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Scattering of Dirac particles from nonlocal separable potentials: The eigenchannel approach
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An application of the new formulation of the eigenchannel method [R. Szmytkowski, Ann. Phys. (N.Y.) 311,
503 (2004)] to quantum scattering of Dirac particles from nonlocal separable potentials is presented. Eigenchannel
vectors, related directly to eigenchannels, are defined as eigenvectors of a certain weighted eigenvalue problem.
Moreover, negative cotangents of eigenphase-shifts are introduced as eigenvalues of that spectral problem.
Eigenchannel spinor as well as bispinor harmonics are expressed throughout the eigenchannel vectors. Finally,
the expressions for the bispinor as well as matrix scattering amplitudes and total cross section are derived in
terms of eigenchannels and eigenphase-shifts. An illustrative example is also provided.
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I. INTRODUCTION

Recently, Szmytkowski [1] proposed a new formulation
of the eigenchannel method for quantum scattering from
Hermitian short-range potentials, different from that presented
by Danos and Greiner [2]. Some ideas leading to this method
were drawn from works on electromagnetism theory by
Garbacz [3] and Harrington and Mautz [4]. This method
was further extended to the case of zero-range potentials for
Schrödinger particles by Szmytkowski and Gruchowski [5]
and then for Dirac particles by Szmytkowski [6] (see also
Ref. [7]).

On the other hand, it is a well-known fact that separable
potentials, because they provide analytical solutions to the
Lippmann-Schwinger equations [8], have found applications
in many branches of physics, both in the nonrelativistic
and the relativistic cases [9]. (It should be noted that much
larger effort has been devoted to the separable potentials
in the nonrelativistic regime.) Especially, their utility has
been confirmed in nuclear physics by their successful use
in describing nucleon-nucleon interactions [10]. Moreover,
methods allowing one to approximate an arbitrary nonlocal
potential by a separable one are known [11].

In view of what has been said above, it seems interesting to
pose the question how does the new method apply to quantum
scattering from nonlocal separable potentials? Partially, the
answer has been given by the author by applying the method
to quantum scattering of Schrödinger particles from separable
potentials [12]. In the present contribution, we extend consid-
erations from Ref. [12] to the case of Dirac particles.

This article is organized as follows. In Sec. II some
facts and notions from the theory of potential scattering
of Dirac particles (see Ref. [13]) are provided. In Sec. III
we concentrate on the special class of nonlocal potentials,
namely, separable potentials. In this context, expressions
for the bispinor as well as matrix scattering amplitudes are
provided. Section IV contains main ideas and results. Here, I
define eigenchannel vectors, directly related to eigenchannels,
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as solutions to a certain weighted eigenproblem. Moreover,
I introduce eigenphase-shifts, relating them to eigenvalues of
this spectral problem. Within this approach, I also calculate
expressions for the scattering amplitude and the average total
cross section. In Sec. V, scattering from a rank one δ-like
separable potential is discussed as an illustrative example. The
article ends with two appendices.

II. QUANTUM SCATTERING OF DIRAC PARTICLES
FROM NONLOCAL POTENTIALS

Let us assume that a free Dirac particle of energy E (with
|E| > mc2) described by the following monochromatic plane
wave

φi(r) ≡ 〈r|kiχi〉 = Ui(ki)e
iki ·r, (2.1)

where

Ui(ki) = 1√
1 + ε2

(
χi

εσ · k̂i χi

)
, (2.2)

ε =
√

E − mc2

E + mc2
(2.3)

is being scattered from a nonlocal potential given by a kernel
V(r, r′), which in general may be a 4 × 4 matrix. In the
above equation, χi stands for a normalized pure spin- 1

2 state
belonging to C

2. Orientation of the spin in R
3 will be denoted

by νi and is related to χi by νi = χ
†
i σχi , where σ is a vector

consisting of the standard Pauli matrices, i.e.,

σ =
[(

0 1
1 0

)
,

(
0 −i

i 0

)
,

(
1 0
0 −1

)]
. (2.4)

Moreover, pi = h̄ki is a momentum of the incident particle
and k denotes the Dirac wave number and is given by

k = sgn(E)

√
E2 − (mc2)2

c2h̄2 . (2.5)

Thereafter, we shall consider only Hermitian potentials, i.e.,
those with kernels obeying V(r, r′) = V†(r′, r).
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For this scattering process we may write the Lippmann-
Schwinger equation [8] of the form

ψ(r) = φi(r) −
∫

R3
d3r′

∫
R3

d3r′′G(E, r, r′)V(r′, r′′)ψ(r′′).

(2.6)

Function G(E, r, r′) appearing above is the relativistic free-
particle outgoing Green function given by

G(E, r, r′) = 1

4πc2h̄2 (−ich̄α · ∇ + βmc2 + E14)
eik|r−r′|

|r − r′| ,
(2.7)

and formally is a kernel of the relativistic outgoing Green
operator defined as

Ĝ(E) = lim
ε↓0

[Ĥ0 − E − iε]−1, (2.8)

with Ĥ0 = −ich̄α · ∇ + βmc2 being a Dirac free–particle
Hamiltonian. Here

α =
(

0 σ

σ 0

)
, β =

(
12 0
0 −12

)
, 12 =

(
1 0
0 1

)
, (2.9)

and 14 = 12 ⊗ 12. It is worth noticing that within the relativis-
tic regime the Green function (2.7) is a 4 × 4 matrix.

For purposes of further analysis, it is useful to introduce the
projector

P(k) = ch̄α · k + βmc2 + E14

2E
, (2.10)

which, as one can immediately infer, may be decomposed in
the following way,

P(k) = 	+(k)	†
+(k) + 	−(k)	†

−(k)

= 1

1 + ε2

(
12 εσ · k̂

εσ · k̂ ε212,

)
, (2.11)

with 	±(k) being defined as

	±(k) = 1√
1 + ε2

(
θ±

εσ · k̂ θ±

)
. (2.12)

Spinors θ± constitute an arbitrary orthonormal basis in C
2, i.e.,

θ
†
s θt = δst (s, t = −,+) and

∑+
s=− θsθ

†
s = 12. What is impor-

tant for further considerations, the matrix (2.10) possesses the
obvious property that P(k)	±(k) = 	±(k) and therefore

P(ki)Ui(ki) = Ui(ki). (2.13)

We shall be exploiting this property in later analysis.
Considering scattering processes we usually tend to find

expressions for a scattering amplitude and various cross
sections. To this aim we need to find an asymptotic behavior of
the relativistic outgoing Green function. From Eq. (2.7), using
the projector (2.10), we have

G(E, r, r′)
r→∞∼ E

2πc2h̄2 P(kf )
eikr

r
e−ikf ·r′

, (2.14)

where kf = kr/r is a wave vector of the scattered particle.
Notice that, due to the fact that we deal with elastic processes,

|ki | = |kf | = k. After application of Eq. (2.14) to Eq. (2.6),
we obtain

ψ(r)
r→∞∼ asymp

r→∞
φi(r) + Af i

eikr

r
, (2.15)

where Af i is the bispinor scattering amplitude and is defined
through the relation

Af i = − E

2πc2h̄2 P(kf )
∫

R3
d3r′

×
∫

R3
d3r′′ e−ikf ·r′

V(r′, r′′)ψ(r′′) (2.16)

and, in general, is of the form

Af i = 1√
1 + ε2

(
χf

εσ · k̂f χf

)
. (2.17)

Here χf is a spinor transformed from the initial spinor χi by the
scattering process. Vector νf = (χ †

f σχf )/(χ †
f χf ) responds

for an orientation of the spin of the scattered particle. Therefore
let us assume that there exists a matrix such that χf = �f iχi .
Then it is easy to verify that the bispinor scattering amplitude
may be written in the form

Af i = Af iUi(ki), (2.18)

where the matrix Af i is related to �f i by

Af i = 1

1 + ε2

(
�f i ε�f iσ · k̂i

εσ · k̂f �f i ε2σ · k̂f �f iσ · k̂i

)
. (2.19)

Henceforth matrices Af i and �f i will be called the matrix
scattering amplitudes. The differential cross section for scat-
tering from the direction ki and the spin arrangement νi onto
kf and νf is defined as

dσ

d�f

= χ
†
f χf = χ

†
i �

†
f i�f iχi, (2.20)

Subsequently, after integration of the above over all the
directions of kf , we arrive at the total cross section

σ (ki , νi) =
∮

4π

d2k̂f χ
†
f χf . (2.21)

Finally, averaging over all directions of incidence k̂i and the
initial spin orientation ν̂i , one finds the average total cross
section

σt (E) = 1

(4π )2

∮
4π

d2k̂i

∮
4π

d2ν̂i

∮
4π

d2k̂f χ
†
f χf . (2.22)

Obviously all the mentioned cross sections may be expressed
in terms of all the scattering amplitudes Af i,Af i , and �f i .

III. SPECIAL CLASS OF NONLOCAL SEPARABLE
POTENTIALS

In this section we employ the above considerations to the
special class of nonlocal separable potentials. As previously
mentioned, such a class of potentials allows us to find solutions
to the Lippmann-Schwinger equations in an analytical way.
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Consider the following class of potential kernels:

V(r, r′) =
∑

µ

ωµuµ(r)u†
µ(r′), (3.1)

where it is assumed that in general µ may denote the
arbitrary finite set of indices, i.e., µ = {µ1, . . . , µk} and all
the coefficients ωµ different from zero. Functions uµ(r) are
assumed to be four-element columns.

Substitution of Eq. (3.1) to Eq. (2.6) leads us to the
Lippmann-Schwinger equation for the separable potentials

ψ(r) = φi(r) −
∑

µ

ωµ

∫
R3

d3r′ G(E, r, r′)uµ(r′)

×
∫

R3
d3r′′ u†

µ(r′′)ψ(r′′), (3.2)

which may be equivalently rewritten as a set of linear algebraic
equations. Indeed, using the Dirac notation one finds∑

µ

[δνµ + 〈uν |Ĝ(E)|uµ〉ωµ]〈uµ|ψ〉 = 〈uν |φi〉. (3.3)

For further convenience we introduce the notations

〈u|ϕ〉 =




〈u1|ϕ〉
〈u2|ϕ〉

...


 ,

(3.4)
〈ϕ|u〉 = 〈u|ϕ〉† = (〈ϕ|u1〉〈ϕ|u2〉 . . .) .

Consequently, we may rewrite Eq. (3.3) as a matrix equation
(1 + G�)〈u|ψ〉 = 〈u|φi〉 or equivalently as

〈u|ψ〉 = (1 + G�)−1〈u|φi〉, (3.5)

with G being a matrix composed of the elements
〈uν |Ĝ(E)|uµ〉 and � = diag[ωµ]. Similarly, substituting
Eq. (3.1) to Eq. (2.16) and again using Eq. (2.10), we arrive at
the bispinor scattering amplitude for the separable potentials
in the form

Af i = −E

2πc2h̄2 P(kf )
∑

µ

ωµ

∫
R3

d3r e−ikf ·ruµ(r)

×
∫

R3
d3r′ u†

µ(r′)ψ(r′), (3.6)

which, by virtue of Eqs. (2.11) and (3.5), reduces to

Af i = −E

2πc2h̄2

+∑
s=−

	s(kf )〈kf θs |u〉� (
1 + G�

)−1 〈u|φi〉

(3.7)

and, utilizing the fact that for all invertible matrices X and Y
the relation (XY)−1 = Y−1X−1 is satisfied, finally to

Af i = −E

2πc2h̄2

+∑
s=−

	s(kf )〈kf θs |u〉 (
�−1 + G

)−1 〈u|φi〉.

(3.8)

Subsequently, using Eq. (2.13), we obtain the bispinor scatter-
ing amplitude in the following form

Af i = −E

2πc2h̄2

+∑
s,t=−

	s(kf )〈kf θs |u〉

× (�−1 + G)−1〈u|kiθt 〉	†
t (ki)Ui(ki), (3.9)

which, after comparison with Eq. (2.18), gives the formula for
the 4 × 4 matrix scattering amplitude:

Af i = −E

2πc2h̄2

+∑
s,t=−

	s(kf )〈kf θs |u〉

× (�−1 + G)−1〈u|kiθt 〉	†
t (ki), (3.10)

and finally, after straightforward movements, for the 2 × 2
matrix scattering amplitude as

�f i = −E

2πc2h̄2

+∑
s,t=−

θs〈kf θs |u〉 (
�−1 + G

)−1 〈u|kiθt 〉θ †
t .

(3.11)

IV. THE EIGENCHANNEL METHOD

Now we are in position to apply the eigenchannel method
proposed recently by Szmytkowski [1] to scattering of the
Dirac particles from potentials of the form of Eq. (3.1). As we
see below, such a class of potentials allows us to formulate this
method in a simplified algebraic form.

We start from the decomposition of the matrix �−1 + GD

into its Hermitian and non-Hermitian parts, i.e.,

�−1 + G = A + iB, (4.1)

where matrices A and B are defined through relations

A = �−1 + 1

2

(
G + G†) , B = 1

2i

(
G − G†) . (4.2)

It is evident from these definitions that both matrices A and B
are Hermitian. Moreover, utilizing the fact that

∇ eik|�|

|�| =
(

ikeik|�|

|�| − eik|�|

|�|2
)

, (4.3)

where � = r − r′, the straightforward calculations lead us to
their matrix elements of the form

Aνµ = ω−1
ν δνµ − k

4πc2h̄2

∫
R3

d3r
∫

R3
d3r′u†

ν(r)

×
[
ich̄kα · �

|�|y1(k|�|) + (βmc2 + E)y0(k|�|)
]
uµ(r′)

(4.4)

and

Bνµ = k

4πc2h̄2

∫
R3

d3r
∫

R3
d3r′u†

ν(r)

×
[
ich̄kα · �

|�|j1(k|�|) + (βmc2 + E)j0(k|�|)
]
uµ(r′),

(4.5)
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where j0(z), j1(z), y0(z), and y1(z) are, respectively, the Bessel
and Neumann spherical functions [14]. Recall that in general
j0(z) = (sin z)/z, y0(z) = (cos z)/z and

j1(z) = −cos z

z
+ sin z

z2
, y1(z) = − sin z

z
− cos z

z2
. (4.6)

The main idea of the present article, adopted from Ref. [1], is
to construct the following weighted spectral problem:

AXγ (E) = λγ (E)BXγ (E), (4.7)

where Xγ (E) and λγ (E) are, respectively, an eigenvector
and an eigenvalue. Hereafter the eigenvectors {Xγ (E)} are
called eigenchannel vectors. They are directly related to the
eigenchannels defined in Ref. [1] as state vectors. In fact,
they constitute a projection of eigenchannels onto subspace
spanned by uµ(r).

Using the facts that matrices A and B are Hermitian and,
as it is proven in Appendix A, that the matrix B is positive
semidefinite, one finds that the eigenvalues {λγ (E)} are real,
i.e., λ∗

γ (E) = λγ (E). Moreover, the eigenchannels associated
with different eigenvalues obey the orthogonality relation

X
†
γ ′(E)BXγ (E) = 0 (λγ ′(E) �= λγ (E)). (4.8)

In case of degeneration of some eigenvalues one may al-
ways choose the corresponding eigenvectors to be orthog-
onal according to the above relation. Then, imposing the
normalization X†

γ (E)BXγ (E) = 1, one obtains the following
orthonormality relation:

X
†
γ ′(E)BXγ (E) = δγ ′γ . (4.9)

From Eqs. (4.7) and (4.9) one infers that the eigenvalues
{λγ (E)} may be related to the matrix A as

λγ (E) = X†
γ (E)AXγ (E). (4.10)

Similar reasoning may be carried out employing the matrices A
and �−1 + G. Indeed, after algebraic manipulations we arrive
at

X
†
γ ′(E)AXγ (E) = λγ (E)δγ ′γ ,

(4.11)
X

†
γ ′(E)(�−1 + G)Xγ (E) = [i + λγ (E)]δγ ′γ ,

and λγ (E) = X†
γ (E)(�−1 + G)Xγ (E) − i. Because the eigen-

channels {Xγ (E)} are the solutions of the Hermitian eigenvalue
problem, they may satisfy the following closure relations,∑

γ

Xγ (E)X†
γ (E)B = 1,

(4.12)∑
γ

λ−1
γ (E)Xγ (E)X†

γ (E)A = 1,

and ∑
γ

1

i + λγ (E)
Xγ (E)X†

γ (E)(�−1 + G) = 1, (4.13)

where 1 is an identity matrix, which dimension depends on the
dimension of the matrix G. For purposes of further analyzes
the above closure relations are assumed to hold. Below, we

employ the above reasoning to the derivation of the scattering
amplitudes. From Eq. (4.13) one deduces that

(�−1 + G)−1 =
∑

γ

1

i + λγ (E)
Xγ (E)X†

γ (E). (4.14)

After substitution of Eq. (4.14) to Eq. (3.10) and rearranging
terms, we have

Af i = −E

2πc2h̄2

∑
γ

1

i + λγ (E)

+∑
s=−

	s(kf )〈kf θs |u〉Xγ (E)

×
+∑

t=−
X†

γ (E)〈u|kiθt 〉	†
t (ki). (4.15)

Let us define the following angular functions,

Yγ (k) =
√

Ek

8π2c2h̄2

+∑
s=−

	s(k)〈kθs |u〉Xγ (E), (4.16)

hereafter termed the eigenchannel bispinor harmonics. The
functions {Yγ (k)} are orthonormal on the unit sphere (for
proof, see Appendix B), i.e.,∮

4π

d2k̂Y†
γ ′(k)Yγ (k) = δγ ′γ . (4.17)

Application of Eq. (4.16) to Eq. (4.15) yields

Af i = 4π

k

∑
γ

eiδγ (E) sin δγ (E)Yγ (kf )Y†
γ (ki), (4.18)

where {δγ (E)} are called eigenphase-shifts and are related to
{λγ (E)} according to

λγ (E) = − cot δγ (E). (4.19)

Similar considerations may be carried out for the 2 × 2 matrix
scattering amplitude �f i . Indeed, in virtue of Eq. (2.19) we
may rewrite Eq. (3.11) in the form

�f i = 4π

k

∑
γ

eiδγ (E) sin δγ (E)ϒγ (kf )ϒ†
γ (ki), (4.20)

where the angular functions {ϒγ (k)}, hereafter called eigen-
channel spinor harmonics, are defined as

ϒγ (k) =
√

Ek

8π2c2h̄2

+∑
s=−

θs〈kθs |u〉Xγ (E). (4.21)

Moreover, they are orthogonal on the unit sphere (for proof,
see Appendix B)∮

4π

d2k̂ ϒ
†
γ ′(k)ϒγ (k) = δγ ′γ , (4.22)

and, as one can verify, are related to the eigenchannel bispinor
harmonics {Yγ (k)} via the relation

Yγ (k) = 1√
1 + ε2

(
ϒγ (k)

εσ · k̂ϒγ (k)

)
. (4.23)

Now we are in position to compute scattering cross sections.
Substitution of Eq. (4.20) to Eq. (2.20) and integration over all
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directions of scattering k̂f , by virtue of Relation (4.22), yields

σ (ki , νi) = 16π2

k2

∑
γ

sin2 δγ (E)|χ †
i ϒγ (ki)|2. (4.24)

To compute the total cross section averaged over all arrange-
ments of spin of the incident particle, we have to notice that
the projector onto the pure state χi may be written as χiχ

†
i =

(1/2)[12 + νi · σ ], with |νi | = 1. Therefore, substituting of the
above to Eq. (4.24) and averaging over all directions of νi , we
arrive at

σ (ki) = 8π2

k2

∑
γ

sin2 δγ (E)ϒ†
γ (ki)ϒγ (ki). (4.25)

Finally, averaging the above scattering cross section over all
directions of incidence k̂i , again by virtue of Eq. (4.22), we
get the total cross section in the form

σt (E) = 2π

k2

∑
γ

sin2 δγ (E). (4.26)

It should be emphasized that all the above considerations
respecting scattering cross sections may be repeated using
the eigenchannel bispinor harmonics {Yγ (k)} instead of
the eigenchannel spinor harmonics {ϒγ (k)}. The significant
difference is that then the integrals over k̂f and k̂i need to be
calculated using Relation (4.17) instead of Eq. (4.22).

V. EXAMPLE

We conclude our considerations by providing here an
illustrative example concerning the scattering from a spherical
shell of radius R, centered at the origin of the coordinate
system. Because of the assumption of nonlocality of potentials
under consideration, we shall simulate this process by using a
potential of the form

V(r, r′) = ωv(r)v(r′)14, v(r) = 1√
4π

δ(r − R)

R2
, (5.1)

where ω �= 0. Notice that the potential defined above is the
special case of that proposed recently by de Prunelé [15] (see
also Ref. [16]). Scattering of the Dirac particles from δ-like
potentials was also studied, e.g., in Refs. [17,18]. However, in
these articles the authors considered only local potentials and
not nonlocal ones.

At the very beginning, we need to bring the Potential (5.1)
to the previously postulated form (3.1). To this aim, let e1

and e2 constitute a standard basis in C
2, i.e., e1 = (1 0)T and

e2 = (0 1)T . Moreover, let eij = ei ⊗ ej and then by virtue
of the fact that 14 = ∑2

i,j=1 eije†
ij , we may rewrite Eq. (5.1)

as

V(r, r′) = ω

2∑
i,j=1

uij (r)u†
ij (r), uij (r) = v(r)eij . (5.2)

Now, we are in position to compute the matrix G. Using
Eqs. (2.7) and (5.1), after straightforward integrations we have

G = ikj0(kR)h(+)
0 (kR)

(
η+12 0

0 η−12

)
, (5.3)

where η± = (E ± mc2)/c2h̄2 and h
(+)
0 (z) = j0(z) + iy0(z) is

the spherical Hankel function of the first kind. Hence, by the
definitions given in Eq. (4.2), we find that the explicit forms
of matrices A and B are

A =
(

[ω−1 − kj0(kR)y0(kR)η+]12 0
0 [ω−1 − kj0(kR)y0(kR)η−]12

)
(5.4)

and

B = kj 2
0 (kR)

(
η+12 0

0 η−12

)
. (5.5)

According to the method formulated in Sec. IV, we may
construct the following spectral problem

AXγ (E) = λγ (E)BXγ (E) (γ = 1, 2, 3, 4), (5.6)

which, as one can easily verify, has two different eigenvalues

λ±(E) = ω−1 − kj0(kR)y0(kR)η±
kj 2

0 (kR)η±
(5.7)

and respective eigenvectors

X
(1(2))
+ (E) = 1√

kη+j0(kR)
e1 ⊗ e1(2),

(5.8)

X
(1(2))
− (E) = 1√

kη−j0(kR)
e2 ⊗ e1(2).

Then, using Eq. (4.16) and by virtue of the fact that

〈kχ |u〉 =
√

4π

1 + ε2
j0(kR)

× (χ †e1 χ †e2 εχ †σ · k̂ e1 εχ †σ · k̂ e2),

(5.9)

we arrive at the four eigenchannel bispinor harmonics {Yγ (k)}
in the form

Y (1(2))
+ (k) = 1√

4π (1 + ε2)

(
e1(2)

εσ · k̂ e1(2)

)
(5.10)

and

Y (1(2))
− (k) = 1√

4π (1 + ε2)

(
εσ · k̂ e1(2)

e1(2)

)
. (5.11)

Then, by virtue of Eq. (4.21), one obtains the eigenchannel
spinor harmonics {ϒγ (k)} in the form

ϒ
(1(2))
+ (k) = 1√

4π
e1(2), ϒ

(1(2))
− (k) = 1√

4π
σ · k̂ e1(2).

(5.12)

The latter may be equivalently obtained by combining
Eqs. (4.23) and (5.12). Moreover, as one may easily verify,
functions given by Eqs. (5.10) and (5.12) are orthonormal,
respectively, in the sense of Eqs. (4.17) and (4.22).
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FIG. 1. Behavior of eigenphase-shifts δ+(E) (solid curve) and
δ−(E) (dashed curve) as functions of energy E (in units of mc2) for
ω = −h̄3/m2c and R = h̄/mc. The eigenphase-shift δ+(E) has been
constrained to the range [−π/2, π/2].

Before we find an expression for total cross section, we
compute the scattering amplitude. Because, as shown in Sec. II,
the bispinor and both matrix scattering amplitudes are mutually
related, we restrict our considerations to the 2 × 2 scattering
amplitude. Thus, combining Eqs. (4.20), (5.5), and (5.12) we
obtain

�f i = −j 2
0 (kR)

[
12

ikj0(kR)h(+)
0 (kR) + (ωη+)−1

+ (σ · k̂f )(σ · k̂i)

ikj0(kR)h(+)
0 (kR) + (ωη−)−1

]
. (5.13)

Finally, substitution of Eqs. (5.8) and (5.12) to Eq. (4.24) with
the aid of Eq. (4.19) yields

σ (ki , νi) = 4π

k2
j 4

0 (kR)

×
{

1

[(kωη+)−1 − j0(kR)y0(kR)]2 + j 4
0 (kR)

+ 1

[(kωη−)−1 − j0(kR)y0(kR)]2 + j 4
0 (kR)

}
.

(5.14)

Here it is evident that σ (ki , νi) = σ (ki) = σt (E).
To illustrate the obtained results, the eigenphase-shifts for

two different values of ω, derived from Eqs. (4.19) and (5.7),
are plotted in Figs. 1 and 2. Figures 3 and 4 present partial
σ±(E) as well as total σt (E) cross sections.

It seems interesting to investigate the behavior of both
eigenvalues λ±(E) in the nonrelativistic limit, i.e., when
c → ∞. From Eq. (2.5) one concludes that

η+
c→∞−−−→ 2m

h̄2 , η−
c→∞−−−→ 0, (5.15)

and therefore

λ+(E)
c→∞−−−→ (h̄2/2mω) − kj0(kR)y0(kR)

kj 2
0 (kR)

(5.16)

FIG. 2. Behavior of eigenphase-shifts δ+(E) (solid curve) and
δ−(E) (dashed curve) as functions of energy E (in units of mc2) for
ω = −5h̄3/m2c and R = h̄/mc. Both eigenphase-shifts have been
constrained to the range [−π/2, π/2].

FIG. 3. Partial σ+(E) (dashed curve), σ−(E) (dotted curve), and
total σt (E) (solid curve) cross sections (all in units of R2) as functions
of energy E (in units of mc2) for ω = −h̄3/m2c and R = h̄/mc.

FIG. 4. Partial σ+(E) (dashed curve), σ−(E) (dotted curve), and
total σt (E) (solid curve) cross sections (all in units of R2) as
functions of energy E (in units of mc2) for ω = −5h̄3/m2c and
R = h̄/mc.
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and

λ−(E)
c→∞−−−→ sgn(ω)∞. (5.17)

This means that δ−(E) → nπ (n ∈ Z) in the limit of c → ∞.
Therefore the cross section σ−(E) vanishes in the nonrelativis-
tic limit and in this sense it has a purely relativistic character
leading to the fact that the resonance appearing in Fig. 4 at
about 1.25 mc2 is purely relativistic effect.

One sees that in the nonrelativistic limit the cross
section (5.14) reduces to

σt (E)
c→∞−−−→ 4π

k2
j 4

0 (kR)

×
{

1

[(h̄2/2mkω) − j0(kR)y0(kR)]2 + j 4
0 (kR)

}
. (5.18)

The above cross section may also be obtained using nonrela-
tivistic formulation of the present method given in Ref. [12].

VI. CONCLUSIONS

In this work, an application of the recently proposed eigen-
channel method [1] to the scattering of Dirac particles from
nonlocal separable potentials has been presented. Application
of such a particular case of the nonlocal potentials reduces
naturally the general weighted eigenvalue problem stated in
Ref. [1] to its matrix counterpart given by Eq. (4.7) leading to
the definition of eigenchannel vectors. Using the notion of the
eigenchannel vectors the definitions of eigenchannel spinor
and bispinor harmonics have been given. The latter provide
us with the formulas for scattering amplitudes similar to those
well-known for central potentials, generalizing them at the
same time to the case of nonlocal separable potentials.

The general considerations have been extended with an
illustrative example in which the Dirac particles are scattered
from a nonlocal, δ-like potential. In this particular case,
the general eigenvalue problem (4.7) becomes just a 4 × 4
matrix equation and therefore is easily solvable (notice that
in the case of nonrelativistic scattering it would be just a
one-dimensional problem). The eigenvalues of this problem
are twofold degenerated and therefore give two different
eigenphase-shifts from which one has a purely relativistic
character in the sense that it tends to nπ (n ∈ Z) whenever
c → ∞, giving no contribution to total cross sections in the
nonrelativistic limit. One sees also that even such a simple
example of nonlocal potentials may lead to some resonances
(see Fig. 4).

The next step in our considerations will be to investigate
the applicability of the new formulation of the eigenchannel
method in the case of inelastic scattering from separable
potentials. Moreover it seems also interesting to investigate
the applicability of the method to the other, more complicated
examples of separable potentials.
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APPENDIX A: POSITIVE SEMIDEFINITENESS
OF THE MATRIX B

The proof follows the suggestions of Szmytkowski [19].
Positive semidefiniteness of the matrix B means that the
inequality

X†
γ (E)BXγ (E) � 0 (A1)

is satisfied. To prove the above statement let us notice that∮
4π

d2k̂ eik·�(ch̄α · k + βmc2 + E14) = 4π

×
[
ich̄kj1(k|�|)α · �

|�| + (βmc2 + E14)j0(k|�|)
]

,

(A2)

where � = r − r′. Then using Eq. (2.10), we may rewrite
Eq. (4.5) in the form

Bνµ = Ek

8π2c2h̄2

∮
4π

d2k̂
∫

R3
d3r eik·ru†

ν(r)P(k)

×
∫

R3
d3r′ e−ik·r′

uµ(r′), (A3)

which after application to Eq. (A1) yields

X†
γ (E)BXγ (E) = mk

8π2h̄2

∮
4π

d2k̂

×
∣∣∣∣∣
∣∣∣∣∣
∑

ν

X∗
γ ν(E)

∫
R3

d3r eik·ru†
ν(r)P(k)

∣∣∣∣∣
∣∣∣∣∣
2

� 0,

(A4)

finishing obviously the proof. Here Xγν(E) denotes the νth
element of the eigenchannel vector Xγ (E) and ||w|| =

√
w†w

for an arbitrary vector w.

APPENDIX B: ORTHONORMALITY OF THE ANGULAR
FUNCTIONS Yγ (k) AND ϒγ (k)

We begin with the proof for the functions Yγ (k). By
application of Eq. (4.16) to Eq. (4.17) with the aid of
Eq. (2.11) and the fact that P(k) is a projector, we can deduce
that ∮

4π

d2k̂Yγ ′† (k)Yγ (k)

= Ek

8π2c2h̄2

∑
νµ

X∗
γ ′ν(E)

[∫
R3

d3r
∫

R3
d3 r′u†

ν(r)

×
∮

4π

d2k̂ eik·(r−r′)P(k)uµ(r′)
]

Xγµ(E), (B1)

Comparison with Eq. (A3) shows that the square brackets in the
above equation contain the expression proportional to certain
elements of the matrix B. Therefore, we may rewrite Eq. (B1)
as ∮

4π

d2k̂Yγ ′† (k)Yγ (k) = X
†
γ ′ (E)BXγ (E). (B2)
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Finally, substitution of Eq. (4.9) to Eq. (B2) leads us directly
to Eq. (4.17), finishing the proof. To prove the orthonormality

relation for the functions {ϒγ (k)}, it suffices to combine
Eq. (4.23) with Eq. (B2).
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Phys. Rev. A 47, 4464 (1993); 48, 554 (1993); T. Radożycki
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