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Neutrino breakup of A = 3 nuclei in supernovae
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We extend the virial equation of state to include 3H and 3He nuclei, and predict significant mass-three fractions
near the neutrinosphere in supernovae. While alpha particles are often more abundant, we demonstrate that
energy transfer cross sections for muon and tau neutrinos at low densities are dominated by breakup of the
loosely-bound 3H and 3He nuclei. The virial coefficients involving A = 3 nuclei are calculated directly from
the corresponding nucleon-3H and nucleon-3He scattering phase shifts. For the neutral-current inelastic cross
sections and the energy transfer cross sections, we perform ab initio calculations based on microscopic two- and
three-nucleon interactions and meson-exchange currents.
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I. INTRODUCTION

Core-collapse supernovae (SN) are giant explosions of
massive stars that radiate 99% of their energy in neutrinos.
Therefore, the dynamics and the neutrino signals can be
sensitive to the details of neutrino interactions with nucle-
onic matter. At present, most SN simulations with detailed
neutrino microphysics do not explode, but they may be
close to successful explosions (for a status report, see [1,2]).
Supernovae radiate electron, muon, and tau neutrinos. Electron
neutrinos can exchange energy with matter via charged-current
interactions. Energy transfer from muon or tau neutrinos,
hereafter νx , is more difficult [3] because neutrino-electron
scattering has a small cross section, and neutrino-nucleon
elastic scattering involves only a small energy transfer.

Haxton and Bruenn proposed that νx can exchange energy
via inelastic excitations of 4He and heavier nuclei [4], whereas
Hannestad and Raffelt investigated the exchange of energy
between νx and two interacting nucleons νxNN → νxNN [5].
Recently, Juodagalvis et al. calculated detailed νx neutral-
current cross sections for A = 50–65 nuclei [6], and Gazit
and Barnea have presented microscopic results for 4He cross
sections [7,8]. These inelastic excitations can aid the transfer
of neutrino energy to the SN shock and can keep νx in thermal
equilibrium to lower densities, resulting in the radiation of a
lower energy νx spectrum [9]. First studies on the role of 4He
excitation for the shock revival were carried out by Ohnishi
et al. [10].

To evaluate the role of νx inelastic scattering one needs both
cross sections and detailed information on the composition
and other thermodynamic properties of nucleonic matter.
Models that describe the system with only a single average
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nuclear species may miss the contribution of less abundant
nuclei with large cross sections. Moreover, there are many
fundamental connections between the equation of state and
neutrino interactions.

Nuclear statistical equilibrium (NSE) models predict abun-
dances based on binding energies and the quantum numbers
of nuclei. However, NSE models only treat approximately (or
neglect) strong interactions between nuclei, and consequently
break down as the density increases. We have recently devel-
oped a description of low-density nuclear matter (composed of
neutrons, protons, and alpha particles) in thermal equilibrium
based on the virial expansion [11,12]. The virial equation
of state systematically takes into account contributions from
bound nuclei and the scattering continuum, and thus provides
a framework to include strong-interaction corrections to NSE
models. The virial equation of state makes model-independent
predictions for the conditions [13] near the neutrinosphere, for
low densities ρ ∼ 1011−12 g/cm3 and high temperatures T ∼
4 MeV. In particular, the resulting alpha particle concentration
differs from all equations of state currently used in SN
simulations, and the predicted large symmetry energy at low
densities has been confirmed in near Fermi-energy heavy-ion
collisions [14]. In addition, the long-wavelength neutrino
response of low-density matter can be calculated consistently
from the virial expansion [15].

In this paper, we extend the virial expansion to include
3H and 3He nuclei, and predict that the mass-three fraction
can be significant (up to 10%) near the neutrinosphere. The
second virial coefficients involving A = 3 nuclei are calculated
directly from the corresponding nucleon-3H and nucleon-3He
scattering phase shifts. While alpha particles are often more
abundant due to the large binding energy (E4 = 28.3 MeV
compared to E3 ∼ 8 MeV), we show that mass-three nuclei
are important for energy transfer, in particular for the more
energetic muon and tau neutrinos with Eνx

∼ 20 MeV. For
neutrinos with these energies, we find that the neutral-current
inelastic energy transfer cross sections and the neutrino energy
loss for T >∼ 4 MeV are dominated by the breakup of the
loosely-bound 3H and 3He nuclei. Our predictions for the
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neutral-current inclusive inelastic cross sections on mass-three
nuclei are based on microscopic two- and three-nucleon
interactions and meson-exchange currents, and include full
final-state interactions via the Lorentz integral transform (LIT)
method [16].

This paper is organized as follows. In Sec. II, we generalize
the virial equation of state to include A = 3 nuclei, and present
results for the composition of low-density nuclear matter for
various temperatures, densities and proton fractions. In Sec.
III A, we calculate the inelastic 3H and 3He neutral-current
cross sections and energy transfer cross sections. We combine
our results in Sec. III B and study the neutrino energy loss for
conditions near the neutrinosphere. Finally, we conclude in
Sec. IV.

II. COMPOSITION OF LOW-DENSITY NUCLEAR
MATTER

In this section, we discuss the virial equation of state and
present results for the composition of low-density nuclear
matter including A = 3 nuclei (for details and additional
thermodynamic results, see [17]).

To determine the abundance of A = 3 nuclei near the
neutrinosphere in supernovae, we extend the virial approach
of Refs. [11,12] to include 3H and 3He nuclei. In the
corresponding virial expansion, neutrons, protons, α particles,
3H and 3He nuclei are explicitly included. Deuterons are
included as a bound state contribution to the proton-neutron
virial coefficient. We will explicitly consider deuterons and
neutrino-deuteron scattering in future work. The equation of
state is determined through an expansion of the pressure P in
the fugacities (see for instance [18]) up to second order,

P

T
= 2

λ3
N

(
zn + zp + (

z2
n + z2

p

)
bn + 2znzpbpn

)

+ 1

λ3
α

(
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αbα + 2zα(zn + zp)bαn

)

+ 2
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3

(
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)

+ 2
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3
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)
, (1)

where T is the temperature, zi = e(µi+Ei )/T is the fugacity
(with chemical potential µi and binding energy Ei), λi =√

2π/miT is the thermal wavelength of particle i, and
bij are the second virial coefficients describing interactions
between particles i, j (bi ≡ bii). We have calculated these
virial coefficients from phases shifts and low-energy scattering
lengths, see Ref. [17] for details. The second virial coefficients
bn, bpn, bα , and bαn are tabulated in [11], and the additional
virial coefficients involving A = 3 nuclei are given in Table I
from T = 1 MeV to 10 MeV. Due to a lack of p−3H scattering
data, we assume that bp3H ≈ bn3He. The effects of interactions
with A = 3 nuclei are expected to be small at low densities
(see also the hierarchy observed in Ref. [11]) and therefore we
neglect b3He3He, b3H3H, b3He3H, bα3He, and bα3H.

TABLE I. Nucleon-3H and nucleon-3He virial coefficients for
temperatures of T = 1 MeV to 10 MeV.

T [MeV] bp3He bn3H bn3He

1 0.043 −0.002 −0.244
2 0.245 0.253 −0.067
3 0.407 0.429 0.045
4 0.528 0.555 0.113
5 0.617 0.645 0.153
6 0.680 0.708 0.176
7 0.725 0.751 0.189
8 0.754 0.778 0.195
9 0.772 0.795 0.198

10 0.781 0.803 0.198

The particle densities can be obtained by partial derivatives
of the pressure with respect to the corresponding fugacities

ni = zi

(
∂

∂zi

P

T

)
T

. (2)

By assuming chemical equilibrium,

µα = 2µn + 2µp , (3)

µ3H = 2µn + µp , (4)

µ3He = µn + 2µp , (5)

the corresponding A = 3, 4 fugacities are determined by the
proton and neutron fugacities and the corresponding binding
energy: z3H = z2

nzpeE3H/T for example. For a given baryon
density nb and proton fraction Yp, the fugacities zp and zn are
then determined implicitly from

nb = np + nn + 4nα + 3n3He + 3n3H , (6)

Yp = (np + 2nα + 2n3He + n3H)/nb . (7)

The resulting mass fractions (xi = Aini/nb) are shown in Fig.
1 for neutrinosphere densities and temperatures, and various
proton fractions.

For a density of 1012 g/cm3, we find that the total
mass-three fraction is significant, up to x3H + x3He ≈ 0.1 in
symmetric matter. Moreover, for temperatures T >∼ 5 MeV
(and increasingly important at low proton fractions), the
3H mass fraction is larger than the α particle fraction. We
also observe that at lower temperatures, where many of the
protons are bound in alpha particles (and heavy nuclei), 3H
nuclei are more abundant than free protons. Here, the rate
of electron capture may be dominated by capture on 3H,
since the capture on 4He has low cross sections and there
are few free protons. The contribution of mass-three nuclei to
charged-current interactions will be left to future work [19].
Finally, we emphasize that heavier nuclei and larger clusters
become important as the α particle fraction saturates at very
low temperature.
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FIG. 1. (Color online) Mass fractions of nucle-
ons and A = 3, 4 nuclei in chemical equilibrium as
a function of temperature T . The top and bottom
rows correspond to a density of 1011 g/cm3 and
1012 g/cm3 respectively, and from left to right
the proton fractions are Yp = 0.1, 0.3, and 0.5.
For this temperature range, at 1011 g/cm3 the
neutron fugacity is zn < 0.1, 0.05, 0.01 for Yp =
0.1, 0.3, and 0.5 respectively, all other fugacities
are < 0.01 for all shown proton fractions. At the
higher density, 1012 g/cm3, the neutron fugacity
is zn < 0.7, 0.35, 0.04 for Yp = 0.1, 0.3, and 0.5
respectively, all other fugacities are < 0.06 for all
shown proton fractions.

III. NEUTRINO-3H AND -3He BREAKUP:
NEUTRAL-CURRENT CROSS SECTIONS

The calculation of the neutral-current inclusive inelastic
cross sections on 3H and 3He follows Ref. [8]. We solve the
three-nucleon problem based on the Argonne v18 nucleon-
nucleon [20] and the Urbana IX three-nucleon [21] inter-
actions. Neutrino scattering on A = 3 nuclei only induces
transitions to continuum states, since 3H and 3He have no
excited states. Hence, a correct description must include
breakup channels and final-state interactions among the three
nucleons. We include these via the LIT method [16], which
uses an integral transform with a Lorentzian kernel to reduce
the continuum problem to a bound-state-like problem. The
resulting Schrödinger-like equations are solved using the ef-
fective interaction hyperspherical harmonics (EIHH) approach
[22,23]. The combination of these approaches converges
rapidly and yields a numerical precision of less than a percent
for few-body reaction cross sections [7,8,24,25]. The energy
transfer due to elastic scattering is low, ω ∼ T 2/m, and
therefore we include only breakup channels in our calculations.

Since the energy scale of SN neutrinos is much smaller than
the mass of the Z-boson, the neutrino-nucleus interaction can
be approximated by an effective current-current Hamiltonian.
The neutrino current is straightforward and results in kinemat-
ical factors to the cross section. The standard model dictates
only the formal structure of the nuclear neutral-current:

J 0
µ = (1 − 2 sin2 θW )

τ0

2
JV

µ + τ0

2
JA

µ − sin2 θWJV
µ , (8)

where the superscripts A,V denote axial and vector currents.
For supernova neutrinos, chiral effective field theory (EFT)
of nucleons and pions offers a consistent approach to nuclear
interactions and electroweak currents. For historical reasons,
the present calculation uses conventional two- and three-
nucleon interactions and EFT currents, but future applications
can be fully based on chiral EFT. The current approach has
been applied to study electroweak reactions on A = 2, 3, 4
nuclei [8,26].

We use chiral EFT meson-exchange currents (MEC) at
next-to-next-to-next-to-leading order. The MEC are based on
a momentum expansion in Q/
, where Q ∼ 10–20 MeV is
the typical energy in our process of interest, and the cutoff

 is of the order of the EFT breakdown scale. Here, we
follow Park et al. [26] and vary the cutoff over the range

 = 400–800 MeV. In configuration space, the MEC are
obtained from a Fourier transform of propagators with a cutoff

. This leads to a cutoff dependence, which is renormalized by
a cutoff-dependent counterterm. In the present case, all other
low-energy coefficients can be determined from pion-nucleon
scattering. The counterterm dr (
) characterizes the strength
of a two-nucleon contact operator and has been matched to
the triton half-life over this cutoff range. As a check, we
reproduced the cutoff dependence dr (
) of Ref. [26].

A. Inelastic cross sections and energy transfer

The calculated cross sections are averaged over energy and
angle, assuming a Fermi-Dirac distribution for the neutrinos
with zero chemical potential, temperature Tν , and neutrino
momentum k,

f (Tν, k) = N

Tν
3

k2

ek/Tν + 1
, (9)

where N−1 = 2
∑∞

n=1(−1)n+1/n3 is a normalization factor.
The quantities of interest are the temperature-averaged cross
sections and energy transfer cross sections:

〈σ 〉Tν
=

∫ ∞

ωth

dω

∫
dki f (Tν, ki)

dσ

dkf

, (10)

〈ωσ 〉Tν
=

∫ ∞

ωth

dω

∫
dki f (Tν, ki) ω

dσ

dkf

, (11)

where ki,f are the initial and final neutrino energy, ω = ki − kf

is the energy transfer, and ωth denotes the threshold energy of
the breakup reaction. In Table II, we present results for the
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TABLE II. Averaged neutrino- and antineutrino-3H and -3He
neutral-current inclusive inelastic cross sections per nucleon (A = 3),
〈σ 〉Tν

= 1
2A

〈σν + σν〉Tν
(left columns), and energy transfer cross

sections, 〈ωσ 〉Tν
= 1

2A
〈ωσν + ωσν〉Tν

(right columns), as a function
of neutrino temperature Tν , in units of 10−42 cm2 and 10−42 MeV cm2,
respectively.

Tν[MeV] 3H 3He

1 1.97×10−6 1.68×10−5 3.49×10−6 2.76×10−5

2 4.62×10−4 4.73×10−3 6.15×10−4 5.94×10−3

3 5.53×10−3 6.38×10−2 6.77×10−3 7.41×10−2

4 2.68×10−2 3.37×10−1 3.14×10−2 3.77×10−1

5 8.48×10−2 1.14 9.70×10−2 1.25
6 2.09×10−1 2.99 2.35×10−1 3.21
7 4.38×10−1 6.61 4.87×10−1 7.03
8 8.20×10−1 13.0 9.03×10−1 13.7
9 1.41 23.4 1.54 24.6

10 2.27 39.3 2.47 41.2

averaged neutrino and antineutrino neutral-current inclusive
inelastic cross sections and energy transfer cross sections as a
function of the neutrino temperature. The difference between
the 3H and the 3He cross sections reflects the difference
in thresholds between the two nuclei. The mirror symmetry
between both nuclei is restored with higher neutrino energy.
The leading contributions to the cross section are the axial
EA

1 ,MA
1 and EA

2 multipoles. The relative importance of these
multipoles varies as a function of the momentum transfer, and
thus as a function of the neutrino temperature. In comparison
to inelastic excitations of 4He studied in Ref. [8], we find that
the cross sections are about a factor 20 and 10 times larger at
temperatures 4 MeV and 6 MeV, respectively (for the mean
values of 3H and 3He), and the energy transfer cross sections
are 8 and 2 times larger.

At low-momentum transfer, the Gamow-Teller operator
dominates for the cross section, consequently the MEC have a
large effect of about 16% at a temperature of 1 MeV. At higher-
momentum transfer, higher-order multipoles start to play an
important role. Due to spatial symmetry, the MEC contribution
to these multipoles is small and the overall effect of MEC
decreases rapidly to < 2% for temperatures above 4 MeV.
While not directly important here, the asymmetry between
the scattering of neutrinos and anti-neutrinos increases with
temperature: The difference in the energy transfer grows
gradually from 3% for a neutrino temperature of 3 MeV to
>50% for 10 MeV temperatures. Finally, the cutoff depen-
dence of these observables is <2% for 1 MeV and <1% for
higher temperatures. This validates our calculations. We thus
estimate the precision of the predicted cross sections to be a
few percent, which also includes estimates of the numerical
accuracy.

B. Neutrino energy loss due to inelastic scattering

We can combine the energy transfer cross sections with the
A = 3, 4 mass fractions of Sec. II to calculate the neutrino
energy loss due to inelastic excitations of A = 3, 4 nuclei. The
neutral-current cross sections on 4He are taken from Ref. [8],

which is based on the same microscopic input. A neutrino of
energy Eν will lose energy to inelastic excitations, and heat
the matter, at a rate dEν/dx given by

dEν

dx
= nb

∑
i=3H,3He,4He

xi〈ωσ 〉i, Tν
. (12)

To explore the effect of mass-three nuclei on the energy
loss, we assume the neutrino energies are characterized by
a Fermi-Dirac spectrum of temperature Tν , while the low-
density matter may have a lower temperature T . For simplicity,
we neglect the energy transfer from nuclei to neutrinos required
by detailed balance. This is strictly correct only in the limit
T 
 Tν .

In Fig. 2, the neutrino energy loss due to inelastic scattering
is shown for a density of 1012 g/cm3 and neutrino temperature
Tν = 6 MeV, as a function of the matter temperature for
various proton fractions. For T >∼ 4 MeV, the energy loss
is dominated by the contributions from 3H nuclei. The total
abundance of A = 3 nuclei depends only weakly on the proton
fraction (see Fig. 1), which is reflected in the weak dependence
of the neutrino energy loss as a function of proton fraction.
Finally, for lower densities, mass-three nuclei are less abundant
(see Fig. 1), and therefore also their contributions to the
neutrino energy loss.

IV. CONCLUSIONS

The virial expansion provides a systematic approach to low-
density nuclear matter in thermal equilibrium, in particular
for the conditions near the neutrinosphere with densities ρ ∼
1011−12 g/cm3 and temperatures T ∼ 4 MeV. In this paper, we
have extended the virial equation of state of Refs. [11,12] (for
matter composed of neutrons, protons and alpha particles) to
include 3H and 3He nuclei. We have made model-independent
predictions for the abundance of 3H and 3He nuclei and
predicted that their mass fractions can be significant near the
neutrinosphere. Our results are directly based on nucleon-3H
and nucleon-3He scattering phase shifts. In addition, it is
interesting that 3H nuclei can be more abundant than free
protons at low temperatures, since many of the protons are
bound in alpha particles (and heavy nuclei). In these regions,
the rate of electron capture may be dominated by capture on
3H nuclei [19].

While alpha particles are often more abundant, we have
shown that the loosely-bound 3H and 3He nuclei dominate the
energy transfer at low densities through inelastic excitations,
and are therefore especially important for energy transfer from
muon and tau neutrinos. Our new results for neutrino-3H
and -3He neutral-current inclusive inelastic cross sections and
energy transfer cross sections are based on microscopic two-
and three-nucleon interactions and meson-exchange currents,
which reproduce the triton half-life. All breakup channels and
full final-state interactions were included via the LIT method.
For temperatures T ∼ 4 MeV, the predicted energy transfer
cross sections on mass-three nuclei are approximately one
order of magnitude larger compared to inelastic excitations of
4He nuclei.
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FIG. 2. (Color online) Neutrino energy loss
dEν/dx for inelastic excitations of A = 3, 4 nuclei
as a function of the matter temperature T at a
density of 1012g/cm3. We assume that the neu-
trino energies are characterized by a Fermi-Dirac
distribution with a temperature Tν = 6 MeV. The
contributions from 3H, 3He, and 4He nuclei, and
the total neutrino energy loss are shown for proton
fractions Yp = 0.1, 0.3, and 0.5.

Using the virial abundances and the microscopic energy
transfer cross sections, we have found that mass-three nuclei
contribute significantly to the neutrino energy loss due to
inelastic excitations for T >∼ 4 MeV. Inelastic excitations of
3H and 3He nuclei can be more important than 4He nuclei at
high temperatures, low proton fraction or higher densities. To
fully assess the role of neutrino breakup of A = 3 nuclei, our
predicted abundances and neutral-current cross sections should
be included in SN simulations. The model independence of
the virial equation of state and the accuracy of the predicted
cross sections can help to improve the theoretical nuclear
microphysics for SN simulations.
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