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Validity of the Wigner-Seitz approximation in neutron star crust
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Since the seminal work of Negele and Vautherin, the Wigner-Seitz approximation has been widely applied to
study the inner crust of neutron stars formed of nuclear clusters immersed in a neutron sea. In this article, the
validity of this approximation is discussed in the framework of the band theory of solids. For a typical cell of
200Zr, present in the external layers of the inner crust, it is shown that the ground state properties of the neutron
gas are rather well reproduced by the Wigner-Seitz approximation, while its dynamical properties depend on the
energy scale of the process of interest or on the temperature. It is concluded that the Wigner-Seitz approximation
is well suited for describing the inner crust of young neutron stars and the collapsing core of massive stars during
supernovae explosions. However, the band theory is required for low temperature transport properties as, for
instance, the effective neutron mass giving rise to entrainment effects.
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In the standard model of neutron stars [1], the crust is
believed to be formed of nuclear clusters in a body-centered-
cubic lattice stabilized by Coulomb forces and considered
infinite and pure (made of only one type of nucleus at a given
density). In the inner crust, at densities between ∼4 × 1011 and
∼1014 g/cm 3, the “neutron drip” regime is reached, and the
clusters are surrounded by a neutron fluid. A formal compar-
ison can be made with electrons in ordinary solids present
on earth: some of the neutrons participate in the nuclear
clusters which form the lattice (equivalent to electrons bounded
to atoms), while some of the neutrons are delocalized over
the whole crystal (equivalent to valence electrons). As a
consequence, the band theory of solids developed in condensed
matter [2] can be applied to describe the crust of a neutron
star. But because of the highly specific numerical issues
of band theory, nuclear physicists have preferred to use an
approximation developed by Wigner and Seitz (W-S) [3,4],
in which the crust is divided into independent and spherical
cells. Since the work of Negele and Vautherin [5], the W-S
approximation has been used to predict the structure of
the crust, the pairing properties, the thermal effects, or the
low-lying energy excitation spectrum [6–12]. Only recently,
band theory calculations have been carried out to study the
hydrodynamic properties of the neutron fluid and in particular
the neutron effective mass giving rise to entrainment effects
[13–15], although these calculations are not yet self-consistent.
While the W-S approximation is well justified below the
“neutron drip” regime, its validity beyond remains to be
assessed.

In this article, we investigate the limitations of the W-S
approximation in the ρ ∼ 7 × 1011g/cm3 density layer of the
inner crust, composed of a crystal of zirconium-like clusters [5]
surrounded by the neutron gas. In Sec. I, before discussing
the W-S approximation, we briefly review the band theory of
solids. Then we compare in Sec. II the results of the band
theory with those of the W-S approximation for the single-

particle wave functions and energy spectra. Consequences for
the properties of the neutron gas are discussed.

I. MICROSCOPIC QUANTUM DESCRIPTION OF
NEUTRON STAR INNER CRUST

An accurate description of the inner crust, assuming that it
is a perfect crystal, should rely on the band theory of solids [2].
In this section, we briefly review this theory in the context of
a neutron star crust and discuss the W-S approximation in this
framework.

A. Band theory of solids

According to the Floquet-Bloch theorem, the single-particle
quantum states are given by modulated plane waves

ϕαk(r) = uαk(r)eik·r , (1)

where the functions uαk(r) have the full periodicity of the
lattice. Each single-particle quantum state is thus labeled by a
discrete index α and by a wave vector k. The energy spectrum
is therefore formed of a series of sheets or “bands” in k space.

The Bloch states (1) are completely determined by the
knowledge of the functions uαk(r) inside a W-S cell of the
lattice, whose shape is imposed by the symmetry of the crystal.
The cell, centered around one nuclear cluster, is electrically
neutral and therefore contains as many electrons as protons.
The effects of the ion lattice on the electrons, which give rise
to complicated band structures in ordinary terrestrial matter,
are negligible in the inner crust of a neutron star because of
the very high densities [16]. Nevertheless, the neutron band
effects due to nuclear inhomogeneities cannot be ignored.

In the present study, we consider the outermost layers of
the inner crust where pairing effects are negligible [17]. In
the Hartree-Fock approximation with Skyrme forces which
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we shall consider in the following, the occupied nucleon
single-particle wave functions are obtained by solving the
self-consistent equations (q = n, p for neutrons and protons,
respectively)

h
(q)
0 ϕ

(q)
αk (r) = ε

(q)
αk ϕ

(q)
αk (r), (2)

where the single-particle Hamiltonian is defined by

h
(q)
0 ≡ −∇ · h̄2

2m⊕
q (r)

∇ + Uq(r) − iW q(r) · ∇ × σ , (3)

the effective masses m⊕
q (r), mean fields Uq(r), and spin-orbit

terms W q(r) being functionals of the single-particle wave
functions. These equations have to be solved inside the W-S
cell with the boundary conditions imposed by the Floquet-
Bloch theorem

ϕ
(q)
αk (r + T ) = eik·T ϕ

(q)
αk (r), (4)

where T is any lattice vector. This means in particular that the
wave function between two opposite faces of the cell has a
phase shift eik·T , where T is the corresponding lattice vector.
The single-particle energies are periodic in the reciprocal
lattice whose vectors K satisfy K · T = 2πn (where n is any
integer)

ε
(q)
α,k+K = ε

(q)
αk . (5)

Consequently, only the values of k inside the first Brillouin
zone (i.e., W-S cell of the reciprocal lattice) are relevant.

Equivalently, Eqs. (2) can be written directly for the u
(q)
αk (r)

functions in the decomposition (1), which leads to(
h

(q)
0 + h

(q)
k

)
u

(q)
αk (r) = ε

(q)
αk u

(q)
αk (r), (6)

where the k-dependent Hamiltonian h
(q)
k is defined by

h
(q)
k ≡ h̄2k2

2m⊕
q (r)

+ vq · h̄k, (7)

and the velocity operator vq is defined by the commutator

vq ≡ 1

ih̄

[
r, h(q)

0

]
. (8)

The band theory takes into account all the symmetries of the
system. However, Eqs. (2) with the boundary conditions (4)
are numerically very complicated to solve. The approximation
introduced a long time ago by Wigner and Seitz in the study of
metallic sodium [3,4] has been widely applied in the context
of neutron star crust, as described below.

B. Wigner-Seitz approximation

The spherical W-S approximation is a computationally very
efficient method with the advantage of reducing the three-
dimensional partial differential Eqs. (2) to ordinary differential
radial equations. This approximation is twofold. First of all,
the Hamiltonian h

(q)
k in Eq. (6) is neglected. Consequently,

the wave functions and energies are independent of k and
approximated by the solutions at k = 0. Only the band index
α remains. Second, the W-S polyhedron is replaced by a sphere
of equal volume. The equations are then usually solved with the

Dirichlet-Neumann mixed boundary conditions which yield a
nearly constant neutron density outside the cluster.

The W-S approximation turns out to be very good if the
boundary conditions play a minor role. For instance, bound
states whose associated wave functions are vanishingly small
outside the clusters are very well treated provided that the
spatial extent of these states is smaller than the lattice spacing.
This condition is fulfilled almost everywhere in the crust except
in the bottom layers, where the clusters nearly touch. The
aim of this paper is to investigate the validity of the W-S
approximation for the outermost layers of the inner crust
where the bound neutron states are not altered by the boundary
conditions.

Let us emphasize that in the W-S approximation, the nuclear
clusters are supposed to be spherical, while in the full band
theory, no assumption is made about their shape. For the low
densities of interest in this study, the nuclear clusters can still be
considered as spherical. It should be mentioned that in a recent
development of the W-S approximation [18], the W-S cell is
replaced by a cube with strictly periodic boundary conditions.
Possible deformations of the nuclear clusters are thus included
but at the price of unphysical boundary conditions, because
the W-S cell of the body-centered-cubic lattice is a truncated
octahedron and not a cube (the cube being the W-S cell of
the simple cubic lattice). This is why we still consider the
spherical W-S approximation closer to the physical situation
than the cubic one at low density.

II. COMPARISON BETWEEN THE BAND THEORY AND
THE W-S APPROXIMATION

The comparison between the band theory and the W-S
approximation gives an estimate of the contribution (7) of the
k-dependent Hamiltonian hk and incidentally of the effects
of the boundary conditions. We have considered the shallow
layers of the crust at the average baryon density ρ ∼ 7 ×
1011 g/cm3 formed of a crystal made of zirconium-like clusters
(Z = 40) with 160 neutrons (bound and unbound) per lattice
site [5]. In the following we shall refer to such clusters as 200Zr.
Under such conditions, only unbound neutrons are sensitive to
the boundary conditions, and the nuclear clusters are spherical.

For the comparison, we first solve the self-consistent
Hartree-Fock equations in coordinate space, considering the
W-S approximation. The effective force used is the same
as in Refs. [7–9], namely, the Skyrme interaction SLy4
[19]. In Fig. 1, we show the neutron and proton densities
calculated in the spherical W-S cell with 200Zr. The size of
the box is Rcell = 49.2 fm. The cell exhibits a very large and
diffuse neutron skin, which is typical of those systems [5].
A small but nonzero neutron density is present at large radius
generating a nonzero mean field potential. Asymptotically, this
potential is equal to −0.05 MeV. All the states with energy
larger than −0.05 MeV are therefore unbound or “free.” We
found that among the 160 neutrons per lattice site, 70 are
unbound.

The effective mass m⊕
n (r) and the mean field potential Un(r)

obtained for the spherical cell are used to construct an effective
Schrödinger equation for band theory calculations. As the
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FIG. 1. Neutron (full lines) and proton (dotted lines) density
distributions for 200Zr in the W-S cell, obtained in the W-S approxi-
mation.

spin-orbit splitting is weak for most of the states (see Fig. 5),
we set the spin-orbit potential Wn(r) to zero. To study the
effects of the boundary conditions, the Schrödinger equation
is solved with no further iterations by imposing the Bloch
boundary conditions (4) and using the linearized augmented
plane-wave method (see Ref. [15] for details). The coordinate
space is divided into two regions: a spherical region around
the cluster plus an interstitial region. In the latter region, the
wave functions are expanded on a plane-wave basis in order
to fulfill the Bloch boundary conditions. The lattice spacing
is determined by requiring that the volume of the W-S sphere
is equal to the volume of the exact W-S cell of the crystal,
assumed to be a body-centered-cubic lattice [1].

In the following, we compare the single-particle wave
functions and energy spectra of the unbound neutrons.

A. single-particle wave functions

As already discussed in Sec. I B, the wave functions of
the bound states are nearly independent of the boundary
conditions. As a consequence, we expect that the band theory
and the W-S approximation provide identical bound states.
Since the unbound states are orthogonal to the bound states, the
W-S approximation and the band theory are expected to yield
similar unbound wave functions inside the nuclear clusters.
This is confirmed by the calculation of the density distribution
of the unbound neutrons (whose single particle energies exceed
−0.05 MeV as discussed previously) shown on Fig. 2, obtained
with the band theory and the W-S approximation. For the
comparison, the density ρ(r) obtained from the band theory
has been averaged over the solid angle around one lattice site
as

ρ(r) =
∫

d�

4π
ρ(r), (9)

where r is the radial distance from the lattice site. Similar den-
sity oscillations are obtained in both calculations in the vicinity
of the nuclear cluster for r < 10 fm as expected. Qualitative
differences in the neutron density, however, are observed in
the interstitial regions outside the clusters because of different
boundary conditions. The unbound neutron density distribu-
tion is nearly flat in the band theory, while it is more fluctuating
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FIG. 2. Unbound neutron density calculated with the W-S ap-
proximation (WS, full lines) and the full band theory (BT, dotted
lines).

in the W-S approximation. The Bloch wave functions outside
the clusters are similar to plane waves (thus giving a constant
density) which cannot be properly described in the W-S
approximation owing to the expansion of the wave functions
into only a few spherical harmonics. An analysis of the con-
tribution of each single-particle wave function to the unbound
neutron density in the W-S approximation reveals that the
oscillations at small radius are mainly coming from p states,
such as 3p1/2 or 3p3/2; whereas at larger radii (r > 20 fm),
only a few larger � states, mainly d-f -g-h states, are
contributing to the free neutron density.

As a result, the W-S approximation predicts a different
number of neutrons outside the cluster than in the band theory.
Since the total number of free neutrons should be the same in
both calculations, the difference in the density profile at large
radius implies a larger difference in magnitude at small radius.
This is more clearly seen on Fig. 3 by plotting the integrated
number N (r) of free neutrons inside the W-S cell at radius r ,
defined by

N (r) = 4π

∫ r

0
r ′2ρ(r ′)dr ′, (10)

ρ(r) being the local density of unbound neutrons. The figure
shows that the W-S approximation underestimates the number
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FIG. 3. Integrated unbound neutron number (see text) calculated
with the W-S approximation (WS, full lines) and the band theory (BT,
dotted lines).
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Nin = N (R) of free neutrons inside the region of radius R

around the cluster and consequently overestimates the number
Nout = N (Rcell) − N (R) of free neutrons outside. For both cal-
culations, the number of free neutrons in the cell is N (Rcell) =
70. Quantitatively taking R = 15 fm, the difference between
the two calculations is about �N = |�Nin| = |�Nout| = 3,

which is rather small.
This first comparison shows that the single-particle wave

functions of unbound neutrons are qualitatively well repro-
duced by the W-S approximation inside the nuclear clusters.
The main differences in the wave functions between the two
calculations are found in the interstitial region due to the
different boundary conditions. However, this has a rather small
effect on the ground state properties of the neutron gas, such
as the neutron density distribution. More generally, the W-S
approximation can be expected to be a good approximation to
the full band theory for evaluating the matrix elements of any
operator taking vanishing values outside the cluster region.

B. Single-particle energy spectrum

Figures 4 and 5 show the energy spectrum of the unbound
neutrons obtained in the band theory and in the W-S approx-
imation, respectively. It should be noted from Fig. 5 that the
spin-orbit splitting is very weak for d, f, g, and h states (as
predicted by Negele and Vautherin [5]) but not for p states.
This is because the spin-orbit splitting is proportional to the
convolution of the density gradient together with the wave
functions. The density gradient is localized in the central
cluster, while the d, f, g, and h states are mostly in the
external region. For those states, the convolution leads to a
weak splitting.

Since in band theory, the energies depend also on the
wave vector k, only the energy bands along some specific
symmetry directions in k space are displayed. The energy
spectrum obtained with the W-S approximation is comparable
to the one obtained in the band theory for the symmetry point
	 corresponding to the center k = 0 of the first Brillouin
zone (W-S cell of the reciprocal lattice). The correspondence
is not exact, and the differences come from the spherical
approximation. As a result, the W-S approximation predicts
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FIG. 4. Unbound single-particle energy spectrum as obtained in
the band theory vs the Bloch wave vector k, along high symmetry
lines in the first Brillouin zone using standard notations [20].
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FIG. 5. Unbound single-particle energy spectrum obtained in the
W-S approximation.

less states but with larger degeneracies than the band theory
at the symmetry point 	. The figures show clearly another
important difference between the band theory and the W-S
approximation: in the former case, the energy spectrum is
continuous; while in the latter case, it is discrete.

A relevant quantity for comparing the energy spectra is
the level density, which plays a pivotal role when calculating
dynamical processes. It is defined by

g(E) = Vcell

∑
α

∫
BZ

d3k
(2π )3

δ(E − εαk), (11)

where the integral is taken over the first Brillouin zone (BZ).
Using the δ function to integrate out one of the variables,

the level density becomes

g(E) = Vcell

(2π )3

∑
α

∫
dS(E)

|∇kεαk| , (12)

where the integral is taken over the surface of constant energy
εαk = E in k space. Expression (12) shows that the level
density is a probe of the topology of constant energy surfaces in
k space. We have extracted the level density from band theory
by using the Gilat-Raubenheimer method as in Ref. [14].

In the W-S approximation, the level density reduces to a
discrete sum

gWS(E) =
∑
nj�

(2j + 1)δ(E − εnj�). (13)

In Fig. 6, we show the level density predicted by the band
theory for the unbound single-particle levels. As expected, the
figure shows that the energy spectrum in the band theory is
continuous and has a complex fine structure. The spectrum
exhibits a quasiband gap of about 30 keV slightly around
90 keV. This is in sharp contrast with the W-S approximation
for which the energy levels are discrete and separated by about
100 keV. In other words, the W-S approximation overestimates
the neutron shell effects. The global energy dependence of the
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FIG. 6. Level density for neutron unbound states calculated with
the band theory (solid line) compared with the prediction of the free
Fermi gas (dashed line). The energy resolution is of the order of keV.

level density follows the behavior of the free Fermi gas,

g(E) � Vcell

2π2

(
2m

h̄2

)3/2√
E − Ev, (14)

where Ev � −0.031 MeV is the energy at the bottom of the
valence band. The agreement between the two curves is very
good for energies close to Ev . This means that the Fermi
surface is nearly spherical at low energies, as confirmed by
the calculations shown on Fig. 7. This is because the Fermi
wavelength of the unbound neutrons is much larger at low
energies than the lattice spacing. As a consequence, the effect
of Bragg diffraction is negligible. It can be inferred from Fig.
6 that distortions of the Fermi surface from the spherical shape
happens at energies larger than 0. The first kink around the
zero of energy is a characteristic van Hove singularity (as
a result of the vanishing of the gradient ∇k εαk at some k
points in the expression (12), also visible on Fig. 4), and
indicates a topological transition of the Fermi surface. This
occurs when the Fermi sphere touches the faces of the first
Brillouin zone. For a body-centered-cubic lattice, the transition
takes place when the radius of the sphere is equal to

√
2π/a

where a is the lattice spacing. Above the first kink, the Fermi
surface becomes nonspherical with the appearance of necks
close to the Brillouin zone faces, as illustrated on Fig. 8.

FIG. 7. (Color online) Constant neutron energy surface of a body-
centered-cubic lattice of 200Zr inside the first Brillouin zone for E =
−0.0015 MeV.

FIG. 8. (Color online) Same as Fig. 7, but for E = 0.0085 MeV.

The Fermi surface undergoes further topological changes as
it crosses Bragg planes (higher Brillouin zones) as revealed
by the singularities in the level density. The actual Fermi
surface (associated with the 160 neutrons per cell) has a very
complicated shape with 11 branches (associated with the 11
bands that cross the Fermi level).

In Fig. 9, we show the integrated number of single-particle
levels which are below a given energy E, that is,

N (E) =
∫ E

Ev

dεg(ε). (15)

The W-S approximation exhibits a stair step structure due
to the discretization of the states. As already noticed, the
energy levels are discrete and highly degenerate, because of the
imposed spherical symmetry around the cluster. In contrast, in
the band theory, the spherical symmetry is partly broken due
to the translational symmetry of the crystal lattice. The energy
levels thus broaden into bands, with a low residual degeneracy
(at most six at each k point for cubic crystals, counting the spin
degeneracy [20]), which overlap so that the energy spectrum
is continuous.

In conclusion, for processes involving transferred energies
above the characteristic level spacing around the Fermi energy,
the differences between the W-S approximation and the full
band theory are expected to be small. For instance, it is
typically the case for the neutrino response function [21] or
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FIG. 9. Integrated state number calculated with the W-S approx-
imation (WS, dashed line), band theory (BT, solid line), and free
Fermi gas (dotted line).
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for thermal effects before the star cools completely down.
However, at lower energies, as pertaining, for instance, to the
effective neutron mass relevant for fluid dynamics [13–15],
the full band theory is required. The level spacing can be
roughly evaluated from the quantity h̄2/2mR2

cell. From the
top to the bottom layers of the crust, the characteristic level
spacing varies from about 100 to 200 keV, which corresponds
to temperatures of the order of 109 K. Such temperatures are
found in young neutron stars less than a few hundred years
after their birth [22]. The W-S approximation is therefore
well suited for describing the hot dense matter (except for the
high density layers where the spherical approximation may be
too restrictive) in young neutron stars and in the collapsing
core of massive stars during supernova explosions [6]. This
discussion, however, does not take into account pairing effects,
which are negligible in the outermost layers of the crust
considered in this work but are expected to be important in
denser, deeper layers [17]. It should be noted that a recent study
has shown that the pairing properties of the unbound neutrons
are strongly sensitive to the choice of boundary conditions in
the W-S approximation, especially in the bottom layers of the
crust [12,23].

III. CONCLUSION

In this article, a comparison has been made between
the full band theory and the W-S approximation which has
been widely applied in studies of neutron star crust. The
external layers of the inner crust at a baryon density ρ ∼ 7 ×
1011 g/cm3 composed of zirconium-like clusters 200Zr have
been considered. Since the bound nucleons are not much
affected by the boundary conditions, we focused on the
unbound neutrons. We have shown that ground state properties,
such as the unbound neutron density distribution, are rather
well reproduced by the W-S approximation, while dynamical
properties depend on the process of interest or the energy
exchanged. It should also be noted that depending on the
quantities of interest, the free neutron model for the unbound

neutrons could be a good first approximation. In the future, it
could be interesting to explore an intermediate scheme that
goes beyond the Wigner-Seitz approximation and remains
simpler to implement in numerical calculations than the full
band theory.

The energy spectrum is continuous in the full band theory
with no energy gaps, while the W-S approximation yields a
discrete spectrum thereby overestimating neutron shell effects.
The W-S approximation can therefore be applied whenever
the processes under consideration involve energies larger than
the level spacing induced by the discretization, which in the
present case is of order ∼100 keV. In particular, the W-S
approximation is well suited for describing the hot (T >∼
109 K) dense matter in the inner crust of young neutron stars
and in the collapsing core of massive stars during supernova
explosions. However, low temperature transport processes,
such as the effective neutron mass relating the momentum
to the velocity and giving rise to entrainment effects, require
a fine knowledge of the energy spectrum around the Fermi
level (i.e., the Fermi surface) which cannot be reproduced by
the W-S approximation. Since the lattice spacing is predicted
to decrease with increasing depth, becoming comparable to
the size of the nuclear clusters and to the Fermi wavelength
of the free neutrons at the bottom of the crust, the validity
of the W-S approximation should be carefully investigated in
the denser layers of the crust, especially concerning pairing
effects. Besides, the assumption of spherical symmetry in
the W-S approximation is probably too restrictive near the
crust-core interface where the clusters are expected to be
strongly deformed [16].
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