [37] that removes this part. As a
consequence, one has to replace the additional interaction �

in Eq. (45) by the function δ�, that is,

�(ω) → δ�(ω) = �(ω) − �(0). (51)

The physical meaning of this subtraction is clear: the average
value of the particle-vibration coupling amplitude � at the
ground state is supposed to be contained already in the residual
interaction Ṽ , therefore we should take into account only the
additional energy dependence, i.e., δ�(ω) = �(ω) − �(0)
on top of the effective interaction Ṽ . Instead of Eq. (43), we
finally solve the following response equation

R = R̃
0 + R̃

0
[Ṽ + δ�]R. (52)

E. Strength function and transition densities

To describe the observed spectrum of the excited nucleus
in a weak external field P , as for instance a dipole field, one
needs to calculate the strength function

S(E) = − 1

π
lim

�→+0
Im�pp(E + i�), (53)

expressed through the polarizability �pp defined as

�pp(ω) = P †R(ω)P

:=
∑

k1k2k3k4

P ∗
k1k2

Rk1k4,k2k3 (ω)Pk3k4 . (54)

The imaginary part � of the energy variable is introduced for
convenience in order to obtain a more smoothed envelope of
the spectrum. This parameter has the meaning of an additional
artificial width for each excitation. This width effectively
emulates contributions from configurations not taken into
account explicitly in our approach.
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To calculate the strength function, it is convenient to
convolute Eq. (52) with an external field operator and introduce
the density matrix variation δρ in the external field P :

δρk1k2 (ω) =
∑
k3k4

Rk1k4,k2k3 (ω)Pk3k4 , (55)

δρ0
k1k2

(ω) =
∑
k3k4

R̃
0
k1k4,k2k3

(ω)Pk3k4 . (56)

Using Eq. (52), we find that δρ(ω) obeys the equation

δρ(ω) = δρ0(ω) + R̃
0
(ω)(Ṽ + δ�(ω))δρ(ω), (57)

and the strength function is expressed as

S(E) = − 1

π
lim

�→+0
ImTr[P †δρ(E + i�)]. (58)

The BSE (52) gives us also the possibility of calculating the
transition density

ρν
k1k2

= 〈0|ψ†
k2

ψk1
|ν〉 (59)

for the excited state |ν〉 at the energy 	ν . In the vicinity of 	ν

the response function has a simple pole structure

Rν
k1k4,k2k3

(ω) ≈ ρν
k1k2

ρν∗
k3k4

ω − 	ν
, (60)

which leads to

ρν
k1k2

= lim
�→+0

√
�

πS(	ν)
Im δρk1k2 (	ν + i�). (61)

To determine the norm of the transition densities, it is
convenient to rewrite Eq. (52) in the form

((R̃
0
)−1(ω) − Ṽ − δ�(ω))R(ω) = 1. (62)

Using Eq. (60) and taking the derivative with respect to ω, we
obtain the generalized normalization condition

ρν∗
[
N − d�

dω

∣∣∣∣
ω=	ν

]
ρν = 1, (63)

with the RPA norm

Nk1k4,k2k3 = σk1δσk1 ,−σk2
δk1k3δk2k4 .

In the limiting case of an energy-independent interaction,
i.e., if one neglects �(ω), this reduces to the usual RPA
normalization ∑

ph

(∣∣ρν
ph

∣∣2 − ∣∣ρν
hp

∣∣2) = 1. (64)

In the particle-vibration coupling model, the quantity N d
dω

�

in Eq. (63) is a nonpositively definite matrix. Therefore, all the
eigenvalues of the operator [1 − N ( d

dω
�) |ω=	ν ]−1 are less

than or equal to unity, in analogy to the spectroscopic factor
of a single-particle state. For this reason, the sum∑

ph

(∣∣ρν
ph

∣∣2 − ∣∣ρν
hp

∣∣2)
(65)

is practically always less than unity. The reduction of the norm
is caused by the spreading of the strength over 1p1h ⊗ phonon
configurations.

III. NUMERICAL DETAILS, RESULTS, AND DISCUSSION

A. General scheme of the calculations

The method developed in the last section is applied to a
quantitative description of isoscalar monopole and isovector
dipole giant resonances in the even-even spherical nuclei
208Pb and 132Sn. Our calculations are based on the energy
functional with the nonlinear parameter set NL3 [45]. The
scheme consists of three main parts:

(i) The Dirac equation for single nucleons together with
the Klein-Gordon equations for meson fields are solved
simultaneously in a self-consistent way to obtain the
single-particle basis (Dirac basis).

(ii) The RRPA equations [16] are solved with the static
interaction Ṽ of Eq. (20) to determine the low-lying
collective vibrations (phonons). These two sets of
particles (holes) and phonons form the multitude of
1p1h⊗phonon configurations which enter the particle-
phonon coupling amplitude δ�(ω).

(iii) Eq. (57) for the density matrix variation δρ in the
external field P is solved using this additional amplitude
in the effective interaction Ṽ + δ�(ω). Equation (58)
finally allows us to calculate the strength function
corresponding to the operator P . It is found that the
energy-dependent term δ�(ω), which describes the
change of the effective interaction due to the energy
dependence of the particle-vibration coupling, provides
a considerable enrichment of the calculated spectrum
compared to the spectrum obtained by the pure RRPA.

B. Choice of representation and basic approximations

Equation (57) for δρ can be solved in various represen-
tations. In Dirac space, its dimension is the number of p-h
pairs. In relativistic nuclear calculations, it is often important
to take into account the contributions of the Dirac sea, and
then the total number of p-h and α-h pairs entering Eq. (57)
increases considerably with the nuclear mass number because
of the high level density. As investigated in a series of
RRPA calculations [16,48], the completeness of the p-h (α-h)
basis is very important for calculations of giant resonance
characteristics as well as for current conservation and a proper
treatment of symmetries, in particular, the dipole spurious
state originating from the violation of translation symmetry
on the mean-field level. On the other hand, the use of a large
basis requires considerable numerical effort, and therefore it
is reasonable to solve Eq. (57) in a different, more appropriate
representation.

Two facts simplify our practical calculations:

(i) Because of the pole structure of the δ� amplitude, the
effects of particle-phonon coupling are only important
in the vicinity of the Fermi surface; therefore one can
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restrict the number of p-h configurations in this case
much more than in the case of the static interaction Ṽ .

(ii) The effective interaction Ṽ , which is based on the
exchange of mesons, contains only direct terms and no
exchange terms. Therefore, it can be written as a sum of
separable interactions.

To exploit these two effects, we solve the response equation
for a fixed value of the energy ω in two steps. First, we
calculate the correlated propagator Re(ω), which describes
the propagation under the influence of the interaction δ�(ω),

Re = R̃
0 + R̃

0
δ�Re. (66)

It contains all the effects of particle-phonon coupling and all
the singularities of the integral part of the initial BSE. Since
δ� is not separable, Eq. (66) has to be solved in Dirac space.
This requires in principle for each value of ω the inversion
of a very large matrix. However, the numerical effort can be
reduced considerably by taking into account that the effects of
the particle-phonon coupling are only important in the vicinity
of the Fermi surface. Therefore, the summation in Eq. (66)
is performed only among the p-h pairs with εph � εwin.
Consequently, the correlated propagator Re differs from the

mean-field propagator R̃
0

only within this window. This
approximation has been investigated numerically by explicit
calculations with different window sizes, as discussed below.
In contrast to Eq. (52), this equation contains only the static
effective interaction and it is solved in the large basis of p-h
and α-h configurations.

In the second step, we solve the remaining equation for the
full response function R(ω):

R = Re + ReṼ R. (67)

In contrast to Eq. (52), this equation contains only the static
effective interaction.

Now we exploit the fact that the one-boson exchange (OBE)
interaction discussed in Appendix C is separable in momentum
space. It can be expressed as

Ṽ k1k4,k2k3 =
∑

c

dcQ
(c)
k1k2

Q
(c)∗
k3k4

, (68)

where the channel index c = (q,m) is given by the momentum
q transferred in the exchange process of the corresponding
meson labeled by the index m. The parameters dc are given by
the meson propagators. We now can use the well-known tech-
niques of the response formalism with separable interactions
(see, for instance, Ref. [49]). We define

Rcc′ (ω) =
∑

k1k2k3k4

Q
(c)∗
k1k2

Rk1k4,k2k3 (ω)Q(c′)
k3k4

(69)

and find from Eq. (67)

Rcc′ = Re
cc′ +

∑
c′′

Re
cc′′dc′′Rc′′c′ = Re

cc′ + (RedR)cc′ . (70)

This equation can be solved by matrix inversion

R = (1 − Red)−1Re. (71)

Finally, we transform Eq. (57) to the momentum space, which
is equivalent to using the external field as an additional channel
c = p, and obtain from Eq. (69) the full response

δρc = δρe
c +

∑
c′

Re
cc′dc′δρc′ , (72)

and the polarizability (54)

�pp = P †RP = P †ReP +
∑

c

δρe∗
c dcδρc

= Re
pp +

∑
cc′

δρe∗
c dc(1 − Red)−1

cc′ δρ
e
c′ . (73)

The rank of vectors and matrices entering Eq. (72) is
determined by the number of mesh points in q space and the
number of meson channels. In particular, it does not depend
on the mass number of the nucleus. In realistic calculations,
the rank of Eq. (71) in the momentum space is around
500, and obviously the numerical effort does not depend
considerably on the total dimension of p-h and α-h subspaces.
However, if one stays in the Dirac basis, the latter dimension
is exactly the rank of arrays in Eq. (43). One should bear
in mind that in practice, both subspaces (p-h and α-h) are
truncated at some energy differences εph and εαh which are
large enough so that a further increase of these values does
not influence the results. In light nuclei with relatively small
level density, the total dimension of p-h and α-h subspaces
is comparable and could be even smaller than the rank
of Eq. (72); therefore, working in the Dirac basis is more
preferable. For heavy nuclei, the dimension of the Dirac basis
becomes huge; therefore, using the momentum space is more
justified.

C. Numerical details

To ensure numerical correctness of our codes, we solved
the response equation for δρ in both momentum space
[Eq. (72)] and Dirac space [Eq. (57)] and obtained identical
results. Both Fermi and Dirac subspaces were truncated at
energies far from the Fermi surface. In the present work as
well as in Ref. [44], we fix the limits εph < 100 MeV and
εαh > −1800 MeV with respect to the positive continuum.
A small artificial width of 200 keV was introduced as an
imaginary part of the energy variable ω to have a smooth
envelope of the calculated curves. The energies and amplitudes
of the most collective phonon modes with spin and parity 2+,
3−, 4+, 5−, and 6+ were calculated with the same restrictions
and selected using the same criterion as in the Ref. [44] and in
many other nonrelativistic investigations in this context. Only
phonons with energies below the neutron separation energy
enter the phonon space, since the contributions of the higher
lying modes are found to be small. Test calculations in the
framework of the approach [37,38] without the restriction of
the phonon space by the energy resulted in a small deviation
of the strength function as well as a change of the mean
energies and widths of the resonances comparable with the
smearing parameter (imaginary part of the energy variable)
used in the calculations. This is the natural result, because the
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physical sense of this parameter is to emulate contributions of
the configurations which are not taken into account explicitly.

Because of the pole structure of the particle-phonon
coupling amplitude [Eqs. (49) and (50)], its contributions to the
final result decrease considerably when we go away from the
Fermi surface. Therefore, this coupling has been taken into
account only within the p-h energy window εph � 30 MeV
around the Fermi surface. It has been checked that further
increase of this window does not influence significantly the
results.

It is important to note that although a large number of
configurations of the 1p1h⊗phonon type are taken into account
explicitly in our approach, nevertheless we stay in the same
p-h (α-h) space as in the RRPA; therefore, the problem of
completeness of the phonon basis does not arise, and so the
phonon subspace can be truncated in the above-mentioned
way. Another essential point is that on all three stages of our
calculations, the same relativistic nucleon-nucleon interaction
Ṽ [Eq. (20)] has been employed. The vertices γ

µ

k1k2
[Eq. (19)]

entering the term δ�(ω) are calculated with the same force.
Therefore, no further parameters are needed. Our calculational
scheme is fully consistent.

The subtraction procedure (51) developed in Ref. [37]
for the self-consistent scheme has been incorporated in our
approach. As mentioned above, this procedure removes the
static contribution of the particle-phonon coupling from the
p-h interaction. It takes into account only the additional energy
dependence introduced by the dynamics of the system. It
has been found in the present calculations as well as in the
calculations of Ref. [38] that within the relatively large energy
interval (0–30 MeV), the subtraction procedure provides a
noticeable increase of the mean energy of the giant dipole
resonance (0.8 MeV for the lead region) and gives rise to the
change by a few percents in the sum rule. This procedure
restores the response at zero energy, and therefore it does not
disturb the symmetry properties of the RRPA calculations.
The zero energy modes connected with the spontaneous
symmetry breaking in the mean-field solutions, as for instance
the translational mode in the dipole case, remain at exactly
the same position after the inclusion of the particle-vibration
coupling. In practice, however, because of the limited number
of oscillator shells in our calculations, this state is found
already in RRPA without particle-vibration coupling at a few
hundreds keV above zero. In cases where the results depend
strongly on a proper separation of this spurious state, as for
instance for investigations of the pygmy dipole resonance in
neutron rich systems, we have to include a large number of p-h
configurations in the RRPA solution.

D. Isoscalar monopole and isovector dipole resonances in
208Pb and 132Sn

The calculated strength functions for the isoscalar
monopole resonance in 208Pb and 132Sn are shown in Fig. 3.
The fragmentation of the resonance caused by the particle-
phonon coupling is clearly demonstrated, although the spread-
ing width of the monopole resonance is not large because of
a strong cancellation between the self-energy diagrams and

FIG. 3. Isoscalar monopole resonance in 208Pb and 132Sn obtained
within two approaches: RRPA (dashed line) and RRPA with particle-
phonon coupling RRPA-PC (solid line). Both computations were
performed with relativistic Hartree (RH) mean field and employ NL3
parameter set for RMF forces.

diagrams with the phonon exchange (see Fig. 2). This fact
has also been discussed in detail in Refs. [29,30], and it is
not disturbed by the subtraction procedure (51) because this
cancellation takes place in �(0) as well as in �(ω).

To compare the spreading of the theoretical strength
distributions with experimental data, we deduce mean energies
〈E〉 and width parameters � by fitting our theoretical strength
distribution in a certain energy interval to a Lorentz curve in the
same way as done in the experimental investigations. The mean
energies and width parameters obtained in this way are shown
in the Table I. We display as experimental data the numbers
adopted in Ref. [50] from the evaluation of a series of data
obtained in different experiments for the isoscalar monopole
resonance in 208Pb.

The calculated photoabsorption cross sections

σE1(E) = 16π3e2

9h̄c
ESE1(E) (74)

for the isovector dipole resonance in 208Pb and 132Sn are
given in the Figs. 4 and 5, respectively. The left panels show

TABLE I. Lorentz fit parameters of isoscalar E0
strength function in 208Pb and 132Sn calculated within
RRPA and RRPA extended by the particle-phonon
coupling model (RRPA-PC) as compared with experi-
mental data. The fit was carried out in the interval from
Bn to roughly 20 MeV.

〈E〉 (MeV) � (MeV)

RRPA 14.16 1.71
208Pb RRPA-PC 14.05 2.36

Exp. [50] 13.73(20) 2.58(20)
RRPA 16.10 2.63

132Sn RRPA-PC 16.01 3.09
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FIG. 4. Isovector E1 resonance in 208Pb. Details are given in the
text.

the results obtained within the nonrelativistic approach with
Woods-Saxon (WS) single-particle input and Landau-Migdal
(LM) forces described in Ref. [38]. They are compared in
the right panel with the relativistic fully consistent theory
developed in the present work. The underlying Lagrangian
has the parameter set NL3 [45]. In Fig. 4, we have displayed
experimental data with error bars taken from Ref. [51]. To
make the comparison reasonable, calculations within the
nonrelativistic framework were performed with box boundary
conditions for the Schrödinger equation in r space, which
ensures completeness of the single-particle basis.

The corresponding Lorentz fit parameters in the two energy
intervals Bn–25 and 0–30 MeV (Bn is the neutron separation
energy) are included in Table II and compared with the data of
Refs. [51,52]. We notice that the inclusion of particle-phonon
coupling in the RRPA calculation induces a pronounced
fragmentation of the photoabsorption cross sections and brings
the width of the GDR in much better agreement with the data,
both for 208Pb and 132Sn.

The fragmentation of the resonance introduced by the
particle-phonon coupling is clearly demonstrated in both cases.
Also, one finds more or less the same level of agreement be-
tween theory and experimental data for these two calculations.
In the case of the isovector E1 resonance in 132Sn, however,
this is not so clear, because the cross section and the integral

FIG. 5. Same as Fig. 4, but for 132Sn.

characteristics of the resonance obtained in the experiment of
Ref. [52] are given with relatively large error bars. In 208Pb, our
self-consistent relativistic approach reproduces the shape of
the giant dipole resonance much better than the nonrelativistic
one, although the whole resonance is shifted by about 0.5 MeV
to lower energies with respect to the experiment. As one can
see from Fig. 4 and Table II, we observe some shift already in
the RRPA calculation, which is determined by the properties
of the NL3 forces. Improvement of the forces, for instance, by
the use of the density-dependent versions [53,54] of the RMF,
should bring the E1 mean energy into better agreement with
the data.

However, there is an essential difference between the
fully self-consistent relativistic calculations of the present
work and the nonrelativistic approach. In the nonrelativistic
approach discussed in Ref. [38], one introduces on all three
stages of the calculation phenomenological parameters, which
have to be adjusted to experimental data: first, the Woods-
Saxon parameters, for instance, the well depth, are varied to
obtain single-particle levels close to the experimental values;
second, one of the parameters of the Landau-Migdal force
is adjusted to obtain phonon energies at the experimental
positions (for each mode); and third, another Landau-Migdal
force parameter is varied to reproduce the centroid of the

TABLE II. Lorentz fit parameters in the two energy intervals: Bn–25 MeV and 0–30 MeV, for the E1
photoabsorption cross sections in 208Pb and 132Sn, calculated with the RRPA and the RRPA extended to include
the particle-phonon coupling (RRPA-PC), compared with data.

Bn–25 MeV 0–30 MeV

〈E〉 (MeV) � (MeV) EWSR (%) 〈E〉 (MeV) � (MeV) EWSR (%)

RRPA 13.1 2.4 121 12.9 2.0 128
208Pb RRPA-PC 12.9 4.3 119 13.2 3.0 128

Exp. [51] 13.4 4.1 117 125(8)
RRPA 14.7 3.3 116 14.5 2.6 126

132Sn RRPA-PC 14.4 4.0 112 14.6 3.2 126
Exp. [52] 16.1(7) 4.7(2.1) 125(32)

064308-11



E. LITVINOVA, P. RING, AND V. TSELYAEV PHYSICAL REVIEW C 75, 064308 (2007)

giant resonance. Although the varying of the parameters is
performed in relatively narrow limits, it is necessary to obtain
realistic results. In contrast, in the relativistic fully consistent
approach developed in the present work, no adjustment of
additional parameters is made. Of course, the underlying
energy functional has been determined in a phenomenological
way by a fit to experimental ground state properties of
characteristic nuclei. However, it is of universal nature, and the
same parameters are used for investigations of many nuclear
properties over the entire periodic table. The predictive power
of this scheme is therefore much higher than that of the present
semiphenomenological approach discussed, for instance, in
Ref. [38].

The effect of the particle-vibration coupling on the low-
lying dipole strength around the neutron threshold within the
presented approach can also be seen in the Figs. 4 and 5. But
this phenomenon requires a detailed investigation, which is
considered in a special publication [55].

IV. SUMMARY AND OUTLOOK

To describe the damping of collective excitations in nuclei,
covariant density functional theory is extended by particle-
vibration coupling in a consistent way. Starting from a
relativistic energy functional E[ρ], the self-consistent RMF
equations are solved and the static part of the nucleon
self-energy �̃ = δE/δρ is found. In a second step, the
low-lying collective phonons are determined in the framework
of relativistic RPA with the effective p-h interaction Ṽ =
δ�̃/δρ. Using particle-phonon vertices deduced from the same
interaction, the self-energy �̃ is extended by an energy-
dependent part �e(ε). The Bethe-Salpeter equation derived
from the full self-energy � = �̃ + �e is formulated in the
p-h basis of the Dirac eigenstates. Using the time blocking
approximation, which allows the truncation to 1p1h⊗phonon
configurations, and a subtraction procedure, which avoids
double counting of correlations, it is shown that the resulting
effective interaction Ṽ + δ�(ω) contains besides the static
part Ṽ an energy-dependent correction term δ�(ω), which
takes into account the coupling of the particles to collective
phonons.

This method is applied to the computation of spectroscopic
characteristics of nuclear excited states in a wide energy
range up to 30 MeV for spherical nuclei with closed shells.
An equation for the density matrix variation is formulated
and solved in the Dirac space as well in the momentum
space. The particle-phonon coupling amplitudes of collective
vibrational modes below the neutron separation energy have
been calculated within the self-consistent RRPA using the
parameter set NL3 for the Lagrangian. The same force has
been used for the static part of the effective p-h interaction
Ṽ and for the evaluation of the particle-phonon vertices γ

µ

kk′ .
Therefore a fully consistent description of giant resonances is
performed.

Noticeable fragmentation of the isoscalar monopole and
isovector dipole giant resonances in 208Pb and 132Sn is
obtained due to the particle-vibration coupling. This leads to
a significant spreading width as compared to simple RRPA

calculations. This is in agreement with experimental data as
well as with the results obtained within the nonrelativistic
semiphenomenological approaches of Refs. [33,38].

Thus in the present work, a description of nuclear many-
body dynamics including complex configurations is realized
within an approach that is (i) fully consistent, (ii) based on
relativistic dynamics, (iii) universally valid for nuclei over the
entire periodic table, and (iv) based on a modern covariant
density functional, which has been applied with great success
to many nuclear properties over the entire periodic table.

So far, this extended density functional theory for complex
configurations has been formulated only for closed-shell
nuclei. To expand the field of applications to nuclei with
opened shells, it is, of course, necessary to include pairing
correlations in the approach discussed in the present paper.
This can be done in the manner of Ref. [37] where pairing
correlations and particle-vibration coupling are taken into
account on an equal footing in a nonrelativistic framework
using techniques of a generalized Green’s function formalism.
Work in this direction is in progress.
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APPENDIX A: NONLINEAR MESON POTENTIALS

So far we started from a Lagrangian [Eq. (1)] containing
the nucleons as Dirac particles and mesons providing an
interaction between them [46,47], as it is the starting point of
most of the relativistic investigations in nuclear physics. It was
recognized, however, very early on [56] that this model does
not provide an adequate description of the surface properties
of realistic nuclei. The incompressibility is too high, and the
deformations are too small [7]. Therefore, over the years
the relativistic models have been considerably improved by
introducing an effective density dependence, in accordance
with the concept of density functional theory. Boguta and
Bodmer [56] proposed in 1977 to introduce a nonlinear
coupling between the σ mesons replacing the mass term
1
2m2

σ σ 2 in the Lagrangian (1) by a nonlinear meson potential

U (σ ) = 1

2
m2

σ σ 2 + g2

3
σ 3 + g3

4
σ 4. (A1)

This procedure was used because it did not destroy the
renormalizability of the model. In these early days, relativistic
models of the nucleus were considered as fully fledged
quantum field theories [47], and therefore nonlinear meson
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couplings provided an elegant extension of the model con-
taining additional parameters introducing an effective density
dependence.

In fact, models with nonlinear meson couplings have
been used very extensively in the literature. Very successful
parameterizations have been developed on this basis, for
instance, NL1 [57] and NL3 [45], which contain only nonlinear
couplings between the σ mesons. Later on, one also considered
nonlinear couplings between the ω mesons [58,59], however,
without improving the agreement between theoretical results
and experimental data in finite nuclei. In the present investiga-
tions, we consider the parameter set NL3, which has been used
with great success for the description of symmetric nuclear
matter and finite nuclei with closed shells [7], deformed nuclei,
and rotating nuclei [15], and for relativistic RPA calculations
of giant resonances and low-lying states [48]. In the most
successful applications, pairing correlations are taken into
account in the framework of relativistic Hartree-Bogoliubov
(RHB) theory with Gogny type interactions in the p-p channel
[60]. For a recent review, see Ref. [6].

The effective interaction entering the static part of the
nucleon self-energy is in this case given by meson exchange
potentials. Without the nonlinear couplings, these interactions
are of Yukawa type with a range determined by the mass
of the corresponding mesons and with a relativistic structure
determined by the quantum numbers of the mesons. In the
simplest case of the σ -ω model, we have

Ṽ (1, 2) = −g2
σDσ (r1, r2)β(1)β(2)

+ g2
ωDω(r1, r2)(1(1)1(2) − α(1)α(2)) (A2)

with the Dirac matrices β and α and with the propagator in r

space

Dm(r1, r2) = 1

4π

e−mm|r 1−r 2|

|r1 − r2| , for m = σ, ω. (A3)

More realistic applications contain in addition a ρ meson and
the photon. These potentials are obtained from the Klein-
Gordon equations by elimination of the meson degrees of
freedom neglecting retardation.

In the nonlinear case, the static Klein-Gordon equation for
the σ meson has the form

−�σ + U ′(σ ) = −gσ 〈ψ̄ψ〉, (A4)

with

U ′(σ ) = m2
σ σ + g2σ

2 + g3σ
3. (A5)

This is a nonlinear equation, which does not allow for an
analytic solution. The numerical solution of Eq. (A4) σ (r)
provides us with the mean field of scalar type

�̃s(r) = gσσ (r). (A6)

Relativistic RPA is obtained as the small amplitude limit of
time-dependent Hartree theory [16]. In this case, the relativistic
single-particle density matrix ρkk′ is expanded around the
static solution ρ0. The linearization of the Klein-Gordon

equation (A4) leads to

(−� + M(r))δσ = −gσ δρs, (A7)

where δρs is the scalar density, with M(r) depending on the
coordinate r

M(r) = U ′′(σ0(r)) = m2
σ + 2g2σ0(r) + 3g3σ

2
0 (r), (A8)

where σ0(r) is the σ field of the static solutions. In momentum
space, this leads to a nonlocal propagator, which is the solution
of the integral equation

q2Dσ (q, q ′) +
∫

d3q ′′

(2π )3 M(q − q′′)Dσ (q ′′, q ′)

= (2π )3δ(q − q ′), (A9)

where M(q) is the Fourier transform of M(r):

M(q) =
∫

d3re−iqrM(r). (A10)

The σ part of the effective p-h interaction used in the RPA
calculations has therefore the form

Ṽ
ph
σ (1, 2) = −g2

σ β(1)β(2)
∫

d3qd3q ′

(2π )6 ei(qr 1−q ′r 2)Dσ (q, q ′)

(A11)

and similar terms for the other mesons and the photon. We use
this interaction in the solution of the relativistic RPA equation
for the calculation of the collective phonons, as well as in
Eq. (19) for the determination of the corresponding particle-
phonon vertices γ

µ

kl and in Eq. (36) for the response function
R(14, 23).

APPENDIX B: DENSITY-DEPENDENT MESON VERTICES

In recent years, it has been recognized that the relativistic
models are by no means fully fledged quantum field theories.
Instead, they are effective field theories, which provide the
basis of covariant density functional theory. Renormalizability
is not important. In the spirit of density functional theory,
it is reasonable to abandon the nonlinear couplings and to
introduce instead the coupling parameters gσ (ρ(r)), gω(ρ(r))
and gρ(ρ(r)), which depend on the baryon density [53,54,61–
64].

In this case, the static self-energy contains rearrangement
terms, i.e., terms depending on the derivative of the coupling
constant with respect to the density. We find

�̃s(r) = gσσ (r). (B1)

�̃0(r) = gωω0(r) + gρτ3ρ0(r) + VC(r) + �̃
R

(r), (B2)

with the rearrangement term

�̃
R

(r) = g′
σ (ρ(r))ρs(r)σ (r) + g′

ω(ρ(r))ρ(r)ω0(r)

+ g′
ρ(ρ(r))ρT (r)ρ0(r), (B3)
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where ρ = ρp + ρn and ρT = ρp − ρn are the isoscalar and
isovector baryon densities and ρ0 is the time-like component
of the ρ field. Here we have used the fact that we have time-
reversal invariance in the ground state and that the currents
vanish in this case.

The effective p-h interaction is obtained as the derivative
of the self-energy with respect to the density operator. We find
for the σ exchange

V ph
σ (1, 2) = −β(1)β(2)gσ (1)gσ (2)Dσ (r1, r2)

− Iσ (r1)δ(r1 − r2) − {β(1)1(2)gσ (1)g̃σ (2)

+ 1(1)β(2)g̃σ (1)gσ (2)

+ 1(1)1(2)g̃σ (1)g̃σ (2)}Dσ (r1, r2), (B4)

with

Iσ (r1) = {(β(1)1(2) + 1(1)β(2))g′
σ (1) + 1(1)1(2)g′′

σ (1)ρs(r1)}
×

∫
d3rgσ (ρ(r))Dσ (r1, r)ρs(r), (B5)

and similar terms for the ω and ρ exchange. Here we have
used the abbreviations

gσ (1) := gσ (ρ(r1)), (B6)

g̃σ (1) := g′
σ (ρ(r1))ρs(r1). (B7)

APPENDIX C: SOLUTION IN MOMENTUM SPACE

First we concentrate on the static interaction Ṽ of Eq. (A2),
neglecting for the moment the nonlinear meson coupling. We
can transform the one-boson exchange (OBE) interaction (A2)
to momentum space and neglect retardation:

Ṽ (1, 2) = ±
∑
m

g2
m

∫
d3q

(2π )3 eiq(r1−r2)�m
µ (1)Dµν

m (q)�m
ν (2),

(C1)

where the plus sign holds for the vector mesons and the
minus sign for the scalar mesons. The index m denotes the
set of mesons m = {σ, ω, ρ, e}, the isoscalar-scalar σ meson,
the isoscalar-vector ω meson, the isovector-vector ρ meson,
and the photon, which carry the respective components of
the interaction. Summation is implied also over the repeated
Greek indices. D

µν
m (q) is a boson propagator which is usually

taken in the RMF calculations in the simplified Yukawa form
neglecting form factors and retardation effects:

Dm(q) = − 1

q2 + m2
m

, m = σ, (C2)

Dµν
m (q) = gµν

q2 + m2
m

, m = ω, ρ, e. (C3)

Introducing the channel index c = (q,m), which combines the
meson index m with the momentum transfer q, we can express

Ṽ as a sum of separable terms

Ṽ (1, 2) =
∑

c

dcQ
(c)(1)Q(c)†(2), (C4)

with

Q(c) = Q(q,m) = �m
µ eiqr, (C5)

and the propagator

dc = d(q,m) = ±g2
mDµν

m (q). (C6)

The matrix elements of Ṽ in Dirac space have the form

Ṽ k1k4,k2k3 = 〈k1k4|Ṽ |k2k3〉 =
∑

c

dcQ
(c)
k1k2

Q
(c)∗
k3k4

= ±
∑
m

g2
m

∫
d3q

(2π )3 〈k1|�m
µ eiqr|k2〉Dµν

m (q)

×〈k4|�m
ν e−iqr|k3〉. (C7)

For nonlinear meson couplings, this expression has to be
somewhat modified, because the propagator in momentum
space (A11) is nondiagonal in this case. We have D

µν
m (q, q′),

and the values dc have to be replaced by matrices dcc′ in this
case.

APPENDIX D: RESPONSE FORMALISM IN SPHERICAL
NUCLEI

In the spherical case, angular momentum coupling reduces
the numerical effort considerably. The response equation for
δρ reads in this case

δρJ
(k1k2)(ω) = δ̃ρ

J

(k1k2)(ω) + R̃(k1k2)(ω)
∑
(k3k4)

[
Ṽ

J

(k1k4,k2k3)

+ δ�J
(k1k4,k2k3)(ω)

]
δρJ

(k3k4)(ω). (D1)

It contains the matrix elements of the static effective interaction
Ṽ

J
, and δ�J (ω) is the change of the effective interaction due

to the energy dependence of the particle-vibration coupling.
For the meson exchange potentials, we obtain after coupling

to good angular momentum J ,

Ṽ
J

(k1k4,k2k3) = ± (4π )2

2J + 1

∑
LSm

( − 1)S

×
∫ ∞

0

q2dq

(2π )3 〈k1‖jL(qr)
[
�m

S YL

]J ‖k2〉

× g2
m

q2 + m2
m

〈k3‖jL(qr)
[
�m

S YL

]J ‖k4〉, (D2)

where index S = (0, 1) denotes the spherical component of
the Pauli matrix entering the vertices (3). The factor ( − )S

indicates that the space-like parts of the interaction (current-
current interactions) have the opposite sign as the time-like
part. The matrix elements [Eq. (D2)] are a sum of separable
terms. The dimension of the matrices to be inverted is given
by the number of separable terms.
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The interaction Ṽ is treated in the response equation (72).
After transformation of this equation to momentum space, we
find

δρJm
LS (q, ω) = δρ

(e)Jm
LS (q; ω)

± (4π )2

2J + 1

∑
L′S ′m′

( − 1)S
′
∫ ∞

0

q ′2dq ′

(2π )3

×R
(e)Jmm′
LS,L′S ′ (q, q ′; ω)

g2
m′

q ′2 + m2
m′

δρJm′
L′S ′ (q ′; ω),

(D3)

where

R
(e)Jmm′
LS,L′S ′ (q, q ′; ω)

=
∑

(k1k2k3k4)

QJm
LS(k1k2)(q)R(e)J

(k1k4,k2k3)(ω)QJm′
L′S ′(k3k4)(q

′), (D4)

with

QJm
LS(k1k2)(q) = 〈k1‖jL(qr)

[
�m

S YL

]J ‖k2〉, (D5)

is a Fourier transform of the correlated propagator R(e)J which
is determined in the Dirac basis by the angular momentum
coupled version of Eq. (66):

R
(e)J
(k1k4,k2k3)(ω) = R̃(k1k2)(ω)δ(k1k3)δ(k2k4) + R̃(k1k2)(ω)

×
∑
(k5k6)

δ�J
(k1k6,k2k5)(ω)R(e)J

(k5k4,k6k3)(ω). (D6)

The free term on the right side of the Eq. (D3) has the form

δρ
(e)Jm
LS (q; ω) =

∑
(k1k2k3k4)

QJm
LS(k1k2)(q)R(e)

(k1k4,k2k3)(ω)P J
(k3k4),

(D7)

where

P J
(k1k2) = 〈k1‖P J ‖k2〉. (D8)

The spectrum of nuclear excitations in the external field P

with the multipolarity J is therefore determined by the strength
function

SJ (E) = − 1

π
lim

�→+0
Im�J (E + i�), (D9)

expressed through the polarizability �J (ω)

�J (ω) = �(e)J (ω) ± (4π )2

2J + 1

∑
LSm

( − 1)S

×
∫ ∞

0

dqq2

(2π )3 δρ
(e)Jm
LS (q; ω)

g2
m

q2 + m2
m

δρJm
LS (q; ω),

(D10)

where

�(e)J (ω) =
∑

(k1k2k3k4)

P J
(k1k2)R

(e)J
(k1k4,k2k3)(ω)P J

(k3k4). (D11)

Thus, one can see that it is convenient to solve our problem
as well as the RRPA problem in the momentum space, since the
rank of vectors and matrices entering Eq. (D3) is determined
by the number of mesh points in q space and the number of
meson channels. In particular, it does not depend on the mass
number of the nucleus. In realistic calculations, the rank of
Eq. (D3) in the momentum space is around 500, and obviously
the numerical effort does not depend considerably on the total
dimension of p-h and α-h subspaces. However, if one stays
in the Dirac basis, the latter dimension is exactly the rank of
arrays in Eq. (D1). One should keep in mind that in practice,
both subspaces are truncated at some energy differences εph

and εαh which are large enough so that a further increase of
these values does not influence the results. In light nuclei with
relatively small level density, the total dimension of p-h and
α-h subspaces is comparable and could be even smaller than
the rank of Eq. (D3); therefore, working in the Dirac basis is
more preferable. For heavy nuclei, the Dirac basis becomes
huge, so using the momentum space is more justified.

However, even if one considers Eq. (D3) in the momentum
representation, Eq. (D6) for the correlated propagator, nev-
ertheless, has to be solved in the Dirac basis. This equation
contains the particle-phonon coupling amplitude �J with the
following matrix elements coupled to angular momentum J :

�J
(ph′,hp′)(ω) =

∑
µ

[
δ(pp′)

δκh′ κh

2jh + 1

∑
h′′

γ
µ

(h′′h)γ
µ∗
(h′′h′)

ω − εp + εh′′ − 	µ

+ δ(hh′)
δκp′ κp

2jp + 1

(∑
p′′

γ
µ

(pp′′)γ
µ∗
(p′p′′)

ω − εp′′ + εh − 	µ

+
∑
α′′

γ
µ

(pα′′)γ
µ∗
(p′α′′)

ω − εα′′ + εh − 	µ

)
+ ( − 1)J+Jµ

×

 jp jh J

jh′ jp′ Jµ



(

( − 1)jp′−jhγ
µ

(pp′)γ
µ∗
(hh′)

ω − εp′ + εh − 	µ

+ ( − 1)jp−jh′ γ
µ∗
(p′p)γ

µ

(h′h)

ω − εp + εh′ − 	µ

)]
, (D12)

where κk denotes the relativistic quantum number set: κk =
(2jk+1)(lk−jk), and γ

µ

(k1k2) = 〈k1‖γ µ‖k2〉 denotes the reduced
matrix element of the particle-phonon coupling amplitude. The
backward-going components are found through the symmetry
relations

�J
(hp′,ph′)(ω) = ( − 1)jh+jp+jh′ +jp′ �J

(p′h,h′p)( − ω). (D13)

But this problem is too expensive numerically to be solved
in the full Dirac basis. Because of the pole structure of the
� amplitude, it is natural to suggest that the particle-phonon
coupling effect is not quantitatively important far from the
Fermi surface. So, in the numerical calculations, an energy
window εwin was implied around the Fermi surface with
respect to p-h energy differences εph so that the summation in
Eq. (D6) is performed only among the p-h pairs with εph �
εwin. Consequently, the correlated propagator differs from
the mean-field propagator only within this window. This
approximation has been investigated numerically by direct
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calculations with different values of εwin, as discussed in
Sec. III. It is important to emphasize that many p-h and α-h
configurations outside the window are taken into account on

the RRPA level, which is necessary in order to obtain the
reasonable centroid positions of giant resonances as well as to
find the dipole spurious state close to zero energy.
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