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photodisintegration

N. A. Khokhlov,1,* V. A. Knyr,1 and V. G. Neudatchin2

1Pacific National University, RU-680035 Khabarovsk, Russia
2Institute of Nuclear Physics, Moscow State University, RU-119899 Moscow, Russia

(Received 30 October 2006; revised manuscript received 3 April 2007; published 11 June 2007)

We review a concept of the Moscow potential of the NN interaction. On the basis of this concept, we derive by
quantum inversion optical partial potentials from the modern partial-wave analysis data and deuteron properties.
Point-form relativistic quantum mechanics is applied to the two-body deuteron photodisintegration. Calculations
of the cross-section angular distributions cover photon energies between 1.1 and 2.5 GeV. Good agreement
between our theory and recent experimental data confirms the concept of deep attractive Moscow potential with
forbidden S and P states.
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I. INTRODUCTION

Opportunities to observe manifestations of quark degrees
of freedom in nuclear reactions at intermediate energies have
attracted the attention of the scientific community for a long
time. It was noted in Ref. [1] that the most suitable subject
of research here is the deuteron, because it is the simplest
nucleus for which secondary rescattering has little effect on
the primary process.

The deuteron photodisintegration at photon energies of
�2 GeV generates great interest among experimentalists
[1–4] and theoreticians [5–9] with the main emphasis on the
properties of the NN system which are beyond the scope
of realistic mesonic NN potentials [6] and can be interpreted
within quark concepts [5,7]. First, it was shown in papers by the
Khar’kov group [6] that starting from mesonic potentials, it is
possible to explain the dγ → np data at energies Eγ > 1 GeV
only if the electromagnetic part of the theory is revised and
instead of the ordinary nucleon electromagnetic form factors
the essentially different ones are used with poles of third order.
Second, the phenomenological theory of Reggeon poles was
taken as the basis in Ref. [5] with the selection of dominant
poles according to the quark string model [10]. Free parameters
of these theories make it possible to describe the experimental
data reasonably well. Third, also giving reasonable results,
the hard rescattering model was developed [7] within a
semiempirical approach, when the photon is absorbed by a
quark of one of the nucleons and then the hard rescattering of
this quark by another nucleon takes place. The wave function
amplitude of the final np state with large relative momentum
is evaluated empirically by extrapolation of the corresponding
np-scattering experimental data.

In this paper, we use point-form (PF) relativistic quantum
mechanics (RQM) to treat the deuteron photodisintegration in
a Poincaré-invariant way. Modern development of the RQM
and an exhaustive bibliography are presented in the review by
Keister and Polyzou [11]. The PF is one of the three forms
proposed by Dirac [12]. The other two are the front form and
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instant form. These forms are associated with the different
possibilities for putting interactions in generators of the
Poincaré group. All the forms are unitary equivalent [13], but
each has certain advantages. Most of the calculations in nuclear
physics have been performed in the instant and front forms.
Only in recent years have important simplifying features of
the PF been realized. These features are connected with the
fact that in the PF all the generators of the homogeneous
Lorentz group are free of interactions. Thus only in the PF
does the spectator (impulse) approximation (SA) preserve its
spectator character in any reference frame [14,15]. For an
electromagnetic NN process, the SA implies that the NN

interaction does not affect the photon-nucleon interaction, and
therefore the sum of the one-particle electromagnetic current
operators may be taken as an electromagnetic current operator
for the system of interacting nucleons. It is supposed that the
SA may be valid when the process is quick due to the large
momentum transfer. General covariant PF expressions for
the electromagnetic current operator for composite systems are
given in Refs. [15,16]. The PF SA was applied to calculate form
factors of various composite particles [17–19] with reasonable
results. Our calculation of the proton-proton bremsstrahlung
[20] showed that the PF SA violates the continuity equation for
the NN current operator, but the violation is relatively small
for the considered kinematics.

In this paper, we show that recent deuteron photodisinte-
gration data at Eγ = 1.5–2.5 GeV [4] confirm the Moscow
NN potential model [21] characterized by deep attractive
partial potentials with forbidden S and P states. In this
study, the Moscow partial potentials are reconstructed from
the NN partial-wave analysis (PWA) data within the energy
range 0 � Elab � 3 GeV [22]. This reconstruction is based
on our approach to the inverse-scattering problem for optical
potentials [23].

The plan of the paper is as follows. In Sec. II, we
review a concept of the Moscow potential (MP) of the NN

interaction. In Sec. III, we present the optical Moscow-type
NN potential derived by quantum inversion [23] within the
relativistic quasipotential approach [11,24]. We show that the
modern PWA data of NN scattering [22] are compatible with
the concept of the MP. In Sec. IV, the formalism of PF
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RQM [11,15,20] is applied to the high-energy energy deuteron
photodisintegration. Results and future prospects are discussed
in Sec. V. In Appendix A, we give necessary details of the
calculation techniques. In Appendix B, in the PF SA we derive
an expression for the momentum QN transferred to the nucleon
and show that QN is not the same as the momentum transfer
seen by the deuteron. The expression is a generalization of a
similar expression for the elastic electron-deuteron scattering
[19].

II. POTENTIALS WITH FORBIDDEN STATES IN
NUCLEAR PHYSICS

In describing systems of composite X particles consisting of
some y particles, it is a common approach to exclude explicit
degrees of freedom of y particles. In the simplest case of
the XX system, the microscopic Hamiltonian that includes
all possible pair yy interactions is substituted by an effective
Hamiltonian (by sum of X particle kinetic energy terms and
of an effective XX potential). The common requirement is
that the effective Hamiltonian would give for the XX system
the same spectrum and the same corresponding relative motion
wave functions as the initial microscopic Hamiltonian. In some
cases, the effective Hamiltonian has redundant eigenvalues and
eigenstates, which must be disregarded. These eigenstates are
called forbidden states, and the effective XX potential is called
then “the potential with forbidden states.”

For instance, in the oscillator shell model of the potential
theory of α-α scattering [25], the antisymmetric wave function
of the 8Be nucleus ground state (eight-nucleon configuration
s4p4 and orbital permutation symmetry [f ]x = [44]) being
projected onto an α-α channel results in a 4S-wave relative
motion wave function (see our review [26]). This wave func-
tion accumulates all four oscillation quanta of the system and
has two nodes. Momentum distributions corresponding to such
wave functions were investigated in quasielastic knock-out of
α particles from p-shell nuclei by intermediate energy photons
[27]. The 0S and 2S states of α-α relative motion are forbidden
as far as they correspond to the lower s8 and s6p2 eight-nucleon
configurations, respectively, which are forbidden by the Pauli
principle. Based on these considerations, a concept of the deep
attractive α-α potential with 0S, 2S, and 2D forbidden bound
eigenstates was elaborated [25]. According to the concept,
there is no repulsive core in the α-α interaction, and α particles
can penetrate into each other. Forbidden bound eigenstates take
the lowest energy levels. Unforbidden eigenstates (including
scattering ones) being orthogonal to the forbidden eigenstates
have a nodal structure at short range. For instance, the S-wave
relative motion wave function has two nodes in the region
of α-α overlap. This model is substantiated by the phase
shift analysis based on the generalized Levinson theorem
(GLT) [28]. For example, the S-wave phase shift of α-α
scattering equals 360◦ at zero energy, rises up to 540◦ at the
energy slightly above the low-lying 4S resonance and then runs
down with increasing energy within the broad energy range
up to Elab � 200 MeV, where the phase shift approaches the
asymptotic region of small values and becomes negative due
to absorption [29]. Such a picture of the S-wave phase shift

behavior was confirmed by experiments performed in a broad
energy range [30], while D-wave phase shift behavior shows
one forbidden state. Phase shifts of higher waves do not show
forbidden states (see Ref. [29] for further details).

For the NN system, the concept of the deep attractive NN

potential with forbidden states appeared in 1975 [21] when
we analyzed the pp-scattering phase shift data extended at
the time up to Elab

∼= 6 GeV. It was shown that the singlet
S-wave phase shift data with an extended gap between low-
and high-energy groups of data could be interpolated by a
smooth curve if the empirical low-energy group were raised
180◦. This interpolation demonstrates a decrease of the S-wave
phase shift in the broad energy range from zero up to Elab >∼
5 GeV as a manifestation of the GLT. The high-energy part
(Elab � 3–6 GeV) of the interpolation for the S wave remains
in the asymptotic region of small values, corresponding to the
Born approximation. The energy dependence of the singlet
D-wave phase shift is smooth, and there is no need to raise
the initial values. Calculation showed [21] that results of this
analysis are described by a deep attractive NN potential with
one forbidden bound S-wave state. The forbidden state has
a wave function without a node. As a result, the 1S0-wave
scattering wave function has a short-range nodal structure
instead of short-range suppression specific to a repulsive
core potential (RCP). After that, a preliminary attempt was
made within the concept of MP [31] to reconstruct NN

potentials for the lowest partial waves (S and P ) from data
of the pp and pn PWA extended at the time to intermediate
energies.

At the same time, the quark microscopic foundation of
the MP remains the principal problem. Unlike the nuclear
shell-model picture of the α-α interaction, the lowest quark
configuration s6 is not forbidden by the Pauli principle, and
the corresponding 0S-wave state of relative NN motion is not
forbidden either. Microscopic quark investigations of the last
two decades with various kinds of qq interactions have resulted
in the following short-range properties of the NN system [32].
There is a strong mixing of different six-quark configurations
in the overlap region of two nucleons. For the S-wave states,
the leading configurations are s6 and s4p2 with comparable
weights and destructive interference. This destructive interfer-
ence leads to strong short-range suppression of the NN wave
function. The suppression is described effectively by an RCP
[33]. The s4p2[42]x configuration introduced in our papers
[21] and corresponding to the 2S state of relative NN motion
(i.e., to the MP) would dominate, for instance, in the case
of strong instanton-induced quark-quark interaction, but this
interaction is not strong enough [34]. Further investigations
[35,36] showed the existence of a source for strengthening
the s4p2 configuration. Namely, if coupling of the NN,��,
and hidden color CC channels is taken into account within
the resonating group method, then the symmetry structure
of the highly dominant six-quark configuration s4p2 implies
the existence of a node in the S-wave relative motion wave
function at short distances. Such nodes are specific to the MP.
In the same manner, microscopic qq interaction may give a
short-range node in a P wave of a relative NN motion wave
function (in the case of the dominant six-quark configuration
s3p3[33]x).
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In summary, the question of which type of the potential
(MP or RCP) would be equivalent to the short-range quark
microscopic picture of the NN interaction is highly controver-
sial. For any RCP, a phase equivalent supersymmetric partner
with forbidden states (i.e., an MP) may be constructed [37].
Therefore, these potentials are indistinguishable for the NN

PWA. Specific to the MP, the appearance of short-range nodes
in S- and P -wave relative motion wave functions is a result of
complicated six-quark dynamics which is yet to be clarified.
The nodal behavior of the MP wave function means that the
wave function is not suppressed at short range as in case of
an RCP. Thus the MP produces a high-momentum component
richer than an RCP. This high-momentum component may
be seen in electromagnetic reactions with two nucleons.
Reference [38] showed that the available MP produces a
too rich high-momentum component in contradiction with
the deuteron electromagnetic form factors. Thus we use the
latest high-energy PWA data to refine the short-range part
of the MP. In our previous papers [20,39], we showed that
the hard pp → ppγ bremsstrahlung at moderate energies
(Elab � 500 MeV) is critical to the kind of potential (MP
versus RCP). The available experimental data at smaller
energy of Elab = 280 MeV [40] give only a preliminary
indication of MP validity [20]. Our present paper strengthens
this line of phenomenological research using modern deuteron
photodisintegration data.

III. RELATIVISTIC OPTICAL N N POTENTIAL

We apply the method of inversion [23] to the analysis of NN

data up to energies at which relativistic effects are essential.
We take into account these effects in the frames of the RQM
[11,15]. A system of two particles is described by the wave
function, which is an eigenfunction of the mass operator M̂ .
In this case, we may represent this wave function as a product
of the external and internal wave functions. The internal wave
function |χ〉 is also an eigenfunction of the mass operator, and
for a system of two nucleons with masses m1 = m2 = m it
satisfies the equation

M̂|χ〉 ≡ [2
√

q2 + m2 + Vint]|χ〉 = M|χ〉, (1)

where Vint is an operator commuting with the full angular
momentum operator and acting only through internal variables
(spins and relative momentum), q is a momentum operator
of one of the particles in the center-of-mass frame (relative
momentum). Rearrangement of Eq. (1) gives

[q2 + mV ]χ = q2χ, (2)

where V acts like Vint only through internal variables, and

q2 = M2

4
− 2m2. (3)

Equation (2) is identical in form to the Schrödinger equation.
The formally same equation may be deduced as a truncation
of the quantum field dynamics [24]. The quasicoordinate
representation corresponds to the realization q = −i ∂

∂r , V =
V (r).

We applied the method of inversion [23] to reconstruction
of the nucleon-nucleon partial potentials

V (r) = (1 + iα)V (0)(r), (4)

for single waves, and

V (r) =
(

(1 + iα1)V (0)
1 (r) (1 + iα3)V (0)

T (r)

(1 + iα3)V (0)
T (r) (1 + iα2)V (0)

2 (r)

)
, (5)

for coupled waves, where V (0)(r) are energy-independent
real, and inelasticity parameters α depend on energy. As
input data for the reconstruction, we used modern PWA data
(single-energy solutions) up to 1200 MeV for isoscalar states
and up to 3 GeV for isovector states of the NN system [22].
The deuteron properties were taken from Ref. [41]. These
data allow us to construct Moscow-type NN partial potentials
sustaining forbidden bound states. These potentials describe
part of the deuteron properties and the PWA data by the
construction. According to the MP concept and the GLT,
some phase shift data of Ref. [22] are raised 180◦. Namely, the
1S0-wave phase shift and all four 2S+1PJ -wave phase shifts are
equal to 180◦ at zero energy; the 3S1-wave phase shift is equal
to 360◦ at zero energy. The mixing parameters ε1 and ε2 of the
MP differ in sign from those of a traditional RCP. All phase
shifts for higher waves (for L � 2) are “small,” they have zero
values at zero energy. According to our model, we have fitted
free parameters of the inversion solutions to get nodes at r �
0.5 fm in S and P waves and to make central parts of the
potentials close to each other and to the Gaussian shape. The
energies of forbidden states are in the range 300–750 MeV.

Our calculations show that the final state interaction (FSI)
in the S and P waves gives by far the largest contribution to
the deuteron photodisintegration cross section compared with
the FSI in other waves, so we present results of inversion only
for these waves and for waves coupled to them. Some of the
results presented in Figs. 1–4 (for 1S0 and 3SD1 waves) we
presented earlier in Ref. [23].

The reconstructed potentials V (0)(r) are displayed in
Fig. 1. The inelasticity multipliers α are displayed in
Fig. 2. Figure 3 displays the reproduction of the corresponding

FIG. 1. Reconstructed partial potentials for lower orbital momen-
tum (single and coupled channels).
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FIG. 2. Reconstructed inelasticity multipliers α for the potentials
presented in Fig. 1.

phase shifts and mixing parameters. In Fig. 4, the description of
inelasticity parameters is shown. All the P -wave phase shifts
are positive according to the GLT. The large difference between
3P0-wave and 3P2-wave phase shift curves reflects a large
spin-orbital interaction which is attractive for the 3P2 wave as
we see. These features correspond to the general properties of
the MP (its large positive gradient in the region r < 1 fm). It is
interesting to learn from Fig. 3 that among the four lowest pp

phase shifts, three of them (1S0,
3 P0, and 3P2) correspond to

the MP, but the experimental data within the energy range
Elab = 2–3 GeV are contradictory for the 3P1-wave phase
shift. It would be important to refine the PWA data in this
range using modern polarization data on pp scattering. The S-
and D-state wave functions of deuteron are displayed in Fig. 5.
There is a node in the S-wave function at r � 0.5 fm, and both
wave functions are not suppressed at short range in contrast
with wave functions produced by an RCP. For continuum S-
and P -wave functions, the node radii equal 0.5–0.9 fm at the
considered energies. All potentials and inelasticity multipliers
(α’s) can be accessed via a link to the web site [42].

It should be pointed out that in nuclear matter calculations,
the NN potentials should be used in the form

V nucl(r) = V (0)(r) + λ〈χS,L,J |, (6)

where operator 〈χS,L,J | projects onto the forbidden state
|χS,L,J 〉, positive constant λ tends to infinity. The forbidden
state |χS,L,J 〉 may be found from Eq. (2) by some numerical
method as a bound state of the partial potential V (0)(r) (all
bound states are forbidden except the deuteron one). Constant
λ is a large number, such that its further increase does not
change the calculation results. This procedure orthogonalizes
the nuclear wave function to forbidden two-nucleon states.
Thus, we exclude the unphysical collapse of nuclear matter.

IV. DEUTERON PHOTODISINTEGRATION IN
POINT-FORM RELATIVISTIC QUANTUM

MECHANICS

Formalism of the PF is considered in detail in
Refs. [11,15], while general covariant PF expressions for the
electromagnetic current operator for composite systems are
given in Refs. [15,16]. Therefore, we give only the results
necessary for our calculation, in the notation of Ref. [15].
We use the algorithm of Ref. [15] to calculate the matrix
elements of the electromagnetic current operator. We applied
this formalism to the ppγ process [20]. A similar approach
was applied to the elastic electron-deuteron scattering [19].

We consider the pn system and neglect the difference
of neutron and proton masses (m1 = m2 = m). Let pi be
the four-momentum of nucleon i, P ≡ (P 0, P) = p1 + p2 the
system four-momentum, M the system mass, and G = P/M

the system four-velocity. The wave function of two particles
with four-momentum P is expressed through a tensor product
of external and internal parts

|P, χ〉 = U12|P 〉 ⊗ |χ〉, (7)

where the internal wave function |χ〉 satisfies Eqs. (1) and (2).
The operator

U12 = U12(G, q) =
2∏

i=1

D[si ; α(pi/m)−1α(G)α(qi/m)] (8)

is the unitary operator from the “internal” Hilbert space to
the Hilbert representation space of two-particle states [15].
D[s; u] is the representation operator of the group SU(2)
corresponding to the element u ∈ SU(2) for the representation
with the generators s. Action of D[s; u] and matrices α are
defined in Appendix A; si = 1/2 is the spin of a nucleon. The
momenta of the particles in their c.m. frame are

qi = L[α(G)]−1pi, (9)

where L[α(G)] is the Lorentz transformation to the frame
moving with four-velocity G (L[α(G)]−1 is the inverse
transformation). It is easy to verify that q1 = −q2.

The external part of the wave function is defined as

〈G|P ′〉 ≡ 2

M ′ G
′0δ3(G − G′), (10)

with scalar product

〈P ′′|P ′〉 =
∫

d3G
2G0

〈P ′′|G〉〈G|P ′〉

= 2
√

M ′2 + P′2 δ3(P′′ − P′), (11)

where G0(G) ≡ √
1 + G2. The internal part of the wave

function |χ〉 is characterized by momentum q = q1 = −q2

of one of the particles in the c.m. frame. Interaction appears
according to the Bakamjian-Thomas procedure P̂ = ĜM̂ ,
where M̂ is the sum of the free mass operator M and the
interaction V ; i.e., M̂ = M + Vint [compare with Eq. (1)].
The interaction operator acts only through internal variables.
Operators M̂,M, Vint. and V commute with spin operator S

(full angular momentum) and with four-velocity operator Ĝ.
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FIG. 3. Phase shifts and mixing parameters in
the present optical model. PWA data are from Ref.
[22]. For 1S0 and 2S+1PJ waves, the original data
set from Ref. [22] is raised 180◦. To leave the S

matrix unchanged, we changed the sign of mixing
parameters ε1 and ε2.
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FIG. 4. Inelasticity parameters ρ in the
present optical model. PWA data are from
Ref. [22].

The interaction term is present in all components of total four-
momentum. Generators of Lorentz boosts and generators of
rotations are free of interaction. In the c.m. frame, the relative
orbital angular momentum and spins are coupled together
as in the nonrelativistic case. Moreover, most nonrelativistic
scattering theory formal results are valid for our case of two
particles [11].

The deuteron wave function |Pi, χi〉 is normalized as

〈P ′
i , χi |P ′′

i , χi〉 = 2P 0′
i δ3(P′

i − P′′
i ). (12)

For one-particle wave functions normalized in the same
manner, the free two-particle states are normalized as

〈P ′, χ ′|P ′′, χ ′′〉 ≡ 〈p′
1|p′′

1〉〈p′
2|p′′

2〉δµ′
1µ

′′
1
δµ′

2µ
′′
2

= 4w(p′
1)w(p′

2)δ3(p′′
1 − p′

1)

× δ3(p′′
2 − p′

2)δµ′
1µ

′′
1
δµ′

2µ
′′
2

= 2W (P′)δ3(P′′ − P′)
2w2(q)

M(q)

× δ3(q′′ − q′)δµ′
1µ

′′
1
δµ′

2µ
′′
2

= 2W (P′)δ3(P′′ − P′)
M(q)

2
× δ3(q′′ − q′)δµ′

1µ
′′
1
δµ′

2µ
′′
2
, (13)

where w(p) ≡
√

m2 + p2,M(q) ≡ 2
√

m2 + q2,W (P) ≡√
M2 + P2, µi are spin projections in the c.m. frame.

Multiplier M(q)
2 is a relativistic invariant, therefore we may

normalize the internal part of the scattering state wave function
in the nonrelativistic manner

〈P ′, χ ′|P ′′, χ ′′〉n.r. = 2W (P′)δ3(P′′ − P′)δ3(q′′ − q′)δS ′S ′′δµ′µ′′ ,

(14)

where S and µ are full angular momentum and its projection
in the c.m. frame.

The differential cross section for the γ d → np process is
given by

dσ

d�
= qf

64π2M2
f kc

|Aif |2, (15)

where qf is the final asymptotic np relative momentum, kc is
the photon energy in the c.m. frame. The dγ → np amplitude
Aif is defined in the same manner as the ppγ amplitude used
in Ref. [20], that is,

(2π )4δ4(Pi + k − Pf )Aif =
√

4π

∫
d4x〈Pf , χf |

× εµĴ µ(x)|Pi, χi〉eikx, (16)

where Pi and Pf are initial and final four-momenta of the
NN system correspondingly, and εµ is the photon polarization
vector.

Following Ref. [15], we choose for calculation of the
invariant amplitude Aif a special frame defined by the
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FIG. 5. Deuteron S- and D-wave functions for present version of
the NN Moscow potential.

condition

Gi + Gf = 0, (17)

where Gi = Pi/Mi,Gf = Pf /Mf are four-velocities of ini-
tial and final NN c.m. frames, respectively (Gi and Gf are
their three-vector parts). The initial mass Mi is the deuteron
mass. The final mass Mf is the invariant mass of the final
NN system. These masses are different because of absorption
of a photon; therefore, the coordinate frame corresponding to
Eq. (17) is not equivalent to the Breit frame where Pi + Pf =
0. Masses Mi and Mf define also the corresponding wave
functions through Eqs. (3) and (2).

The matrix elements of the current operator Ĵ µ(x) appears
especially simple in the frame defined by Eq. (17):

〈Pf , χf |Ĵ µ(x)|Pi, χi〉 = 4π3/2
√

MiMf ei(Pf −Pi )x

×〈χf |ĵ µ(h)|χi〉n.r., (18)

where ĵ µ(h) is the current operator Ĵ (0) [see Eq. (A16)] in the
frame (17) expressed through h and q (see details in Ref. [15]).
We use the dimensionless vector h = Gf /G0

f , where Gf is a
four-velocity of the final NN system in the frame defined by
Eq. (17). This parameter may be expressed through the photon
momentum k, so that h = 2(MiMf )1/2(Mi + Mf )−2 k, |h| ≡
h = (Mi − Mf )/(Mi + Mf ) < 1. The convenience of this
parameter is illustrated in Appendix B.

The internal wave functions of the deuteron and final
scattering state are normalized in the nonrelativistic manner.
The deuteron wave function is

|χi〉 = |χi〉n.r. = 1

r

∑
l=0,2

ul(r)|l, 1; 1MJ 〉, (19)

with normalization 〈χi |χi〉n.r. = 1, where

|l, S; JMJ 〉 =
∑
m

∑
µ

|S,µ〉Ylm(n̂)CJMJ

lmSµ. (20)

The internal wave function of the final continuum np state is

|χf 〉 ≡ |qf , Sf , µf 〉n.r. =
√

2

π

1

qf r

∞∑
J=0

×
J∑

MJ =−J

J+S∑
l=J−S

J+S∑
l′=J−S

l∑
m=−l

il
′
uJ

l′,l(qf , r)

× CJMJ

lmSf µf
Y∗

lm(q̂f )|l′, Sf ; JMJ 〉, (21)

with normalization 〈χf ′ |χf 〉n.r. = δ(q ′
f − qf )δSf S ′

f
δµf µ′

f
. The

corresponding plane wave |φf 〉n.r. is characterized by the
spherical Bessel functions jl(qf , r)δll′ instead of uJ

l,l′ (qf , r).
The deuteron partial-wave functions ul(r) presented in Fig. 5
and partial waves of the final np states uJ

l,l′ (qf , r) are calculated
from Eq. (2).

We define a reduced amplitude

Tf i = 〈χf |ε∗
µĵµ(h) |χi〉n.r.. (22)

As a result, the differential cross section (15) can be rewritten
as

dσ

d�
= π2qf Mi

6kc

∑
i

∑
f

|Tf i |2, (23)

where we average over photon polarizations, spin orientations
of initial deuteron and sum over spin orientations of final
nucleons.

In our calculations, we approximate the above matrix
element

〈χf |ĵ µ(h)|χi〉n.r. ≈ 〈φf |ĵ µ(h)|χi〉n.r.

+〈χf − φf | ˆ̃jµ

(h)|χi〉n.r.. (24)

The first term is a plane-wave approximation (PlWA) and is
calculated using the exact current operator (A6). In this case,
the operator q̂ can be substituted by qf , and operator structure
of ĵ µ(h) can be presented as

ĵ µ(h) = jµ(h) + δjµ =
∑
i=1,2

(
Bµ

1i + (
Bµ

2i · si

) + (
Bµ

3i · sk

)
+ (

Bµ

4i · si

)(
Bµ

5i · sk

))
Ii(h) + δj, (25)

where jµ(h) is the sum of the one-nucleon electromagnetic
current operators (spectator approximation), and addend δjµ

restores the current conservation equation; k = 2, if i = 1,
and, conversely, k = 1, if i = 2. Bµ

1i and Bµ

mi,m � 2 are vector
and tensor functions of arguments h and qf . These functions
are given in Appendix A, where we calculate addend δjµ

from the current conservation equation following Ref. [15]
as we did for the ppγ process in Ref. [20]. Obviously, our
phenomenological quasipotential model offers no microscopic
picture of the interaction that would allow us to unambiguously
determine the current operator. We use the defined-below
δjµ only to estimate the violation of the current conservation
equation. Assuming gauge invariance (which follows from the
Poincaré invariance and the current conservation equation),
we use the transverse gauge

εµ = (0, ε), (εk) = 0. (26)

Thus, we exclude the j 0(h) and j||(h) [see Eq. (A21)]
components of the current from Eq. (22). The Poincaré
invariance is ensured by definition of the current operator
Ĵ µ(x) through the operator ĵ µ(h) (see details in Ref. [15]).

The use of the (χ (r) − φ(r)) combination in Eq. (24)
accelerates the convergence of the partial-wave expansion.
This term is nonzero because of the FSI of the neutron and
proton. It is calculated from the first order in h approximation
of the current operator ĵ µ(h). This approximation calculated
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FIG. 6. Angular dependence of dγ → pn

reaction differential cross sections for different
photon energies Eγ . Our theory is compared with
experimental data from Ref. [4].

in the same manner as the one for the pp system in Ref. [20]
is given by

ĵ(h) ≈ ˆ̃j(h) = δj + q
w

ĝpn
e (0) − hĜpn

e (0)

+ ı

(
m

w
[S × h] + 1

w(w + m)
[q × h] (q · S)

)
Ĝpn

m (0)

+ ı

(
m

w
[T × h] + 1

w(w + m)
[q × h] (q · T)

)
ĝpn

m (0)

+ ı(h · [q × S])q

(
Ĝ

pn
m (0)

mw
+ Ĝ

pn
e (0)

w(w + m)

)

+ ı(h · [q × T])q
(

ĝ
pn
m (0)

mw
+ ĝ

pn
e (0)

w(w + m)

)

− (h · q)q
Ĝ

pn
e (0)

mw
, (27)

δj =
(

4w

Mf + Mi

− 1 − h

)
q
w

ĝpn
e (0)

+ ıh

{
[q × T]

(
Ĝ

pn
m (0)

m
− Ĝ

pn
e (0)

w + m

)
− 2ĝpn

e (0)wr

+ [q × S]

(
ĝ

pn
m (0)

m
− ĝ

pn
e (0)

w + m

) }
, (28)

where S = s1 + s2, T = s1 − s2,

ĝpn
e (0) = Gp

e (0)I1(h) − Gn
e (0)I2(h),

ĝpn
m (0) = Gp

m(0)I1(h) − Gn
m(0)I2(h),

(29)
Ĝpn

m (0) = Gp
m(0)I1(h) + Gn

m(0)I2(h),

Ĝpn
e (0) = Gp

e (0)I1(h) + Gn
e (0)I2(h),

w ≡ w(q) =
√

m2 + q2, Ii(h)χ (q) = χ (di(q)), (30)
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FIG. 7. Same as Fig. 6, but (for Eγ =
2.051 GeV) our theoretical results for the RCP
(Paris potential [45]) are also shown (two lower
dashed curves). Upper dashed curves show re-
sults of our calculations for PlWA with deuteron
wave function in the initial state calculated with
our MP.

di(q) = q + (−1)i
2h

1 − h2
[w + (−1)i(h · q)]

≈ q + (−1)i2hw, (31)

where Gn
m(Q2

N ),Gp
m(Q2

N ),Gn
e (Q2

N ),Gp
e (Q2

N ) are nucleon
electromagnetic form factors parametrized according to
Ref. [43]. In Ref. [19], the elastic electron-deuteron scattering
was described in frames of the PF RQM. It was shown that
in the PF SA, the momentum of the unstruck particle (the
spectator) is unchanged, while the impulse given to the struck
particle is not the impulse given to the deuteron.

Following a general approach to construction of the
electromagnetic current operator for the relativistic composite
system [15], we define the momentum transfer Q2

i to the
particle i as an increment of the particle four-momentum
qi [19], that is,

Q2
i = |(q ′

i − qi)
2|. (32)

For interacting particles, the individual four-momenta are not
defined before photon absorption as well as after it. Therefore
we introduce an operator Q2

i corresponding to the physical
quantity of the momentum transfer Q2

i . In Appendix B, we
generalize the deduction presented in Ref. [19] and show that

Q2
1 = −(q ′

1 − q1)2 = 16

(
m2 + q2 − (q · h)2

h2

)
h2

(1 − h2)2
.

(33)

This is the general expression of the Q2
1 = Q2

2 = Q2
N in the

case of free two-particle states (for particles of equal masses);
therefore, we use this expression in the PF SA for evaluation
of the current operator in Eq. (25). The parameter h does
not depend on the interaction and is specified by the relative
“position” of the initial and final NN c.m. frames. In the case of
two interacting particles, q and Q2

i are operators in the internal
space. In impulse representation, q is a variable of integration
[19]. It is obvious that in action on a plane wave (for PlWA), this
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FIG. 8. Same as Fig. 6.

operator is equivalent to the multiplication by a number Q2
N >

0 if h �= 0. The first order in the h approximation gives Q2
N ≈ 0

for Eq. (27). Consideration similar to that of Ref. [19] gives
for the PlWA in our case of the deuteron photodisintegration

Q2
N = E2

γ − (w′
n − w′

p)2 = (2w′
n − mD)(2w′

p − mD), (34)

where w′
n and w′

n are the final energies of neutron and proton
in the initial c.m. frame (laboratory frame). Detailed deduction
of Eq. (34) is published in Ref. [44].

V. RESULTS AND FUTURE PROSPECTS

Our theoretical description of the differential cross section
of the dγ → pn reaction is compared with recent experiment
[4] in Figs. 6–8 at a few energies around Eγ = 2 GeV. We do
not use free parameters. However, there are uncertainties in
our calculation. The first uncertainty is caused by uncertainty
in the form factor parametrization of Ref. [43] due to errors of
the experimental data on the form factors. We estimated this
uncertainty at about ±15% of the results varying parameters
inside the limits defined in Ref. [43]. The second uncertainty
is connected with the approximation (27) used to calculate the
FSI term in Eq. (24). In Eq. (27), the nucleon form factors
are equal to their values at Q2

N = 0, and therefore the FSI
term is overestimated. Figure 7 (Eγ = 2.051 GeV) shows the
contribution of the FSI term. The PlWA term of the amplitude
(24) is dominant, but the FSI is not negligible. Therefore it is
desirable to estimate the second order in h correction to the
approximation (27). We plan to do this estimation in the future.
The third uncertainty is caused by uncertainty of the addend
δj that restores the current conservation equation. To estimate
this uncertainty, we calculated two curves for every energy
of the photon. The lower curves correspond to calculations
without addend δj in the current operator and with form factors
of Ref. [43] varied to their lower limits. The upper curves
correspond to full calculations and with form factors varied to
their upper limits. The FSI is included for both curves.

We see good general correspondence of the theory and
experiment both in absolute values and in the shape of
the angular dependence of the differential cross section at
various energies. Large absolute values of cross sections in our
theory in comparison with results for the RCP [Fig. 7 (Eγ =
2.051 GeV)] originate mainly in the nodal character of
the deuteron S-wave functions (greater weight of the high-
momentum wave function components). The ability to de-
scribe both the absolute value and the angular dependence

of differential cross sections confirms the detailed algebraic
structure of our theory. A persistent forward-backward asym-
metry is determined mainly by the angular dependence of
the nucleon electromagnetic form factors according to Fig. 9
(proton knockout dominates at forward angles, and neutron
knockout dominates at forward angles).

To complete this line of our investigation, we plan to
make an analysis of polarization dγ → pn experiments and to
consider the pionic radiative capture pp → dπ+ at proper en-
ergies. Other actual problems are outlined in Ref. [20]. The first
concerns the microscopic theory of the MP. As we suppose,
it is connected to the short-range quark exchange between
nucleons accompanied by excitations of color dipole states of
two virtual baryons with very strong attraction between them.
This scenario is based on the quark configuration s4p2[42]x in
deuteron.

As a concluding remark, it should be stressed that usage
of the MP instead of an RCP in the theory of complex nuclei
demands accurate evaluation of 3N forces. Effect of these
forces is much enhanced [23], as far as three nucleons without a
NN core can overlap and form short-range 9q subsystems with
large probability. Recent experiments [46] on the knock-out
of nucleon from the 3He nucleus may clarify the situation. In
these experiments, the missing momentum is great, and recoil
to the 2N subsystem with large relative momentum of two
spectator nucleons is observed.

FIG. 9. Angular dependence of four-momentum transfer Q2, and
of the nucleon electromagnetic form factors for dγ → pn reaction
calculated from Eq. (34) for the PlWA. In our calculations, we use
dependance of the form factors on Q2 according to parametrization
of Kelly [43].
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APPENDIX A

In this Appendix we explain the calculation of the electro-
magnetic current matrix elements. The derivation is based on
results of Ref. [15], where Eq. (18) and Eq. (A6) were deduced.

Let us define a matrix [47]

α(g) = g0 + 1 + σ · g√
2(g0 + 1)

, (A1)

corresponding to a four-velocity g, where σ = (σx, σy, σz) are
the Pauli matrices. Let us define the matrix p̆ = M̃(p) ≡ σµpµ

corresponding to a four-vector p (σ 0 is 2 × 2 unit matrix).
Operator M̃(p) transforms the four-vector p to (2 × 2) matrix.
The inverse transformatiodn is defined as

p0 = 1

2
(p̆11 + p̆22), p1 = 1

2
(p̆12 + p̆21),

(A2)

p2 = 1

2i
(p̆21 − p̆12), p3 = 1

2
(p̆11 − p̆22),

and we denote this transformation as p = Ṽ (p̆). The boost
p → L[α(g)]p is equivalent to the matrix transformation

p̆ → α(g)p̆α(g)+. (A3)

It is easy to see that L[α(g)](1, 0, 0, 0) = g. The Poincaré
group transformation U (a, l) is characterized [15] by the four-
shift a and four-rotation l,

U (α, l)ϕ(g) = eımg′aD[s; α(g)−1lα(g′)]ϕ(g′), (A4)

where ϕ(g) is a normalized spinor function of a particle with
mass p; s is the spin of the particle; and g′ = L(l)−1g. In our
case of spin s = 1/2 particles, we deal with the fundamental
representation [47], i.e., si ≡ 1

2σi and

D(s; α(g)−1lα(g′)) ≡ α(g)−1lα(g′). (A5)

The “internal” electromagnetic current operator for a
system of two particles in the SA is [15]

jµ(h) =
∑
i=1,2

(Li)µν Di
1D

i
2j

ν
i (h)Di

3K
iIi(h), (A6)

where

(Li)µν = L

(
L[α(f )]

qi

mi

, L[α(f ′)]
di

mi

)µ

ν

, (A7)

Di
1 = D[sk; α(qk/mk)−1α(f )−1α(f ′)α(dki/mk)]

= αk(qk/mk)−1αk(f )−1αk(f ′)αk(dki/mk), (A8)

Di
2 = D[si ; α(qi/mi)

−1α(f )−1α(zi)]

= αi(qi/mi)
−1αi(f )−1αi (zi) , (A9)

Di
3 = D[si ; α(f ′

i )−1α(zi)
−1α(f ′)α(di/mi)]

= αi(f
′
i )−1αi (zi)

−1 αi(f
′)αi(di/mi), (A10)

kinematic multipliers

Ki = miwi(qi)

wi(di)

(
M(di)

M(q)

)3/2

. (A11)

Here, k = 2, if i = 1; and, conversely, k = 1, if
i = 2. L(G,G′) denotes the Lorentz transformation
L[α(G,G′)], and α(G,G′) ≡ α[(G + G′)/|G + G′|)]; zi =
L[α(f )]qi/mi, L[α(f ′)]di/mi . Next,

f = L(G,G′)−1G, f ′ = L(G,G′)−1G′ (A12)

represent the four-velocities of the two-nucleon c.m. in the
initial and final state, respectively, meaning the coordinate
frame (17). The following formal aspects should be mentioned
here:

f 2 = f ′2 = 1, f + f′ = 0,

f 0 = f 0′ = (1 + f2)1/2,

h ≡ f/f 0;

L(G,G′) = L(α(G,G′)),

α(G,G′) = α((G + G′)/|G + G′|);
d1 = (w1(d1), d1),

d2 = (w2(d2), d2),

d12 = L[α(f ′)−1α(f )]q2 = (w2(d1),−d1),

d21 = L[α(f ′)−1α(f )]q1 = (w1(d2), d2).

The last equations give di also. Index i or k of matrices α and
σ means that it acts in ith or kth particle spin space and appears
as in Eq. (A1) but with σi or σk correspondingly instead of σ .
Let d1 = (ω1(d1), d1), d2 = (ω2(d2),−d2) and Ii(h) (i = 1, 2)
be operators defined by the conditions Ii(h)χ (q) = χ (di).

g′
i = L[α(f )]

qi

mi

,

g′′
i = L[α(f ′)]

di

mk

,

fi = L[zi]
−1g′

i , f
′
i = L[zi]

−1g′′
i ,

hi = fi
f 0

i

, wi(q) ≡
√

m2
i + q2.

Finally, jν
i (h) is a four-current of the particle i,

j 0
i (h) = eF i

e

(
Q2

i

)
,

(A13)

ji(h) = − ie√
1 − h2

i

F i
m

(
Q2

i

)
(hi × si),

where vectors hi are defined below, si ≡ σi/2, and Q2
i =

4m2
i h2

i /

√
1 − h2

i [see also Eq. (33)].
From Eq. (A6)–(A13), it is obvious that for a plane-wave

final state, when operator q = −i∇ can be substituted by
vector qf , operator j (h) becomes an exterior product jν(h) ≡∑

i=1,2 Ai
iν ⊗ Ai

kν Ii(h); k = 2, if i = 1, and, conversely, k =
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1, if i = 2. The qf -dependent matrix Ak
iν acts in ith particle

spin space, and presentation Ak
iν = σ

µ

i ak
iνµ ≡ ak

iν0 + 2(si · ak
iν)

is valid. “Components” aν are extracted by the Eq. (A2)
transformation

ai
νi = Ṽ

(
(Li)νµDi

2j
µ

i (h)Di
3K

i
)
,

ak
νi = Ṽ

(
Di

1

)
, i �= k. (A14)

Functions B of Eq. (25) are expressed as

Bν
1i = ai

iν0a
k
iν0, Bν

2i = 2ak
iν0ai

iν , Bν
3i = 2ai

iν0ak
iν,

Bν
4i = 2ai

iν , Bν
5i = 2ak

iν,

k = 2, if i = 1, and, conversely, k = 1, if i = 2.
Now, we should take into account the current conservation

equation

∂Ĵ µ(x)

∂xµ
= 0. (A15)

Using also the four-shift

Ĵ µ(x) = exp(iP̂ x)Ĵ µ(0) exp(−iP̂ x), (A16)

we obtain the relation

P̂µĴ µ(0) − Ĵ µ(0)P̂µ = 0. (A17)

In terms of the internal variables of the NN system,
Eq. (A17) can be reduced to the matrix element

〈χf |Mf Gf 0j
0(h) − Mf Gf j(h) − MiGi 0j

0(h)

+MiGij(h)|χi〉 = 0, (A18)

which can be rewritten in the form

〈χf |(h · ĵ(h))|χi〉 = Mf − Mi

Mi + Mf

〈χf |ĵ0(h)|χi〉, (A19)

as far as Gi = −hGi 0, Gf = hGi 0, Pi = MiGi , Pf =
Mf Gf , M̂|χi〉 = Mi |χi〉, M̂|χf 〉 = Mf |χf 〉. The current
Eq. (A6) does not satisfy Eq. (A19) and needs a modification.
Following Ref. [15], we use the unique decomposition into
longitudinal and transverse parts

ĵ(h) = ĵ(0) + h
h

ĵ||(h) + ĵ⊥(h), (A20)

where hj⊥(h) = 0 and

ĵ||(h) = 1

|h| (h · (ĵ(h) − ĵ(0))),

(A21)

ĵ⊥(h) = ĵ(h) − ĵ(0) − h
|h|2 (h · (ĵ(h) − ĵ(0))).

To estimate violation of the current conservation equation, we
assume that NN interaction does not change transverse and
time components of operator ĵ (h). Then we can reconstruct
ĵ(0) and ĵ||(h) from Eq. (A22). In the transverse gauge (26),
the longitudinal component has no effect on our calculation
results; therefore, we determine only the matrix element of
ĵ(0) as

〈χf |ĵ(0)|χi〉 = Mf − Mi

Mi + Mf

〈χf | ∂ ĵ0(h)

∂h

∣∣∣∣∣
h=0

|χi〉, (A22)

The corresponding addend δj that restores Eq. (A19) is given
in Eq. (28).

The first term in Eq. (24) (PlWA) appears as

〈φf |ĵ µ|χi〉n.r. =
√

2

π

1

qf

3∑
J=0

∑
l=0,2

l∑
m=−l

ilCJMJ

lm 1µ

×
[ 4∑

k=1

2∑
i=1

Y∗
lm(q̂i)〈l, S; JMJ |Lµ

ki

× |l, 1; 1MJ 〉Ui
l + Y∗

lm(q̂f )(1 − δ0,µ)

×
(

3∑
i=1

〈l, S; JMJ |Kµ

i |l, 1; 1MJ 〉Ul(qf )

− 2gpn
e w(qf )

∑
l′=1,3

〈l′, 1; JMJ |r̂µ|l, 1; 1MJ 〉

×
∫ ∞

0
rĵl′(qf r)ul(r)dr

)]
,

Ul(qf ) =
∫ ∞

0
ĵl(qf r)ul(r)dr,

Ui
l = w(qf )(1 − h2)

w(qf )(1 + h2) + (−1)i2(h · qf )

×
∫ ∞

0
ĵl(di(qf )r)ul(r)dr, (A23)

where L
µ

ki (k = 1, 2, 3, 4) = B
µ

1i , (Bµ

2is2), (Bµ

3is1), and (Bµ

4is2)
(Bµ

5is1), respectively; K
µ

i represent the µ components (µ =
1, 2, 3) of the the first three (i = 1, 2, 3) terms in Eq. (28).

The second term in Eq. (24) appears as

〈χf − φf | ˆ̃jµ

(h)|χi〉n.r. =
√

2

π

1

qf

∑
L=0,2

∞∑
J=0

J+S∑
l=J−S

×
J+S∑

l′=J−S

l∑
m=−l

il
′CJM

lmSµY∗
lm(q̂f )

×
∫ ∞

0
dr〈l′, S; JM|(uJ

l′,l(qf , r)

− δl,l′ ĵl(qf r)
) ˆ̃j

µ

(h)uL(r)

× |L, 1; 1Mi〉. (A24)

We use further the algebraic results (A24)–(A27) of
Ref. [20] and obtain the final expression for the differential
cross section which is reduced to radial integrals and spherical
harmonics but, unfortunately, is too unwieldy to be given
here.
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Now, by a few examples, we illustrate the calculation
technique for the matrix elements of various components of
the relativistic current operator

〈lf , Sf ; Jf Mf |(Bµ

3i · s1
)|li , Si ; JiMi〉

= (
Bµ

3i · 〈lf , Sf ; JMf |s1|li , Si ; JiMi〉
)
,

〈lf , Sf ; JMf |(s1)ν |li , Si ; JiMi〉

= (−1)Li+Jf +Sf +1δLiLf
CJiMi

1ν Jf Mf

√
2Ji + 1

×
{

Lf Jf Sf

1 Si Ji

}
〈Sf ||s1||Si〉,

〈Sf ||s1||Si〉 = (−1)Sf
√

(2Si + 1)(6Sf + 3)/2

×
{

1/2 1/2 Sf

1 Si 1/2

}
. (A25)

(a1 · s1)(a2 · s2) =
2∑

k=0

Ck[[a1 × a2](k) × [s1 × s2](k)](0),

Ck = (1,
√

3,
√

5); (A26)

〈Sf ||[s1 × s2](k)||Si〉 = 3

2

√
(2Si + 1)(2Sf + 1)(2k + 1)

×
 1/2 1/2 Sf

1/2 1/2 Si

1 1 k

 .

(∇ · S)∇µ = − 1√
3

[[∇ × ∇](0) × S](1)
µ

−
√

5

3
[[∇ × ∇](2) × S](1)

µ . (A27)

(h · [∇ × S])∇µ = −i

√
6

3

(√
15

2
[[[∇ ×∇](2) × S](2) ×h](1)

µ

+ [[[∇ × ∇](0) × S](1) × h](1)
µ

−
√

5

2

[
[[∇ × ∇](2) × S](1) × h

](1)
µ

)
.

(A28)

〈Lf , Sf = 1; Jf Mf | [[∇ × ∇](k) × S](1)](n)
µ f (r)|Li, Si

= 1; JiMi〉 = C
Jf Mf

JiMinµ

Lf 1 Jf

Li 1 Ji

k 1 n


×

√
6(2Ji + 1)(2n + 1)〈Lf ‖[∇ × ∇](k)f (r)‖Li〉,

(A29)

〈Lf ‖[∇ × ∇](2) f (r)

r
‖Li〉 =

√
2Lf + 1

√
6C

Lf 0
Li020

1

r

{
δLiLf

(
−1 + 3

(
2L2

i + 2Li − 1
)√

2(2Li + 1)

(2Li − 1)(2Li + 1)(2Li + 3)

)(
d2

dr2
− Li(Li + 1)

r2

)
f (r)

+ δLiLf −2
3(Li + 1)(Li + 2)

√
2(2Li + 1)

(2Li + 1)(2Li + 3)(2Li + 5)

(
d2

dr2
− (2Li + 3)

r

d

dr
+ (Li + 3)(Li + 1)

r2

)
f (r)

+ δLiLf +2
3Li(Li − 1)

√
2(2Li + 1)

(2Li + 1)(2Li − 3)(2Li − 1)

(
d2

dr2
− (2Li − 1)

r

d

dr
+ Li(Li − 2)

r2

)
f (r)

}
. (A30)

In these expressions, an upper index in round brackets means
a tensor rank of an operator. The first rank is omitted where it
is obvious (∇ ≡ ∇(1), etc.)

APPENDIX B: POINT-FORM MOMENTUM TRANSFER

In the general case, there are an initial NN state with
associated initial c.m. frame (i.c.m.f.) and a final NN state with
associated final c.m. frame (f.c.m.f.) Suppose that the photon
momentum (momentum transfer) is along the z axis. Values
of photon momentum and energy in i.c.m.f. are |qγ | and q0

γ ,

correspondingly. Momentum transfer is Q2 = |qγ |2 − (q0
γ )2.

Let P be the total four-momentum of the NN system,

M the mass of the NN system, and G = P/M the system
four-velocity. Index i(f ) means initial (final) state of the
NN system. Transformation from i.c.m.f. to the special frame
suggested by Lev [15] (L.s.), where

Gf + Gi = 0|L.s., (B1)

is defined by angle �/2 such that

tanh �/2 = h, (B2)

where h = Gf /G0
f |L.s.. The Lev frame (B1) is not equivalent

to the Breit frame defined by the condition Pf + Pi = 0
if Mf �= Mf . For elastic electron-deuteron scattering, these
frames coincide.
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From this point, we may use a special derivation of Ref. [19]
Eqs. (B3)–(B7) of the present paper].

The initial energies and z components of momenta in L.s.
are

w1 = w cosh �/2 + qz sinh �/2,

q1z = qz cosh �/2 + w sinh �/2,
(B3)

w2 = w cosh �/2 − qz sinh �/2,

q2z = −q cosh �/2 + w sinh �/2,

where q and w =
√

q2 + m2 are center-of-momentum vari-
ables, q is the momentum of particle one (internal variable).
After photon absorption, the z component of the internal
variable and corresponding energy change

q ′
z = qz cosh � ∓ w sinh �, (B4)

w′ = w cosh � ∓ qz sinh �, (B5)

where the minus (plus) sign is used when particle one (two) is
struck. The final energies and momenta in L.s. will then be

w′
1 = w cosh 3�/2 − qz sinh 3�/2,

q ′
1z = qz3 cosh �/2 − w sinh 3�/2, (B6)

w′
2 = w2, q ′

2z = q2z,

other components do not change. Some hyperbolic trigonom-
etry reveals that

(q ′
1 − q1)2 = 4

(
q2

z − w2
)

sinh2 �, (B7)

and it follows from Eq. (B2) that

sinh � = 2h

1 − h2
. (B8)

Since

q2
z − w2 = −(m2 + q2

⊥) = −
(

m2 + q2 − (q · h)2

h2

)
, (B9)

the resulting Eq. (33) is established.
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