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Kaon condensation and composition of neutron star matter in a
modified quark-meson coupling model
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We use the modified quark-meson coupling (MQMC) model to study the composition profile of neutron star
matter and compare the results with those calculated by quantum hadrodynamics (QHD). Both MQMC and QHD
model parameters are adjusted to produce exactly the same saturation properties so that we can investigate the
model dependences of the matter composition at high densities. We consider the possibility of deep kaon optical
potential and find that the composition of matter is very sensitive to the interaction strength of kaons with matter.
The onset densities of the kaon condensation are studied in detail by varying the kaon optical potentials. We
find that the MQMC model produces the kaon condensation at lower densities than QHD. The presence of kaon
condensation changes drastically the population of octet baryons and leptons. Once the kaon condensation takes
place, the population of kaons builds up very quickly, and kaons become the dominant component of the matter.
We find that the ω meson plays an important role in increasing the kaon population and suppressing the hyperon
population.
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I. INTRODUCTION

Observation of neutron star properties such as mass, size,
and temperature provides us with important clues to the
understanding of the state of matter at extremely high densities.
In the 1970s, the maximum mass of the neutron star was
calculated with the NN potentials available at that time [1–4]
and mean field models [5,6]. Most of the calculations done
in the 1970s resulted in stiff equations of state, and thus the
maximum mass of a neutron star was predicted to be larger
than 2M�, where M� is the solar mass. Only the Reid soft core
potential yielded a soft equation of state and consequently a
small maximum mass of a neutron star, 1.6M� [1]. Recent
observations of the masses of binary pulsars [7], which are
candidates of neutron stars, indicate that the maximum mass of
neutron stars are roughly around 1.5M�, substantially smaller
than most of the values predicted in the 1970s. (However, very
recent observations seem to suggest the possible existence of
more massive pulsars in the range (1.8–2.0)M� [8,9], though
further confirmation is needed.) On the other hand, exotic
forms of matter, i.e., matter consisting of degrees of freedom
other than the nucleons, were proposed many years ago. Some
of the proposed exotic states of matter include those with
the creation of hyperons [10], Bose-Einstein condensation
(pions [11] or kaons [12]), strange matter [13], and quark
deconfinement [14–16]. These exotic states seem to reduce
the maximum mass of a neutron star close to the observations
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[17–19], implying that exotic degrees of freedom seem to be
needed to reproduce the observed masses of neutron stars.

In this work, we consider the strangeness degrees of
freedom by including both hyperon creation and kaon con-
densation in the neutron star matter. (It is the antikaon that
matters here, but we simply refer to both kaons and antikaons
as kaons for brevity.) The masses and energies of the hyperons
and kaons in the medium are sensitive to their interactions
with the surrounding matter. In the meson-exchange picture,
meson-hyperon and meson-kaon coupling constants can fix the
strength of these interactions. The meson-hyperon coupling
constants may be determined from the binding energies of
hyperons in hypernuclei. The meson-kaon coupling constants
have been studied by using the kaon-nucleon scattering [20,21]
and kaonic atom data [20]. Recently, the magnitudes of the
kaon-nucleus potential in matter have attracted much attention.
Some calculations [20,22,23] show that the real part of the K−-
nucleus optical potential UK− is shallow (UK− ≈ −50 MeV),
but some other calculations suggest that UK− can be as large
as about −120 MeV [21,24] or even close to −200 MeV [25].

Akaishi and Yamazaki predicted possible existence of
deeply bound kaonic nuclei [26], in which UK− at normal
density ρ0 was estimated to be about −120 MeV. Then, ex-
periments at KEK claimed the observation of tribaryon kaonic
nuclei, S0 [27] and S+ [28], which seemed to suggest that K−
may be even more deeply bound than the theoretical prediction
[26] (The former claim [27], however, was withdrawn by the
experimental group [29]). FINUDA Collaboration at DA�NE
[30] and a BNL experiment with 16O(K−, n) reaction [31] also
reported distinct peaks. More recently, there was a theoretical
work which considered large kaonic binding energies and
calculated widths of kaonic nuclear bound states [32]. The
identities of these experimental peaks need to be studied
further experimentally and theoretically. However, in this
work, we consider the possibility of deep optical potential
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of kaons in nuclei and explore the consequences in the
composition profile of neutron star matter.

In this work, for the description of dense matter we employ
the modified quark-meson coupling (MQMC) model [33].
Nucleons and hyperons in the baryon octet are treated as MIT
bags. The bag constant BB and phenomenological constant
ZB for a baryon B are fixed to reproduce the free mass of
each baryon B. Coupling constants between (u, d) quarks in
the bags and (σ, ω, ρ) mesons are adjusted to give us the
binding energy per a nucleon Eb/A = 16 MeV and symmetry
energy asym = 32.5 MeV at the saturation density ρ0 =
0.17 fm−3. Since the interaction between the s quark and
mesons are not well known, we adopt the standard quark
counting rule and assume the s quark is decoupled from
(σ, ω, ρ) mesons. To take into account the interactions between
s quarks, we introduce σ ∗(980) and φ(1020) mesons following
Ref. [18] for the baryon and Ref. [34] for the kaon. We also
assume the kaon as a point particle. This treatment allows us
to use UK− as an input to fix the coupling constant between
the σ meson and the kaon, gσK . In our model, the real part
of the kaon optical potential at ρ = ρ0 can be written as
UK− = −[gσKσ (ρ0) + gωKω(ρ0)], where σ (ρ0) and ω(ρ0) are
the values of the meson fields at ρ0. Using the value of gωK

given by the quark counting rule, we can fix gσK for each given
value of UK− . Once the parameters of the model are fixed, the
composition profile of neutron star matter can be obtained
from the β equilibrium and charge neutrality. We find that
the composition of neutron star matter changes dramatically
depending on the value of UK− .

To investigate the model dependence of the results, we
also employ the quantum hadrodynamics (QHD) model [35]
for calculating the composition of matter. The parameters
of the QHD model are calibrated to produce exactly the
same saturation properties as in the MQMC model. Our
calculations show that the onset densities of the kaon con-
densation and the compositions of matter at high densities
are substantially model dependent. In Sec. II, we introduce
model Lagrangians and fix the model parameters. The results
are discussed in Sec. III. Conclusions and discussions follow
in Sec. IV.

II. THEORY

In this section, we first briefly sketch the MQMC and QHD
models by presenting the model Lagrangians. The models
are calibrated so as to be consistent with each other at the
saturation density by fixing the coupling constants of both
models to produce exactly the same saturation properties:
the saturation density, binding energy, symmetry energy,
nucleon effective mass, and compression modulus. We then
show how the physical quantities that will determine the
composition of the neutron star matter can be obtained
self-consistently.

A. Models

The model Lagrangian comprises the terms for the octet
baryons, exchange mesons, leptons, and kaons, Ltot = LB +
LM + Ll + LK . Octet baryon, exchange meson, and lepton

terms in the mean field approximation can be written as

LB =
∑
B

ψ̄B

[
iγ · ∂ − m∗

B(σ, σ ∗)

− γ 0

(
gωBω0 + gφBφ0 + 1

2
gρBτzρ03

)]
ψB, (1)

LM = −1

2
m2

σ σ 2 − 1

2
m2

σ ∗σ
∗2 + 1

2
m2

ωω2
0

+ 1

2
m2

φφ2
0 + 1

2
m2

ρρ
2
03, (2)

Ll =
∑

l

ψ̄l(iγ · ∂ − ml)ψl, (3)

where B denotes the sum over all the octet baryons
(p, n,�,�+, �0, �−, 0, −), and l stands for the sum over
the free electrons and muons (e−, µ−). σ, ω, and ρ mesons
mediate the interactions between the nonstrange light quarks (u
and d). σ ∗ and φ mesons are introduced to take into account the
interactions between s quarks. LB is of the identical form for
both the MQMC and QHD models, but differs in the definition
of the effective baryon mass m∗

B as will be shown below.

1. MQMC

In the MQMC model, a baryon is a composite system with
quarks in a spherical bag, and its mass is given in terms of
bag parameters and quark eigenenergy. The effective mass of
a baryon in matter m∗

B(σ, σ ∗) can be written as [18,33,36–38]

m∗
B =

√
E2

B −
∑

q

(xq

R

)2
. (4)

The bag energy of a baryon is given by

EB =
∑

q

�q

R
− ZB

R
+ 4

3
πR3BB, (5)

where BB and ZB are the bag constant and a phenomenological
constant for the zero-point motion of a baryon B, respectively.

�q =
√

x2
q + (Rm∗

q)2, where m∗
q(= mq − g

q
σ σ − g

q
σ ∗σ ∗) is the

effective mass of a quark whose free mass is mq . We take
mq = 0 for q = u, d and mq = 150 MeV for q = s. (Other
choices of mq=s values do not make differences in the results
[39].) xq is determined from the boundary condition on the
bag surface r = R,

j0(xq) = βqj1(xq), (6)

where βq =
√

�q−Rm∗
q

�q+Rm∗
q
. In the MQMC model, the bag constant

BB is assumed to depend on density [33,38]. In this work, we
use the extended form in Ref. [18] to include the contribution
from σ ∗ as

BB(σ, σ ∗) = BB0 exp


− 4

mB


g′B

σ

∑
q=u,d

nqσ

+ g′B
σ ∗


3 −

∑
q=u,d

nq


 σ ∗





 , (7)
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where mB is the free mass of the baryon B, assuming that the
σ meson couples to u and d quarks only and that the σ ∗ meson
couples to the s quark only.

2. QHD

In the QHD model, a baryon is treated as a point particle,
and thus its effective mass is simply written as

m∗
B = mB − gσBσ − gσ ∗Bσ ∗. (8)

To reproduce the same saturation properties as obtained in the
MQMC model, self-interactions of the σ field [40]

UQHD
σ = 1

3g2σ
3 + 1

4g3σ
4 (9)

are added to Eq. (2) so that

LQHD
M = LM − UQHD

σ . (10)

As mentioned above, the baryon and the lepton Lagrangians
for the QHD model take the form given by Eqs. (1) and (3).

3. Kaon

The effective Lagrangian for the kaon may be expressed
as [41]

LK = D∗
µK∗DµK − m∗

K
2
K∗K, (11)

where Dµ = ∂µ + igωKωµ − igφKφµ + i 1
2gρK �τ · �ρµ. In this

work, we treat the kaon as a point particle in both MQMC and
QHD models, and its effective mass is given by

m∗
K = mK − gσKσ − gσ ∗Kσ ∗. (12)

The equation of motion for a kaon is given by

[DµDµ + m∗
K

2]K(x) = 0. (13)

In uniform infinite matter, the kaon field K(x) can be written
as a plane wave. Substituting the plane wave solution into the
equation of motion, we obtain the dispersion relation for the
antikaon

ωK = m∗
K − gωKω0 + gφKφ0 − gρK

1
2ρ03. (14)

B. Model parameters

1. MQMC

In the MQMC model, MIT bag parameters BB0 and
ZB are determined to reproduce the free mass of a
baryon B,m∗

B |ρ=0 = mB with the minimization condition
∂mB

∂R
|R=R0 = 0 at a free bag radius R0, which we choose as

R0 = 0.6 fm. The bag parameters BB0 and ZB for the octet
baryons are listed in Table I.

Three saturation conditions ρ0, Eb/A, and asym could de-
termine three quark-meson coupling constants gu,d

σ , gu,d
ω , and

gu,d
ρ , assuming u and d quarks to be identical in the isodoublet.

The MQMC model, however, introduces an additional constant
g′B

σ in Eq. (7). Thus we fix gu,d
σ = 1, and adjust the remaining

three constants to meet the three conditions. The resulting
coupling constants are given in Table II together with the

TABLE I. Bag constants BB0 and phe-
nomenological constants ZB for octet
baryons to reproduce the free mass of
each baryon. Bag radius is chosen as R0 =
0.6 fm for all octet baryons; bare masses of
quarks are fixed as mu(d) = 0 MeV and ms =
150 MeV.

B mB (MeV) B
1/4
B0 (MeV) ZB

N 939.0 188.1 2.030
� 1115.6 197.6 1.926
�0 1192.0 202.9 1.826
�− 1197.3 203.3 1.819
0 1314.7 207.6 1.775
− 1321.3 208.0 1.765

ratio of the effective mass of the nucleon m∗
N/mN and the

compression modulus K . m∗
N and K are within reasonable

ranges: m∗
N = (0.7 ∼ 0.8)mN and K = 200 ∼ 300 MeV.

The coupling constants between s quarks and mesons
cannot be determined from the saturation properties. In prin-
ciple, experimental data from hypernuclei and kaon-nucleus
scattering could be used to determine the coupling constants
between s quarks and mesons (for example, see Ref. [42]).
However, these coupling constants are not well known yet, and
for simplicity we assume that the quark counting rule holds
and that the s quark does not interact with u and d quarks.
Then we have

gs
σ = gs

ω = gs
ρ = gu,d

σ∗ = g
u,d
φ = 0. (15)

To fix the meson-baryon coupling constants in the model
Lagrangian, we also use the quark counting rule

1
3gωN = 1

2gω� = 1
2gω� = gω = gq

ω,

gρN = gρ� = gρ = gq
ρ, gρ� = 0, (16)

gφ� = gφ� = 1
2gφ = gs

φ,

and the SU(6) symmetry

gs
σ∗ =

√
2gu,d

σ =
√

2,

gs
φ =

√
2gu,d

ω = 3.83, (17)

g′B
σ ∗ =

√
2g′B

σ .

The quark-meson coupling constants g
q
ω and g

q
ρ given in

Table II and the relations in Eqs. (15)–(17) determine all the
meson-baryon coupling of the MQMC model.

TABLE II. Coupling constants between (u, d) quarks and
(σ, ω, ρ) mesons in the MQMC model to reproduce the binding
energy Eb/A = 16 MeV and symmetry energy asym = 32.5 MeV
at the saturation density 0.17 fm−3. m∗

N/mN and K are the ratio of
the effective mass to the free mass of the nucleon and the compression
modulus at the saturation density, respectively.

gq
σ gq

ω g′B
σ gq

ρ m∗
N/mN K (MeV)

1.0 2.71 2.27 7.88 0.78 285.5
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TABLE III. Meson-nucleon coupling constants and coeffi-
cients of the σ -meson self-interaction terms used in the QHD
model. They reproduce the same saturation properties as in
the MQMC model:ρ0 = 0.17 fm−3, Eb = 16A MeV, asym =
32.5 MeV, m∗

N = 0.78mN, and K = 285.5 MeV.

gσN gωN gρN g2 (fm−1) g3

8.06 8.19 7.88 12.139 48.414

2. QHD

In the QHD model, gσN and gωN are adjusted to yield
ρ0 and Eb, and gρN is fitted to produce asym. g2 and g3

in UQHD
σ of Eq. (9) are fixed to reproduce the same m∗

N

and K values as listed in Table II for the MQMC model.
The coupling constants determined in this way are given in
Table III. In the MQMC model, meson-baryon coupling
constants are obtained from the quark-meson coupling con-
stants. On the other hand, in QHD meson-nucleon coupling
constants provide the starting point for the determination
of the other remaining meson-baryon coupling constants.
Once meson-nucleon coupling constants are fixed from the
saturation properties, meson-hyperon coupling constants can
be obtained by the quark counting rule (as in Eq. (16)) and
the SU(6) symmetry (as in Eq. (17)). The coupling constants
between strange mesons and hyperons can be obtained by
combining the quark counting rule and the SU(6) symmetry,
e.g., gφ� = √

2gωN/3 and gσ ∗� = √
2gσN/3.

3. Kaon

There are five kaon-meson coupling constants in our
models: gσK, gωK, gρK, gσ ∗K, and gφK . The constants gωK

and gρK can be fixed from the quark counting rule: gωK = g
q
ω

and gρK = g
q
ρ for the MQMC model, and gωK = gωN/3 and

gρK = gρN for QHD. (Obviously gρK from the MQMC model
is the same as that from QHD, and gωK (= 2.71) from the
MQMC model is essentially the same as gωK (= 2.73) from
QHD.) gσ ∗K may be fixed from f0(980) decay [43], and gφK

from the SU(6) relation
√

2gφK = gππρ = 6.04 [44]. gσ ∗K and
gφK thus fixed are 2.65 and 4.27, respectively. The remaining
coupling constant, gσK , can be related to the real part of the
optical potential of a kaon at the saturation density through
UK− = −(gσKσ + gωKω0). gσK values corresponding to sev-
eral values of UK− are listed in Table IV for both MQMC and
QHD models.

Thus, out of five kaon-meson coupling constants,
gρK, gσ ∗K , and gφK are the same for both models. gωKvalues
are essentially the same for both models. Also, gσK values

TABLE IV. gσK determined for several UK− values in the MQMC
and QHD models.

UK− (MeV) −80 −100 −120 −140 −160

gσK (MQMC) 1.25 2.01 2.75 3.50 4.25
gσK (QHD) 1.26 2.04 2.82 3.61 4.39

are very similar in both models for all UK− values as seen in
Table IV. Therefore, all five kaon-meson coupling constants
are practically the same for both MQMC and QHD models.

C. Other quantities relevant to neutron star matter

To obtain the composition of neutron star matter, we need
to determine 16 unknown variables at each matter density,
which include five meson fields (σ, ω, ρ, σ ∗, φ), eight octet
baryon densities, two lepton densities, and the kaon density
ρK . Five meson fields can be determined from their equations
of motion:

m2
σ σ + ∂

∂σ
UQHD

σ =
∑
B

gσBCB(σ )
2JB + 1

2π2

×
∫ kB

0

m∗
B[

k2 + m∗
B

2]1/2 k2dk + gσKρK,

(18)

m2
σ ∗σ

∗ =
∑
B

gσ ∗BCB(σ ∗)
2JB + 1

2π2

×
∫ kB

0

m∗
B[

k2 + m∗
B

2]1/2 k2dk + gσ ∗KρK,

(19)

m2
ωω0 =

∑
B

gωB(2JB + 1)k3
B/(6π2) − gωKρK,

(20)

m2
φφ0 =

∑
B

gφB(2JB + 1)k3
B

/
(6π2) + gφKρK,

(21)

m2
ρρ03 =

∑
B

gρBI3B(2JB + 1)k3
B

/
(6π2) − gρK

× 1

2
ρK, (22)

where JB and I3B are the spin and the isospin projection,
respectively, and kB is the Fermi momentum of the baryon
B. In Eq.(18), ∂

∂σ
UQHD

σ term needs to be there only for QHD
and is not to be included in the MQMC model. CB(σ ) and
CB(σ ∗) are determined from the relations gσBCB(σ ) = − ∂m∗

B

∂σ

and gσ ∗BCB(σ ∗) = − ∂m∗
B

∂σ ∗ . For QHD, CB(σ ) = CB(σ ∗) = 1.
For MQMC, the explicit forms of CB(σ ) and CB(σ ∗) are given
in Ref. [18].

Charge neutrality condition of neutron star matter is
expressed as ∑

B

qBρB − ρK − ρe − ρµ = 0, (23)

where qB is the charge of baryon B and ρB is the number
density of B. Using the charge neutrality and the baryon
number conservation conditions, one can fix two quantities,
e.g., the density of the neutron and the electron. With these
two variables fixed, β equilibrium conditions of the baryons
give us the following seven relations for the chemical potentials
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FIG. 1. Compositions of neutron star matter
calculated from MQMC (left panels) and QHD
(right panels) models.

of p,�,�+, �−, �0, −, and 0 as

µn = µ� = µ�0 = µ0 ,

µn + µe = µ�− = µ− , (24)

µn − µe = µp = µ�+ ,

where the chemical potential of baryon B is given by

µB =
√

k2
B + m∗

B
2(σ, σ ∗) + gωBω0 + gφBφ0 + gρBI3Bρ03.

The chemical potential of a noninteracting lepton l is simply

written as µl =
√

k2
l + m2

l . The β-equilibrium condition for
leptons

µe = µµ (25)

determines the density of muons. At a density where the
condition

ωK = µn − µp (26)

is satisfied, kaons are condensed, and the kaon density ρK

becomes nonzero. Solving the Eqs. (18)–(26) self-consistently
and simultaneously, one can determine the 16 variables
uniquely.

III. RESULTS

Figure 1 shows the relative populations, the ratios of
the densities of octet baryons, leptons, and K− to the total
baryon density, in the neutron star matter as functions of ρ/ρ0

up to ρ = 10ρ0. The left panels show the results from the
MQMC model and the right from the QHD model for UK− =
−120,−140, and −160 MeV. (Figures for UK− = −80 and
−100 MeV are not shown here because they are not too much
different from the one for UK− = −120 MeV particularly for
QHD.) Figures from both models show that the onset density of
the kaon condensation ρcrit becomes lower as |UK−| increases.

To see how ρcrit changes depending on UK− , let us consider
Eq. (26), which determines ρcrit. Figure 2 displays ωK and
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FIG. 2. Kaon energies ωK for three UK−

values. At densities where ωK and µn − µp

intersect, kaons start to condense.
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µn − µp, which are, respectively, the left and the right
hand sides of Eq. (26) (computed without including kaon
condensation just for producing this figure). The left panel is
from the MQMC model, and the right panel from QHD. At a
density where the curve of ωK intersects with that of µn − µp,
kaon condensation sets in. Among the coupling constants and
meson fields that determine ωK , only gσK depends on UK− .
The σ meson contributes to ωK attractively, as can be seen
in Eq. (14). Thus ωK becomes smaller for a larger |UK−|, as
shown in Fig. 2.

Figure 1 also shows that as |UK−| increases from 120 to
140 MeV, ρcrit changes drastically in both MQMC and QHD
models; but as |UK−| increases further above 140 MeV, ρcrit

changes only moderately. This can also be seen in Fig. 2. As
|UK−| increases from 120 to 140 MeV, the intersection between
the curves for µn − µp and ωK moves rapidly (particularly for
QHD); whereas when |UK−| increases further above 140 MeV,
the intersection shifts only a little to lower densities.

Another common feature of the two models is that regard-
less of ρcrit, once the kaon is created, the density of K− piles up
very quickly and overwhelms the population of the hyperons
and even the nucleons. This behavior was also obtained by
other authors [17,34,41,45]. The reason can be partly attributed
to the ω meson. The ω-meson term in the energy of K− [in
Eq. (14)] has a negative sign and is thus attractive, but it is
repulsive for octet baryons. Figure 3 shows the ω meson is a
dominant meson at higher densities in both MQMC and QHD
models. Thus the ω meson enhances the population of K− but
suppresses baryons, and the kaon density increases rapidly.
In addition, due to the competition between the negatively
charged hyperons and K− in the charge neutrality condition,
the negative hyperons are highly suppressed and in some cases
not even created at all as soon as the kaon condensation sets
in. Positively charged hyperons, on the other hand, receive
the opposite effects from the kaon condensation, and �+ is
created at lower densities as |UK−| increases more. The proton
density is also enhanced by large abundance of K−, which

facilitates in turn the enhancement of �+ population through
the chemical equilibrium condition of the positively charged
hyperons in Eq. (24).

Let us now discuss different aspects of the two model
calculations. First, Fig. 1 shows that ρcrit from the MQMC
model is lower than that from QHD. For UK− = −120,−140,
and −160 MeV, ρcrit values are 5.9ρ0, 3.8ρ0 and 3.0ρ0 in the
MQMC model, respectively, while they are 9.8ρ0, 4.3ρ0, and
3.3ρ0 in QHD. Secondly, the MQMC model predicts a larger
population of the kaon than QHD for a given UK− value.
Figure 2 shows that ωK calculated from the MQMC model
decreases more rapidly with density than ωK from QHD for
each UK− value. The curves for µn − µp are more or less the
same for both models at ρ <∼ 4ρ0; but at ρ > 4ρ0, µn − µp

decreases faster in QHD. Thus the intersection and kaon
condensation occur at lower densities in the MQMC model.
This behavior of the intersection in Fig. 2 is well reflected in
the kaon condensation onset density ρcrit in Fig. 1. Figure 3
shows that the σ -meson field calculated by the MQMC model
is larger than that calculated by QHD. A larger σ field in
the MQMC model makes m∗

K and, consequently, ωK smaller.
On the other hand, as seen in Fig. 2, µn − µp from QHD
decreases faster with density at higher densities than that from
MQMC. Thus the intersection of the ωK curve with the curve
for µn − µp occurs at lower densities with the MQMC model.
Therefore, ρcrit is smaller in the MQMC model.

Another model dependency of the results can be seen from
the population of kaons, which is larger in the MQMC model.
The effective mass of a kaon as a point particle is determined
by σ and σ ∗ mesons through the relation m∗

K = mK − gσKσ −
gσ ∗Kσ ∗ and is plotted in Fig. 4. Since the σ fields are larger
in the MQMC model (as shown in Fig. 3), the effective mass
and energy of a kaon are smaller in the MQMC model than
in the QHD. Thus, kaon condensation takes place more in the
MQMC model.

Figures 3 and 4 also show that even though σ -meson field
from the MQMC model is larger than that from the QHD
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as the densities increase, the reduction of the effective mass
of baryons is smaller (or similar) with the MQMC model.
If one could parametrize the effective mass of baryons from
the MQMC model in the form of m∗

B = mB − gσB(σ )σ −
gσ ∗B(σ ∗)σ ∗, where gσB(σ ) and gσ ∗B(σ ∗) are functions of σ

and σ ∗, respectively, the results in Fig. 4 might imply that
gσB(σ ) and gσ ∗B(σ ∗) are decreasing functions with respect
to the density. The rate of decrease is rather high, since
the product [gσB(σ )σ ]MQMC is smaller than (or similar to)
[gσBσ ]QHD, while the σ -field value from MQMC is much
greater than that from QHD. Such a decrease of gσB(σ ) in the
MQMC model may be regarded as partial restoration of the
chiral symmetry at high densities.

We have calibrated both the MQMC and QHD model
parameters to the same saturation properties. However, we find
that the neutron star matter composition profiles from the two
models are quite different, and that they show significant model
dependence. QHD assumes the baryons as point particles,
whereas the MQMC model treats the baryons as MIT bags.
Thus, the major difference between the two models is in the
definition of the effective mass of baryons, m∗

B . The equation
of motion for the σ -meson field is also different accordingly.
m∗

B in QHD is a simple linear function of the σ field, and
the factor CB(σ ) in Eq. (18) is a constant. In the MQMC
model, m∗

B is a nonlinear function of the σ field, and thus
CB(σ ) is highly nonlinear. When these nonlinear quantities m∗

B

and CB(σ ) are expanded in powers of the σ field, an infinite
number of σ -field terms would appear. (Cubic and quartic
terms are explicitly taken into account in the QHD model as in
Eq. (9).) Higher order terms can be interpreted as higher order
contributions such as self-interactions of meson fields, which
are believed to be more important at high densities. But at
high densities, it can be questioned whether the nonlinear
terms of the σ meson in the MQMC model account for the
higher order effects properly and consistently. For instance, it
is generally known that as the baryons come closer to each
other, the interplay of heavy mesons becomes more important.
At high enough densities, their self-interaction contributions
may need to be included on the same ground as for the σ

meson, but the present MQMC model truncates the heavy
meson terms at the leading order.

It seems worthwhile to discuss at this point two more
aspects of our results. The first one is the equation of state
(EoS) and the resulting mass-radius relation of the neutron
star. The second point is the dependence of our results on the
� hyperon interaction in matter, which is not yet well known.

Let us first consider the EoS and the maximum mass of the
neutron star. As the kaon (K−) appears and condensates, the
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FIG. 5. Comparison of the EoS with and without kaons in QHD
model. The Gibbs condition is used to treat the mixed phase.

number of negatively charged hyperons decreases to satisfy the
charge neutrality. The decrease in the number of baryons will
result in the reduction of the pressure and lead to a softening
of the EoS. Figure 5 shows such a softening of the EoS due
to the kaon condensation. In calculating the EoS of a system
consisting of multicomponent substances, as in the case with
the kaon condensation, the Gibbs condition has to be employed
for the proper description of the mixed phase. The curves
in Fig. 5 are the results obtained with the QHD and Gibbs
condition. As kaons appear, the EoS becomes considerably
soft, and the effect becomes more pronounced with a stronger
attraction, i.e., for a larger |UK−| value. For the MQMC
model, however, applying the Gibbs conditions does not give
us a converging solution. Solving the 16 highly nonlinear
equations together with Gibbs conditions doubled the number
of equations to be solved, and the convergence could not be
reached. It is not clear to us whether the convergence problem
is due to numerical problems or to nonlinearity which can
cause bifurcation or chaos. Therefore, we used a Maxwell
construction for the MQMC model. (Some literature [46]
shows that Maxwell construction is a good approximation to
the Gibbs condition; but in some other literature [41], it was
emphasized that the Gibbs condition produces significantly
different results from those of Maxwell construction. Below
we show that in our case the neutron star mass itself does not
change much whether we use Maxwell or Gibbs conditions for
QHD. Thus our use of Maxwell construction for the MQMC
model may be considered as an acceptable approximation.) We
solve the Tolman-Oppenheimer-Volkoff equation to calculate
the maximum mass of a neutron star. The results are shown
in Table V, where the central density, maximum mass, and
corresponding radius are listed for both MQMC and QHD
models. The maximum mass calculated with QHD model is

TABLE V. Maximum mass of a neutron star M , corresponding radius R (in km), and density at the center of the star ρc

for various UK− , for Maxwell (Mx) and Gibbs (Gb) conditions.

UK− (MeV) MQMC (Mx) QHD (Mx) QHD (Gb)

ρc/ρ0 M/M� R ρc/ρ0 M/M� R ρc/ρ0 M/M� R

−120 6.2 1.61 11.8 6.1 1.50 11.4 6.1 1.50 11.4
−140 4.6 1.53 12.8 5.0 1.46 12.1 5.0 1.45 12.1
−160 4.6 1.45 13.1 4.0 1.32 12.7 4.3 1.19 12.3
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roughly 10% smaller than that with MQMC model. For both
models, the maximum mass becomes smaller for a larger |UK |.
The maximum mass calculated with MQMC and |UK−| =
160 MeV is compatible with observation, while the maximum
mass calculated with QHD and |UK−| = 160 MeV becomes
too small to be compatible with the observed values. However,
this fact may not necessarily rule out the possibility of |UK−|
becoming as large as 160 MeV because there are other possible
mechanisms which are not included.

Now let us consider the second aspect mentioned above. In
the calculations made so far, we have assumed the quark-
counting rule in determining the hyperon-meson coupling
constants. Experiments on � hypernuclei indicate that quark
counting is a good approximation of the realistic interaction
of � hyperons in nuclei, which gives the value of � optical
potential at saturation density in the range −40 ∼ −30 MeV.
On the other hand, there is large ambiguity in the � hyperon
interaction strength. Reference [47] shows that � hyperon
feels repulsion rather than attraction in a nuclear medium.
There are also experimental indications that the � hyperon
interaction is repulsive [48]. If the � interaction is indeed
repulsive, the population profile of neutron star matter can
change significantly from what was shown earlier in this work,
since we have used the quark counting rule. The number
of �− is closely related to the onset of K− condensation,
since they compete with each other for the charge neutrality
condition. To see the effect of the possible repulsive nature
of the � interaction on the kaon condensation, we repeated
the calculations with a repulsive � interaction. We first fit the
coupling constants g′�

σ in MQMC and gσ� in QHD so that
the � optical potential value at the saturation density equaled
+30 MeV, and fixed the remaining meson-� coupling con-
stants with the quark counting rule. The resulting population
profiles with the kaon optical potential UK− = −140 MeV are
shown in Fig. 6. Compared with the quark-counting results
in Fig. 1, the onset of kaon condensation occurs at slightly
lower densities. This minor change happens regardless of UK−

value. However, the main features of kaon condensation, i.e.,
its onset density, fast increase of population, and dominance
at high densities are not much affected by the change of �

interaction in nuclear medium.

IV. CONCLUSIONS AND DISCUSSIONS

Using the modified quark-meson coupling model, we have
obtained the composition profiles of neutron star matter,

focusing on the effects of the strange particles of hyperons
and kaons. Motivated by recent theoretical predictions of
deeply bound kaonic states [26] and the subsequent claims
of the observations of interesting peaks found in KEK [27,28],
FINUDA [30], and BNL [31] experiments, we considered the
large kaon optical potential UK− . By varying the value of
UK− , we have investigated how the onset density of the kaon
condensation and the composition of the stellar matter change.
Employing the QHD model parameters which satisfy exactly
the same saturation conditions as the MQMC model, we have
investigated the model dependence of the results.

We observed two common features from the two model
calculations. First, a larger |UK−| produces a smaller onset
density of the kaon condensation. This behavior is easily
understood from the relation between UK− and gσK together
with the role of gσK to the energy of the kaon ωK . Secondly,
the number of kaons rapidly increases, and the number of
negatively charged hyperons is strongly suppressed. This is
because the ω meson gives rise to attraction to K−, whereas it
couples to baryons repulsively.

Model dependence was also observed. The kaon condensa-
tion takes place at lower densities in the MQMC model. The
number of kaons is always larger with the MQMC model for
given UK− values. Larger σ -meson fields in the MQMC model
can explain these behaviors. The differences in the results from
the two models become more prominent at larger densities.
Growing discrepancies at higher densities have their origins
partly in the effective mass of baryons in each model, which
greatly affects the self-consistency condition of the σ meson.
The factor CB(σ ) in the self-consistency condition of the σ

meson is highly nonlinear in the MQMC model, which can be
interpreted as an infinite number of σ -meson self-interaction
terms. These higher order terms may require more proper and
consistent treatment at high densities.

An important issue in the dense matter physics is the
restoration of the chiral symmetry. According to Ref. [49],
not only the mass but also the pion decay constant and
meson-nucleon coupling constants decrease at a similar ratio
at around the nuclear saturation density. In Ref. [50], the
idea of scaling behavior is applied to the neutron star matter
using MQMC and QHD models with only nucleon degrees of
freedom, and it is shown that the equation of state becomes
stiffer when scaling effects are considered. This implies that
if we include a scaling behavior in our present models, it may
ignite the onset of exotic states earlier than the present results
which do not include a scaling.

055804-8



KAON CONDENSATION AND COMPOSITION OF NEUTRON . . . PHYSICAL REVIEW C 75, 055804 (2007)

In the kaon sector, the coupling constants of a kaon and
exchange mesons are currently an important issue. We took
various values of the optical potential of K− as input to fix gσK .
Other kaon-meson coupling constants are fixed from naive
quark counting. It is known, however, that the K+ potential is
repulsive with the magnitude UK+ ∼ 10 MeV at the saturation
density [51]. If UK+ , as well as UK− , is used as an input,
then gσK and gωK can be determined uniquely. For instance,
if we take UK− = −120 and UK+ = 20 MeV, then we get
gσK = 2.041 and gωK = 4.187. This value of gσK (=2.041) is
smaller than the value listed in Table IV, while gωK (=4.187)
is nearly twice the gωK fixed from the quark counting. Both
σ and ω mesons contribute attractively to the K− energy, but
since the ω meson becomes a dominant component at higher
densities, taking into account UK+ can produce appreciably
different results. It may be interesting to see the effects of UK+

on the kaon condensation.
In our calculations, we assumed the kaon to be a point

particle in both quark and hadron models. Comparison of the
two models, however, shows that whether we treat a hadron
as a bag (MQMC) or a point particle (QHD) can produce a
significant difference. Therefore, it is worthwhile to treat the
kaon as a bag and compare the corresponding result with that
of a pointlike kaon. In Ref. [45], a kaon is treated as a bag in

the framework of the QMC model, but no work has been done
yet with the MQMC model.

We assume m∗
K to be a linear function of σ field, but some

authors employ a nonlinear form [17,44]:

m∗2
K = m2

K − gσKmKσ. (27)

If we expand this expression in powers of σ/mK , we obtain

m∗
K 	 mK

[
1 − 1

2
gσK

σ

mK

+ O
(
σ 2/m2

K

)]
. (28)

The leading order term of the σ field has a factor 1/2, which
is not present in Eq. (12). Due to the factor 1/2, the rate of
decrease in m∗

K with density would be reduced by a factor of
2, and this would shift the kaon condensation onset density
to higher densities. This dependence on the kaon Lagrangian
may be worthwhile to study.
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