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System size effects and momentum correlations in heavy-ion collisions
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We aim to carry out the detailed study of system-size effects and momentum correlations by simulating
the reactions of 12C+12C, 20Ne+20Ne, 40Ca+40Ca, 58Ni+58Ni,93Nb+93Nb, 129Xe+118Sn, 139La+139La, and
197Au+197Au at an incident energy of 400 MeV/nucleon and over entire colliding geometry from a central
to an extreme peripheral one. A mass-independent role of the momentum correlations is reported for the entire
periodic table. When averaged over all fragments, the effect of momentum correlations for central collisions is
about 39%. All mass yields can be parametrized by a power law with 2 � τ � 3 which is in agreement with other
theoretical and experimental studies.
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Heavy-ion collisions at intermediate energies provide a
unique possibility to study several rare phenomena. Among
these, multifragmentation has an edge since it gives the first-
hand information about the mutual interactions, fluctuations
as well as correlations among nucleons [1]. The spatial and
momentum correlations among nucleons of colliding nuclei
have a significant role in the formation of fragments and
their pattern [1,2]. In addition, the system-size dependence
has always attracted a lot of attention. Whether, it is a fusion-
fission, cluster-radioactivity, and structural physics at low in-
cident energies or collective transverse flow, nuclear stopping,
multifragmentation, and particle production at intermediate
incident energies, the size of the system has been reported
to influence the reaction dynamics from a mild to strong
manner [3–7]. We here aim to study the role of momentum
correlations in fragmentation for system-size effects and also
the power law behaviors in multifragmentation which has also
been thought to be a candidate for liquid-gas phase transition.

The aim of the present report is at least twofold: (i) It
was pointed out by Curtin et al. [8] that the excited nuclear
matter will pass through a liquid-gas phase transition stage
at some incident energy, and if fragments are formed at this
stage, these may show some characteristics of the liquid-gas
phase transition [8,9]. In the last years, a large number of
attempts have been made to fit the mass (or charge) yields with
power laws (either ∝ A−τ or e−λA) and extract information
about the possible liquid-gas phase transition in terms of the
Fisher droplet model, which suggests a critical behavior for
2 � τ � 3 [10]. Interestingly, some studies [11], advocated
minima in τ with variation in the incident energy whereas
others denied [12]. Even, an accidental occurrence of power
law behavior in multifragmentation was also advocated in
some theoretical studies [13]. Most of the above studies
concentrated on the analysis of mass (charge yields) as a
function of incident energy [1,11,13]. Very little attention
has been paid in the literature for the above power law
dependence in terms of colliding geometry, i.e., in terms of
impact parameters [11,14]. It is worth mentioning that these
observations differ for different colliding nuclei. Therefore, it
is of interest to study the power law dependence for system-size
effects and also to understand whether momentum correlations
have any role to play or not.

(ii) Recently, we reported an improvement over the spa-
tial correlation method used to construct the fragments by
imposing an additional momentum cut [15]. The first results
for 197Au+197Au reactions demanded a detailed analysis over
a larger mass range. We shall also present the system-size
effects in the multiplicities of various fragments in terms of
momentum correlations.

The present study is carried out within the framework of
quantum molecular dynamics (QMD) model [1]. This is based
on a molecular dynamics picture where nucleons interact via
two- and three-body interactions. Here each nucleon α is
represented by a Gaussian wave packet with a width of

√
L

centered around the mean position �rα(t) and mean momentum
�pα(t) [1]. The centroid of each wave packet is propagated
using the classical equations of motion [1]:

d�rα

dt
= dH

d �pα

, (1)

d �pα

dt
= −dH

d�rα

, (2)

where the Hamiltonian H is given by

H =
∑

α

�p2
α

2mα

+ V tot . (3)

Our total interaction potential V tot reads as

V tot = V loc + V Yuk + V Coul, (4)

The static (local) Skyrme interaction can further be
parametrized as

Uloc = α

(
ρ

ρ o

)
+ β

(
ρ

ρ o

)γ

. (5)

Here α, β and γ are the parameters that define a equation of
state.

In the present study, we shall use a soft equation of state with
a standard energy dependent nucleon-nucleon cross section.
As noted in Ref. [16], the different equations of state do not
affect the conclusions of multifragmentation.

For the present analysis, we simulated the reactions of
12C+12C, 20Ne+20Ne, 40Ca+40Ca, 58Ni+58Ni, 93Nb+93Nb,
129Xe+118Sn, 139La+139La, and 197Au+197Au at an incident
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FIG. 1. The mass yield curves, i.e., dN/dAf vs fragment mass
(Af ) are displayed for the reactions of 58Ni+58Ni and 197Au+197Au
at b̂ = 0.2 and 0.8, respectively. The power law fits for MST results
are shown by solid lines.

energy of 400 MeV/nucleon and over an entire impact
parameter b̂ = b/bmax ranging from 0 to 0.8, with bmax equal
to RP + RT (RP and RT are the radii of projectile and
target, respectively). The phase-space, thus, generated is then
subjected to clusterization using a minimum spanning tree
(or spatial correlations) MST method. In this method, two
nucleons share the same fragment if they are closer than 4
fm, i.e., |�rα − �rβ | � 4 fm. In the extended version [15], we also
imposed a restriction in the momentum space of the scattered
nucleons. Now, nucleons should also obey | �pα − �pβ | � pmean

f ermi ;
pmean

f ermi is the mean Fermi momentum of nucleons, which in our
case is 150 MeV/c. This is dubbed as the minimum spanning
tree (P), i.e., MSTP method.

In Fig. 1, we display the mass yield dN/dAf as a function
of the mass of the fragments for 58Ni+58Ni and 197Au+197Au
reactions at 400 MeV/nucleon and b̂ = 0.2 and 0.8, respec-
tively. We see a single continuous curve with negative slope in
central collisions whereas it starts following a U-shape with a
peak at heavier fission products for peripheral collisions. The
inclusion of momentum correlations in central collisions leads
to a downsizing of all medium mass fragments. In contrary,
heavier fragments break into intermediate mass fragments
as well as into light mass fragments and free nucleons in
peripheral collisions. The trend, interestingly, is independent
of system size. The momentum correlations influence the mass
yield uniformly throughout the periodic table. It is also evident
that the effect of momentum correlations depend upon the
excitation energy and density of the colliding nuclei. If the
system is mildly excited, a larger effect can be seen whereas
for highly excited matter the effect is nearly insignificant.

In Fig. 2, we display the mass yield (dN/dAf ) as a
function of the mass of the fragments (Aj � 30) for b̂ =
0.2 to 0.8 for the reactions of 12C+12C and 58Ni+58Ni.
This mass range of fragments is often taken for fitting the
power law behavior of the mass yield (∝ A−τ

f ). This power
mass law dependence is also related to the liquid-gas phase
transition, if any. Interestingly, the yields in all cases are
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FIG. 2. The mass yield curves, i.e., dN/dAf as a function of mass
of fragments (Aj � 30) are displayed for the reactions of 12C+12C
and 58Ni+58Ni at b̂ = 0.2, 0.4, 0.6, and 0.8, respectively. The power
law fitting for the MST results is shown by solid lines.

steeper for the central collisions and lighter colliding nuclei.
The slope becomes flat for peripheral collisions. Even the
U-shape curve can be seen in some cases. This behavior
seems to be independent of the system size as well as of
the momentum correlations constraints. Further, all the mass
yields can be nicely parametrized in terms of power laws ∝
A−τ

f . The values of τ obtained for different reactions over
different colliding geometry are summarized in Table I. From
the table, we see that the value τ is independent of the mass
of the colliding nuclei. Interestingly, for central collisions, it
has a stronger impact on the momentum correlations whereas
it is very little for the peripheral collisions. In all cases, the
value of τ lies between 2 and 3. As has also been pointed out

TABLE I. The values of power factors τ for different reactions
and impact parameters using MST and MSTP methods.

System Method b̂ = 0.2 b̂ = 0.4 b̂ = 0.6 b̂ = 0.8

12C+12C MST 2.4±0.37 2.0±0.11 2.1±0.16 2.5±0.20
MSTP 2.6±0.32 2.2±0.01 2.1±0.03 2.0±0.06

20Ne+20Ne MST 2.2±0.39 2.1±0.13 2.3±0.13 2.7±0.11
MSTP 2.4±0.32 2.2±0.03 2.2±0.01 2.4±0.02

40Ca+40Ca MST 2.2±0.37 2.2±0.25 2.4±0.16 2.7±0.22
MSTP 2.5±0.22 2.4±0.11 2.6±0.10 2.7±0.14

58Ni+58Ni MST 2.3±0.38 2.2±0.30 2.4±0.27 2.8±0.29
MSTP 2.6±0.30 2.4±0.09 2.5±0.08 2.9±0.16

93Nb+93Nb MST 2.1±0.30 2.2±0.21 2.5±0.27 2.9±0.32
MSTP 2.5±0.28 2.4±0.07 2.5±0.10 2.9±0.23

129Xe+118Sn MST 2.3±0.40 2.3±0.30 2.6±0.41 2.9±0.53
MSTP 2.5±0.31 2.5±0.21 2.8±0.32 2.8±0.12

139La+139La MST 2.2±0.43 2.3±0.29 2.4±0.25 2.7±0.20
MSTP 2.3±0.17 2.4±0.08 2.7±0.18 2.9±0.26

197Au+197Au MST 2.2±0.39 2.2±0.27 2.5±0.34 2.7±0.38
MSTP 2.5±0.31 2.4±0.15 2.6±0.17 2.8±0.20
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in Ref. [15], the constraints of the momentum cut break the
heavier fission products into intermediate mass fragments at
peripheral collisions. These heavier fragments, however, are
not considered for the power law behavior. Our present values
of τ , though consistent with the predictions of liquid-gas phase
transition, do not give a clear indication about the possible
liquid-gas phase transitions in heavier nuclei. It is due to
the fact that there is no unique dependence of τ on impact
parameter. This is in agreement with the findings of Refs.
[11,14]. The mass-independent behavior of the power yields
in the spatial and spatial-momentum correlation methods is
due to the fact that the light mass fragments emerge from
the midrapidity region. Therefore, the effects such as surface,
shadow of spectator matter as well as long-range Coulomb
effects, which depend on the system size, are absent in these
yields. This leads to the mass-independent behavior. Our
results with impact parameter show similar trends as have been
obtained for the ALADIN experiments for different colliding
geometry [14] and also reported in theoretical studies [11].
In ALADIN experiments, one has considered 12C+197Au,
40Ar+197Au, and 58Ni+197Au reactions [14]. The fittings in the
table have a dependence cAτ . Though τ is quite close in MST
and MSTP approaches, the c value has drastic variations. The
difference in c using MST and MSTP methods can be as large
as 76% therefore, it demands further investigation. We shall
investigate individual fragments and their multiplicities within
MST and MSTP methods and see how their relative production
depends on the size of system and colliding geometry.

In Fig. 3, we display the relative effects of the momentum
correlations over spatial correlations defined as

�Mc% =
∣∣∣∣ (Mult)MST P − (Mult)MST

(Mult)MST

∣∣∣∣ %. (6)

Here, we display �Mc% for Amax , the heaviest frag-
ment, free nucleons, A = 2, 2 � A � 4, 3 � A � 5, 5 � A � 9
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FIG. 3. The percentage difference �Mc% as a function of
the system size is displayed for Amax , free nucleons, A =
2, 2 � A� 4, 3 � A � 5, 5 � A� 9, respectively.
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FIG. 4. Same as Fig. 3, but for 2 � A � 30%, 3 � A� 30%,

4 � A� 30% of the heavier nuclei and 5 � A � 30% of Atot ,
respectively.

whereas all the intermediate mass fragments, i.e., fragments
with masses 2 � A � 30%, 3 � A � 30%, 4 � A � 30% of the
heavier nuclei and 5 � A � 30% of the Atot are displayed
in Fig. 4, for a typical b̂ = 0.2 colliding geometry. Very
interestingly, a sizable and significant effect of momentum
correlations can be seen in all types of fragments. It is also
evident that the average effect of momentum correlations
(when averaged over all fragments) is independent of the
size of interacting nuclei. The average effect for central
collisions (b̂ = 0.2) is 38.85 ± 2.45%. This clearly suggests
that one should include the momentum correlations cut in the
clusterization process. This nearly mass-independent effect
of the momentum correlations is due to the fact that the
incident energy and colliding geometry was kept fixed while
looking for the system-size effects. Once incident energy and
impact parameter is fixed, the number of nucleon-nucleon
collisions scales with the system size. In other words, one
would expect a linear effect of momentum cut over system size.
The observation of sizable effect of momentum correlations
is significant since it has been pointed out in Ref. [17] that
the ALADIN experimental data are underestimated by the
MST method. The present enhancement due to momentum
correlations can be helpful in this direction. Further, since
effects exist for all masses, one should include momentum
correlations in clusterization procedures.

Summarizing, we carried out a detailed study of the
system-size effects and momentum correlations by simulating
the reactions of 12C+12C, 20Ne+20Ne, 40Ca+40Ca, 58Ni+58Ni,
93Nb+93Nb, 129Xe+118Sn, 139La+139La, and 197Au+197Au
at an incident energy of 400 MeV/nucleon and over an
entire colliding geometry from central to extreme peripheral
collisions. The mass yield can be parametrized in terms of the
power law (∝ A−τ )with 2 � τ � 3 in all cases independent of
the masses of colliding nuclei and impact parameter. Further, a
mass-independent role of the momentum correlations over the
entire periodic table was also obtained. When averaged over all
fragments, the momentum correlations have an effect of about
39% over spatial correlations and are nearly independent of
the system under consideration.
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