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I. INTRODUCTION

The nucleon energy-momentum tensor (EMT) form factors
[1] contain valuable information on the nucleon structure. They
carry information on, e.g., how the quark and gluon degrees
of freedom share the total momentum, angular momentum of
the nucleon [2], or on the distribution of strong forces inside
the nucleon [3]. The first is known from deeply inelastic lepton
nucleon scattering experiments. The latter two can be deduced
from generalized parton distribution functions (GPDs) [4–7]
accessible in hard exclusive reactions [8–16]; see Refs. [17–
23] for reviews.

Nucleon EMT form factors were studied in lattice quantum
chromodynamics (QCD) calculations [24–28]. In principle,
lattice QCD provides a rigorous and model-independent
approach to compute the nucleon EMT form factors. In
practice, however, present-day technics and computing power
allow to simulate on lattices “worlds” with pions of typically
mπ >∼ 400 MeV. The situation is expected to improve in the
future, see Ref. [29] for status reports on selected topics.

For the time being, however, it is necessary to use
chiral extrapolation to relate lattice results to the real-world
situation. Chiral perturbation theory (χPT) provides a model-
independent tool for that, and the chiral behavior of the nucleon
EMT form factors was studied in Refs. [30–32]. Experience
with chiral extrapolations of other nucleon properties indicates
that χPT is applicable up to the lowest presently available
lattice values of mπ [33–35], although the issue is not yet
settled [36].

In this situation it is worth looking at what one can learn
about the chiral behavior of nucleon properties from other
effective approaches, e.g., the “finite range regulator” (FRR)
approach. There chiral loops are regulated by suitably chosen
vertex form factors to phenomenologically simulate the effects
of the pion cloud that has a finite range due to mπ �= 0 [37,38].
However, model calculations [39–41] are equally of interest in
this context.

A phenomenologically successful and theoretically con-
sistent model for the description of nucleon properties at the
physical point and in the chiral limit, is the chiral quark soliton
model (CQSM) [42,43]. This model describes the nucleon as
a soliton of a static background pion field in the limit of a
large number of colours, Nc, and hence provides a particular

realization of the general large-Nc picture of the nucleon
[44]. The CQSM describes numerous nucleonic properties
without adjustable parameters—including among others form
factors [45–48], usual parton distribution functions [49–53]
and GPDs [54–59]—within an accuracy of (10–30)% as far as
those quantities are known.

That it is possible to extend the CQSM to the description of
the nucleon at large pion masses was shown in Ref. [41], where
the model was demonstrated to provide a good description of
lattice data on the mπ dependence of the nucleon mass MN up
to mπ <∼ 1.5 GeV. An important prerequisite for that is that the
CQSM formally contains the correct heavy quark limit result
for the nucleon mass MN [41].

In this work we present a study of the mπ dependence of
the nucleon EMT form factors in the CQSM up to pion masses
as large as 1 GeV. The present study extends the study of
Ref. [60], where the nucleon EMT form factors were studied
at the physical point and in the chiral limit, and its purpose is
threefold.

First, we provide an important supplement for the study in
Ref. [41]. There soliton solutions were obtained numerically
for model parameters corresponding to pion masses in the
range 0 � mπ � 1.5 GeV. Here we provide a cross-check
demonstrating that the numerical solutions found in Ref. [41]
correspond, in fact, to stable solitons.

Second, with the results obtained for large mπ we are in
the position to confront the model predictions for the nucleon
EMT form factors directly to lattice QCD results [24–28]. In
view of the early stage of art of the experimental situation of
hard exclusive reactions, such a comparison provides the only
presently available test for our results.

Third, though the model—as discussed in detail in Ref. [41]
—cannot be used as a quantitative guideline for the chiral ex-
trapolation, our study still allows us to gain several interesting
qualitative insights with this respect.

It should be mentioned that the general chiral structure of
the EMT was studied in chiral perturbation theory and/or chiral
models in Refs. [61–63], and aspects of pion EMT form factors
in lattice QCD were discussed in Refs. [64,65].

The article is organized as follows. In Sec. II we introduce
the nucleon EMT form factors and discuss their properties. In
Sec. III we briefly review how the nucleon EMT form factors
are described in the CQSM. In Secs. IV and V we describe
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respectively the model results for the densities associated with
the form factors and the form factors themselves. In Sec. VI
we compare the model results with lattice QCD data, and in
Sec. VII we discuss which qualitative observations from our
study could be of interest in the context of the chiral extrap-
olation of lattice data. Section VIII contains the conclusions.
A remark on different notations for the EMT form factors is
posed in Appendix.

II. FORM FACTORS OF THE ENERGY-MOMENTUM
TENSOR

The nucleon matrix element of the symmetric EMT of QCD
is characterized by three scalar form factors [1]. The quark
and gluon parts, T̂ Q

µν and T̂ G
µν , of the EMT are separately gauge

invariant and can be parametrized as, see Refs. [2,3] and cf.
Appendix for an alternative notation,

〈p′|T̂ Q,G
µν (0)|p〉

= ū(p′)
[
M

Q,G
2 (t)

PµPν

MN

+ JQ,G(t)
i(Pµσνρ + Pνσµρ)�ρ

2MN

+ d
Q,G
1 (t)

�µ�ν − gµν�
2

5MN

± c̄(t)gµν

]
u(p). (1)

Here the nucleon states and spinors are normalized by 〈p′|p〉 =
2p0(2π )3δ(3)(p′ − p) and ū(p)u(p) = 2MN , and spin indices
are suppressed for brevity. The kinematical variables are
defined as P = (p + p′)/2,� = (p′ − p), t = �2. The form
factor c̄(t) accounts for nonconservation of the separate quark
and gluon parts of the EMT, and enters the quark and gluon
parts with opposite signs such that the total (quark+gluon)
EMT is conserved.

The nucleon form factors of the EMT are related to the
second Mellin moments of the unpolarized GPDs Hf (x, ξ, t)
and Ef (x, ξ, t) as (we use the notation of Ref. [19])

∫ 1

−1
dx x

∑
f

Hf (x, ξ, t) = M
Q
2 (t) + 4

5
d

Q
1 (t)ξ 2,

∫ 1

−1
dx x

∑
f

(Hf + Ef )(x, ξ, t) = 2JQ(t). (2)

where ξ denotes the so-called skewedness parameter [2].
The sum rules in Eqs. (2) are special cases of the so-called
polynomiality property of GPDs [17]. The second sum rule
in (2) provides the possibility to access JQ(0), i.e., the total
(spin+orbital angular momentum) contribution of quarks to
the nucleon spin, through the extraction of GPDs from hard
exclusive processes and extrapolation to the unphysical point
t = 0. The sensitivity of different observables to the total quark
angular momenta was investigated in model studies [19,66].
For gluons there are analog definitions and expressions. Suffice
to remark that the full GPDs contain far more information [23].

The form factors of the EMT in Eq. (1) can be interpreted [3]
in analogy to the electromagnetic form factors [67] in the Breit
frame characterized by �0 = 0. In this frame one can define

the static energy-momentum tensor for quarks

T Q
µν(r, s) = 1

2E

∫
d3�

(2π )3
exp(i�r)〈p′, S ′|T̂ Q

µν(0)|p, S〉,
(3)

and analogously for gluons. The initial and final polarization
vectors of the nucleon S and S ′ are defined such that in the
respective rest-frame they are equal to (0, s) with the unit
vector s denoting the quantization axis for the spin.

The components of T
Q

0k (r, s) and εijkrjT
Q

0k (r, s) correspond,
respectively, to the distribution of quark momentum and quark
angular momentum inside the nucleon. The components of
(T Q

ik − 1
3δikT

Q
ll )(r, s) characterize the spatial distribution of

“shear forces” experienced by quarks inside the nucleon. The
respective form factors are related to T Q

µν(r, s) by

JQ(t) + 2t

3
JQ′

(t)

=
∫

d3re−ir� εijk si rj T
Q

0k (r, s), (4)

d
Q
1 (t) + 4t

3
d

Q
1

′
(t) + 4t2

15
d

Q
1

′′
(t)

= −MN

2

∫
d3r e−ir�T

Q
ij (r)

(
rirj − r2

3
δij

)
, (5)

M2(t) − t

4M2
N

(
M2(t) − 2J (t) + 4

5
d1(t)

)

= 1

MN

∫
d3re−ir�T00(r, s), (6)

where the prime denotes derivative with respect to the Mandel-
stam variable t . Note that for a spin-1/2 particle only the T 0µ

components are sensitive to the polarization vector. Note also
that Eq. (6) holds for the sum T00 ≡ T

Q
00 + T G

00 with M2(t) ≡
M

Q
2 (t) + MG

2 (t) and J (t) and d1(t) defined analogously, but
not for the separate quark and gluon contributions—since
otherwise the form factor c̄(t) would not cancel out.

The form factor M2(t) at t = 0 is connected to the fractions
of the nucleon momentum carried, respectively, by quarks and
gluons. More precisely

M
Q
2 (0) =

∫ 1

0
dx

∑
q

x
(
f

q

1 + f
q̄

1

)
(x),

(7)

MG
2 (0) =

∫ 1

0
dx xf

g

1 (x),

where f a
1 (x) = Ha(x, 0, 0) are the unpolarized parton distri-

butions accessible in inclusive deeply inelastic scattering.
The form factors M

Q,G
2 (t), JQ,G(t), and d

Q,G
1 (t) are renor-

malization scale dependent (the indication of the renormal-
ization scale µ is suppressed for brevity). Their quark+gluon
sums, however, are scale-independent form factors, which at
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t = 0 satisfy the constraints,

M2(0) = 1

MN

∫
d3r T00(r, s) = 1,

J (0) =
∫

d3r εijk si rjT0k(r, s) = 1

2
, (8)

d1(0) = −MN

2

∫
d3r Tij (r)

(
rirj − r2

3
δij

)
≡ d1,

which mean that in the rest frame the total energy of the
nucleon is equal to its mass and that its spin is 1/2. The
value of d1 is not known a priori and must be determined
experimentally. However, being a conserved quantity it is to be
considered on the same footing as other basic nucleon proper-
ties like mass, anomalous magnetic moment, etc. Remarkably,
d1 determines the behavior of the D term [68] (and thus the
unpolarized GPDs) in the asymptotic limit of renormalization
scale µ → ∞ [19].

The form factor d1(t) is connected to the distribution of
pressure and shear forces experienced by the partons in the
nucleon [3], which becomes apparent by recalling that Tij (r)
is the static stress tensor that (for spin 0 and 1/2 particles) can
be decomposed as

Tij (r) = s(r)

(
rirj

r2
− 1

3
δij

)
+ p(r) δij . (9)

Hereby p(r) describes the radial distribution of the “pressure”
inside the hadron, whereas s(r) is related to the distribution of
the “shear forces” [3]. Both are related due to the conservation
of the EMT by the differential equation

2

3

∂s(r)

∂r
+ 2s(r)

r
+ ∂p(r)

∂r
= 0. (10)

Another important consequence of the conservation of the
EMT is the so-called stability condition∫ ∞

0
dr r2p(r) = 0. (11)

Let us review briefly what is known about d1—which in
terms of the pressure or shear forces is given by

d1 = − 1

3
MN

∫
d3r r2s(r) = 5

4
MN

∫
d3r r2p(r). (12)

For the pion it can be calculated exactly using soft pion
theorems with the result 4

5d
Q
1,π = −M

Q
2,π [68], see also

Ref. [69]. Also for the nucleon d
Q
1 < 0 was found in calcula-

tions in CQSM [54,60,70]. For the nucleon the large-Nc limit
predicts the flavour-dependence |du

1 + dd
1 | 	 |du

1 − dd
1 | [19].

Lattice calculations [24–28] confirm this flavour dependence
and yield a negative d

Q
1 , see Sec. VI. In a simple “liquid

drop” model d1 can be related to the surface tension of
the “liquid” and comes out negative [3]. Such a model is
in particular applicable to nuclei and predictions from this
picture [3] were confirmed in calculations assuming realistic
nuclear models [71]. Noteworthy, data from HERMES [12,16]
favour a negative d

Q
1 though this observation depends to some

extent on the model for the small-x behavior of GPDs [20]. In
Ref. [60] it was conjectured on the basis of plausible physical
arguments that the negative sign of d1 is dictated by stability

criteria. This conclusion, however, remains to be proven for
the general case.

III. NUCLEON EMT FORM FACTORS IN THE CQSM

The effective theory underlying the CQSM was derived
from the instanton model of the QCD vacuum [72–74],
which assumes that the basic properties of the QCD vacuum
are dominated by a strongly interacting but dilute instanton
medium; see the reviews [75]. In this medium light quarks
acquire a dynamical (“constituent”) quark mass due to inter-
actions with instantons. At low momenta below a scale set
by ρ−1

av ≈ 600 MeV, where ρav denotes the average instanton
size, the dynamics of the effective quark degrees of freedom
is given by the partition function [76,77]

Zeff =
∫
Dψ Dψ̄DU exp

[
iSeff(ψ̄, ψ,U )

]
,

(13)
Seff(ψ̄, ψ,U ) =

∫
d4x ψ̄(i �∂ − M Uγ5 − m)ψ.

Here we restrict ourselves to two flavors and neglect isospin
breaking effects with m = mu = md denoting the current
quark mass, whereas U = exp(iτ aπa) denotes the chiral
pion field with Uγ5 = exp(iγ5τ

aπa). The dynamical mass
is, strictly speaking, momentum dependent, i.e., M = M(p).
However, in practical calculations it is convenient to work
with a constant M = M(0) = 350 MeV following from the
instanton vacuum [75] and to regularize the effective theory
by means of an explicit regularization with a cutoff of O(ρ−1

av )
whose precise value is fixed to reproduce the physical value
of the pion decay constant fπ = 93 MeV. In this work we use
the proper-time regularization.

The quark degrees of freedom of the effective theory (13)
correspond to QCD quark degrees of freedom up to corrections
that are small in the instanton packing fraction ρav/Rav ∼ 1

3 ,
where Rav denotes the average separation of instantons. The
same parameter suppresses the contribution of gluon degrees
of freedom [74].

The CQSM is an application of the effective theory (13)
to the description of baryons [42,43]. Although the Gaussian
path integral over fermion fields in Eq. (13) can be solved
exactly, the path integral over pion field configurations can be
solved only in the large-Nc limit by means of the saddle-point
approximation (in the Euclidean formulation of the theory).
In the leading order of the large-Nc limit the pion field is
static, and one can determine the spectrum of the one-particle
Hamiltonian of the effective theory (13)

Ĥ |n〉 = En|n〉, Ĥ = −iγ 0γ k∂k + γ 0MUγ5 + γ 0m. (14)

The spectrum of Eq. (14) consists of an upper and a lower
Dirac continuum, distorted by the pion field as compared to
continua of the free Dirac-Hamiltonian Ĥ0 (given by Ĥ with
Uγ5 replaced by 1), and of a discrete bound state level of
energy Elev, if the pion field is strong enough. By occupying
the discrete level and the lower continuum states each by Nc

quarks in an antisymmetric color state, one obtains a state with
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unity baryon number. The soliton energy

Esol[U ] = Nc


Elev +

∑
En<0

(En − En0 )




reg

. (15)

is a functional of the pion field. It is logarithmically divergent,
see, e.g., Ref. [47] for explicit expressions in the proper-time
regularization. By minimizing Esol[U ] one obtains the self-
consistent solitonic pion field Uc. This procedure is performed
for symmetry reasons in the so-called hedgehog ansatz
πa(x) = ea

r Pc(r) with the radial (soliton profile) function
Pc(r) and r = |x|, er = x/r . The nucleon mass MN is given
by Esol[Uc].

In the large-Nc limit the path integral over U in Eq. (13)
is solved by evaluating the expression at Uc and integrating
over translational and rotational zero modes of the soliton
solution. To include corrections in the 1/Nc expansion one
considers time-dependent pion field fluctuations around the
solitonic solution. In practice hereby one restricts oneself to
time-dependent rotations of the soliton field in spin- and flavor-
space that are slow because the corresponding soliton moment
of inertia

I = Nc

6

∑
m,non
n,occ

〈n|τ a|m〉 〈m|τ a|n〉
Em − En

∣∣∣∣
reg

(16)

is large, I = O(Nc). It is logarithmically divergent and has
to be regularized. In Eq. (16) one has to sum over occupied
(“occ”) states n that satisfy En � Elev, and over nonoccupied
(“non”) states m that satisfy Em > Elev.

The model expressions for the nucleon EMT form factors
in the effective theory (13) were derived explicitly in Ref. [60].
The gluon part of the EMT is zero in the effective theory (13),
because there are no explicit gluon degrees of freedom. (So
we omit the index Q when discussing the model results in this
and in Secs. IV and V but restore it later.)

Consequently, in the model the quark part of the EMT
is conserved by itself, and the form factor c̄(t) in Eq. (1)
vanishes [60]. The model expressions for the other form factors
read

M2(t) − t

5M2
N

d1(t) = 1

MN

∫
d3r ρE(r) j0(r

√−t) (17)

d1(t) = 15MN

2

∫
d3r p(r)

j0(r
√−t)

t
(18)

J (t) = 3
∫

d3r ρJ (r)
j1(r

√−t)

r
√−t

, (19)

with the Bessel functions j0(z) = sin z
z

and j1(z) = −j ′
0(z).

The Fourier transforms of the form factors, which are radial
functions and to which we refer as “densities” in the following,
are defined as

ρE(r) = Nc

∑
n,occ

En φ∗
n(r)φn(r)

∣∣
reg (20)

p(r) = Nc

3

∑
n,occ

φ∗
n(r) (γ 0γ p̂) φn(r)

∣∣
reg (21)

ρJ (r) = − Nc

24I

∑
n,occ
j,non

εabcraφ∗
j (r)(2p̂b + (En + Ej )γ 0γ b)

×φn(r)
〈n|τ c|j 〉
Ej − En

∣∣∣∣
reg

. (22)

The expressions in Eqs. (20), (21), and (22) are logarithmically
UV divergent. Here we use the proper-time method to
regularize them, see Refs. [60] for explicit expressions in this
regularization. In Ref. [60] analytical proofs were given that

(i) the stability condition (11) is satisfied in the model,
(ii) the form factors satisfy the constraints at t = 0 in

Eq. (8), and
(iii) the same expressions for EMT form factors follow in

the model from unpolarized GPDs via the sum rules
(2).

Notice that the latter is a special case of the “polynomiality
property” of GPDs [17] satisfied in the CQSM [56,57]. The
field-theoretic character of the model is a crucial prerequisite
that allows formulation and analytical proofs of such and
other [49] general QCD requirements. This in turn provides
important cross-checks for the theoretical consistency of the
approach.

For the numerical calculation we employ the so-called
Kahana-Ripka method [78], whose application to calculations
of the nucleon EMT form factors in the CQSM is briefly
described in Ref. [60]. The use of the proper-time regular-
ization has the advantage (over, e.g., the Pauli-Villars method
[79]) that it is possible to include explicitly chiral symmetry
breaking effects due to a finite current quark mass m in the
effective action (13).

In Ref. [41] it was shown that it is possible to obtain
soliton solutions and compute nucleon masses for current
quark masses up to m = O(700 MeV) that correspond to pion
masses up to mπ = O(1.5 GeV). What provides a certain
justification for the application of the model up such large m

is the fact that the model formally contains the correct heavy
quark limit result for the nucleon mass [41]. The proof that
in the limit m → mQ, where mQ is the heavy quark mass,
the nucleon mass tends to MN → NcmQ given in Ref. [41] is
formal because in this proof it was taken for granted that stable
soliton solutions do exist up to such large pion mass values.

Therefore, it was of importance in Ref. [41] to demonstrate
numerically the existence of soliton solutions for large mπ

up to, at least, mπ = O(1.5 GeV). These soliton solutions
were found by using a standard iteration procedure for
the calculation of the self-consistent profile function Pc(r)
described in detail, e.g., in Ref. [47]. Here, as a by-product of
our study of EMT form factors, we will be in the position to
provide an important and valuable cross-check. Namely do the
pressures p(r) computed with the respective large-mπ soliton
profiles really satisfy the stability condition (11)? The answer
is yes; see below Sec. IV D.

Before discussing the mπ dependence of the densities (20),
(21), and (22) and the form factors (17), (18), (19) we have
to establish which model parameters are allowed to vary and
which are kept fixed while mπ is varied. Here we shall use the
choice of Ref. [41] to keep M = 350 MeV and fπ = 93 MeV
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FIG. 1. (Color online) (a) The energy den-
sity ρE(r) of the nucleon as function of r for
different pion masses. (b) The normalized en-
ergy density 4πr2ρE(r)/MN as function of r for
different pion masses. The curves are normalized
such that one obtains unity upon integration
over r .

fixed. Then the proper-time cutoff is adjusted such that for a
given m and mπ one reproduces the physical value of fπ (m
and mπ are related to each other in the effective theory (13) by
a relation which for small m corresponds to the Gell-Mann—
Oakes—Renner relation; see Ref. [41]).

This way of parameter handling in the model was found
to provide a good description of lattice data on the variation
of MN (mπ ) with mπ , once one takes into account the generic
overestimate of the nucleon mass in the soliton approach [80].
However, the above way of parameter handling is just one
possible choice and other choices are possible as well. An
investigation whether other choices of parameter handling
yield equally satisfactory results will be presented elsewhere.

IV. THE DENSITIES OF THE EMT

In this section we focus our attention on the densities (20),
(21), and (22), which are interesting objects by themselves,
before we discuss the form factors (17), (18), and (19) in
the next section. The study of the densities will enable us to
address the question whether the model provides a satisfactory
description of the nucleon in (fictious) worlds with pion masses
up to 1.2 GeV. As we shall see, the answer is yes.

A. Energy density

The energy density ρE(r) is just T 00(r) in the static EMT
(3) and is normalized as

∫
d3r ρE(r,mπ ) = MN (mπ ) for any

mπ where we explicitly indicate the pion mass dependence.
MN (mπ ) as function of mπ was studied in Ref. [41].

Figure 1(a) shows ρE(r) as function of r for pion masses in
the range 0 � mπ � 1.2 GeV. In the following we focus on the

region mπ � 140 MeV, and include only for completeness the
results for mπ � 140 MeV discussed in detail in Ref. [60].

In the physical situation with mπ = 140 MeV the energy
density in the center of the nucleon is 1.7 GeV fm−3 or
3.0 × 1015 g cm−3. This corresponds roughly to 13 times
the equilibrium density of nuclear matter. As mπ increases
ρE(0) becomes larger and reaches ρE(0) = 9.5 GeV fm−3 =
17 × 1015 g cm−3 at mπ = 1.2 GeV. At the same time, with
increasing mπ the fall-off of ρE(r) at large r becomes stronger,
as can be seen in Fig. 1(b).

These observations mean that with increasing mπ the
nucleon becomes “smaller.” To quantify this statement we
consider the mean square radius of the energy density defined
as

〈
r2
E

〉 =
∫

d3r r2ρE(r)∫
d3r ρE(r)

, (23)

which decreases with increasing mπ . The pion mass depen-
dence of ρE(0) is shown in Fig. 2(a), see also Table I where
many results are summarized. We observe an approximately
linear growth of ρE(0) with m2

π . The pion mass dependence
of 〈r2

E〉 is shown in Fig. 2(b), see also Table I. Up to
mπ <∼ 400 MeV we observe a roughly linear decrease of 〈r2

E〉
with mπ which proceeds at a slower rate for mπ >∼ 400 MeV.
(Throughout we choose a linear or quadratic in mπ presenta-
tion of the mπ dependence of the quantities—depending on
which one is more convenient.)

The above observations can be intuitively understood. With
increasing mπ the range of the “pion cloud” decreases. This
results in a less wide spread nucleon. The above observations
are also consistent with what one expects from the heavy quark
limit point of view. The heavier the constituents building up a

 0
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FIG. 2. (Color online) The pion mass de-
pendence of (a) the energy density ρE(0) in the
center of the nucleon, and (b) the mean square
radius of the energy density 〈r2

E〉 defined in
Eq. (23). The crosses indicate the physical point.
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TABLE I. The pion mass dependence of different quantities computed in the CQSM using proper time
regularization: the energy density in the center of the nucleon ρE(0), the mean square radii 〈r2

E〉 and 〈r2
J 〉 , the

pressure p(0) in the center of the nucleon, the position r0 of the zero of the pressure defined as p(r0) = 0,
the constant d1, the dipole masses of the form factors M2(t), J (t), and d1(t), and the mean square radius 〈r2

F 〉
of the trace of the EMT operator. In the chiral limit J (t) and d1(t) have infinitely steep slopes at t = 0, see
text. In these cases dipole fits do not provide useful approximations and are undefined (labeled “undef.” in
the table). The results for mπ � 140 MeV from Ref. [60] are included for completeness.

mπ ρE(0) 〈r2
E〉 〈r2

J 〉 p(0) r0 d1 Dipole masses Mdip in GeV for 〈r2
F 〉

(MeV) (GeV/fm3) (fm2) (fm2) (GeV/fm3) (fm)
M2(t) J (t) d1(t) (fm2)

0 1.54 0.82 ∞ 0.195 0.59 −3.46 0.867 Undef. Undef. 1.04
50 1.57 0.76 1.88 0.202 0.59 −3.01 0.873 0.692 0.519 0.95

140 1.70 0.67 1.55 0.232 0.57 −2.35 0.906 0.745 0.646 0.81
300 2.14 0.53 1.11 0.298 0.54 −1.81 0.990 0.844 0.872 0.62
500 3.10 0.40 0.77 0.377 0.51 −1.66 1.111 0.986 1.069 0.46
700 4.50 0.32 0.59 0.450 0.49 −1.60 1.228 1.120 1.214 0.37
900 6.86 0.26 0.48 0.553 0.46 −1.55 1.334 1.237 1.337 0.29

1200 9.53 0.22 0.38 0.597 0.42 −1.47 1.473 1.390 1.492 0.24

hadron, the smaller is the size of that hadron. Thus, the model
results for ρE(r) are in agreement with what one expects for
increasing mπ .

We remark that, being a chiral model, the CQSM correctly
describes the behavior of 〈r2

E〉 in the chiral limit [60].

B. Angular-momentum density

The angular-momentum density ρJ (r) is related to the
T 0k components of the static EMT as ρJ (r) = εijksixjT0k(x).
Figure 3(a) shows ρJ (r) as function of r for different pion
masses. For any mπ we find that ρJ (r) ∝ r2 at small r , it
reaches then a maximum around r � (0.3 − 0.4) fm and goes
slowly to zero at large r .

As mπ increases we observe that the density ρJ (r) becomes
larger in the small r region at the price of decreasing in the
region of larger r . The increase in one and decrease in another
region of r (as mπ is varied) occurs in a precisely balanced way,
because ρJ (r)—in contrast to the energy density—is always
normalized as

∫
d3r ρJ (r,mπ ) = JN = 1

2 , independently of
mπ . These observations can be understood within the picture
of a rigidly rotating soliton as follows. For large pion masses
the “matter” inside the soliton is localized more toward
its center, as we have observed above, such that the inner
region of the soliton plays a more important role for its
rotation. As mπ decreases, and hence the range of the pion
cloud increases, the energy density in the soliton becomes

more strongly delocalized, and then the “outer regions” play
a more and more important role for the rotation of the
soliton.

These findings can be quantified by considering the mean
square radius 〈r2

J 〉 of the angular momentum density defined
analogously to Eq. (23). Figure 3(b) shows 〈r2

J 〉 as function
of mπ , and we see that 〈r2

J 〉 decreases with increasing mπ .
Notice that in the chiral limit ρJ (r) ∝ 1/r4 at large r such that
〈r2

J 〉 diverges [60]. Our numerical results for 〈r2
J 〉 in Fig. 3(b)

indicate this effect.

C. Pressure and shear forces

Next we turn to the discussion of the distributions of
pressure and shear forces, p(r) and s(r), which are related
to the T ik components of the static EMT.

Figures 4(a) and 4(b) show the distributions of pressure
p(r) and shear forces s(r) as functions of r for different mπ .
For all mπ the distributions of pressure and shear forces exhibit
the same qualitative behavior. The pressure takes at r = 0 its
global maximum, decreases monotonically becoming zero at
some point r0 until it reaches its global minimum at some
point, rp, min, and decreases, monotonically tending to zero but
always remaining negative. The distribution of shear forces is
never negative. It starts at a zero value at r = 0, increases
monotonically until it reaches a global maximum at some
point, rs,max, and decreases then monotonically tending to zero.
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FIG. 3. (Color online) (a) The angular mo-
mentum density ρJ (r) as function of r for
different pion masses mπ . (b) The mean square
radius 〈r2

J 〉 of the angular momentum density as
function of mπ .
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FIG. 4. (Color online) The distributions of
(a) pressure p(r) and (b) the shear forces s(r) as
functions of r for different pion masses.

The positive sign of the pressure for r < r0 corresponds
to repulsion, whereas the negative sign in the region r > r0

means attraction. This is intuitive because in the inner region
we expect repulsion among quarks due to the Pauli principle,
whereas the attraction in the outer region is an effect of the
pion cloud which is responsible for binding the quarks to form
a nucleon [60].

With increasing mπ the pressure p(0) in the center of the
nucleon increases. At the same time also the absolute value of
its (negative) minimum increases. Also the maximum of s(r)
becomes larger with increasing mπ , whereas the characteristic
positions r0, rp, min, and rs, max move toward smaller r , see
Fig. 5 for mπ dependence of p(0) and r0.

These observations can be understood as follows. The
repulsive forces in the center of the nucleon increase as a
response to the higher density at larger mπ . At the same time
the size of the nucleon decreases requiring stronger binding
forces—and a “movement” of characteristic length scales of
p(r) and s(r) toward the center. At any mπ repulsive and
attractive forces are precisely balanced due to Eq. (11); see
Sec. IV D.

D. Stability

Although the densities, ρE(r) and ρJ (r), are normalized
with respect to MN and JN , for the pressure p(r) the
corresponding analogon is the stability criterion (11). In
Ref. [60] it was proven analytically that Eq. (11) is satisfied
in the model—provided one evaluates the pressure with the
self-consistent profile, i.e., with that profile which for a given
mπ provides the true minimum of the soliton energy (15).

For given model parameters the soliton profiles are obtained
by means of an iteration procedure that is described in detail in,
for example, Ref. [47]. The profiles used here were computed
in Ref. [41] where a good convergence of the iteration

procedure was observed. However, what precisely means that
the convergence of the iteration was good? In other words,
how to test the quality of the numerical results? One could,
for example, slightly modify the obtained profiles and check
that they yield larger soliton masses than the respective true
self-consistent profile. But the probably most elegant method
is provided by the stability criterion (11). If, and only if,
we found the soliton profile that truly minimizes the soliton
energy (11), the pressure computed with that profile will
satisfy (11).

One way to check to which numerical accuracy our results
satisfy Eq. (11) is as follows. Let us consider r2p(r) as function
of r , see Fig. 6(a), and compute the integrals from 0 to r0 and
from r0 to ∞.1 We obtain

∫ r0

0
dr r2p(r) =




2.614 MeV
3.737 MeV
3.856 MeV,

∫ ∞

r0

dr r2p(r) =



−2.630 MeV
−3.748 MeV
−3.861 MeV,

1The numerical calculations are carried carried out in a finite
spherical volume—here of the size D = 12 fm. For most quantities
the densities decay fast enough at large r such that it is sufficient to
integrate up to r = D. This is what we did in Eq. (24). However, for
certain quantities given by integrals over the densities weighted by
a higher power of r the integrands may happen not to be negligibly
small at large r in particular for small mπ <∼ 140 MeV. Then it is
necessary to explore the analytically known large-r asymptotics of
the densities, see Ref. [60], and to include the contribution of the
regions r > D not covered in the numerical calculation. Examples
of such quantities are d1 or 〈r2

J 〉. The latter is divergent in the chiral
limit, see Sec. IV B.
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FIG. 5. (Color online) The pion mass depen-
dence of the pressure p(0) in the center of the
nucleon and of the position r0 at which p(r)
vanishes.
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FIG. 6. (Color online) (a) r2p(r) as function
of r for different pion masses. The integrals over
the regions where r2p(r) is, respectively, positive
and negative cancel each other within numerical
accuracy of better than 1%. This shows how the
stability condition in Eq. (11) is satisfied; see
text. (b) The pressure p(0) as function of the
energy density ρE(0) in the center of the nucleon.
Some pion masses to which the respective values
refer are indicated. The physical point is marked
by the cross.

i.e.,

∣∣ ∫ ∞
0 dr r2p(r)

∣∣∫ ∞
0 dr r2|p(r)| =




0.31% for mπ = 140 MeV
0.15% for mπ = 500 MeV
0.07% for mπ = 1200 MeV,

(24)

and see that the stability criterion is satisfied to within a
satisfactory numerical accuracy. Finally, we may test another
sort of stability. We may ask the question how do pressure and
energy density in the center of nucleon depend on each other
for varying mπ . In fact, with ρE(r,mπ ) and p(r,mπ ) at hand,
we may eliminate mπ at r = 0 and express p(0) as function
of ρE(0). This is shown in Fig. 6(b) which demonstrates
how the center of the nucleon responds to changes of mπ .
Understanding the center of the nucleon for a moment as
a “medium which is subject to variations of the external
parameter mπ” we observe that for any mπ we have ∂p(ρE )

∂ρE
> 0.

This is a criterion for stability of a system that must respond
with an increase of pressure if the density is increased.

V. RESULTS FOR THE FORM FACTORS

Figure 7 shows the form factors of the EMT as functions
of t for |t | � 1 GeV2 for different mπ . All EMT form factors
(with the exception of J (t) and d1(t) in the chiral limit, see
below) can be well approximated by dipole fits of the kind

F (t) = F (0)(
1 − t/M2

dip

)2 . (25)

It is instructive to compare within the model the EMT form
factors to the electromagnetic form factors—for example, to
the electric form factor of the proton GE(t) [46]. Interestingly,
J (t) and GE(t) show a similar t dependence. But M2(t) falls off
with increasing |t | slower than GE(t), whereas d1(t) exhibits
a faster fall off, see Ref. [60] for more details.

The dipole masses of the different form factors exhibit
different mπ dependences, see Fig. 8(a) and Table I. For all
form factors the dipole masses increase with increasing mπ . It
is an interesting observation that the dipole masses of M2(t)
and J (t) exhibit for mπ >∼ 140 MeV to a good approximation a
linear dependence on mπ . But the mπ dependence of the dipole
mass of d1(t) follows a different pattern. We shall comment
more on that in Sec. VII.

That the dipole approximation for J (t) and d1(t) fails in the
chiral limit, is due to fact that the slopes of J (t) and d1(t) at
t = 0 diverge in this limit [60]. For J (t) this is clear because
its derivative at t = 0 is related to the mean square radius
of the angular momentum density as J ′(0) = 1

6 〈r2
J 〉, and 〈r2

J 〉
diverges for mπ → 0, see Sec. IV B.

The slope of d1(t) at t = 0 becomes infinitely steep in the
chiral limit because it is related as d ′

1(0) = MN

16

∫
d3r r4p(r) to

the pressure that behaves as p(r) ∝ 1
r6 at large r in the chiral

limit. More precisely, d ′
1(t) ∝ 1/

√−t at small t in the chiral
limit. For small but nonzero mπ the derivative d ′

1(0) exists
and is proportional to 1/mπ . These results hold both in the
CQSM [60] and in χPT [31]. The derivative of the form factor
M2(t) at t = 0 is finite for any mπ .

M2(t) and J (t) are normalized at t = 0 for any mπ as
M2(0) = 2J (0) = 1 [60]. In the CQSM these constraints are
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FIG. 7. (Color online) The form factors of the energy momentum tensor M2(t), J (t), and d1(t) as functions of t for different pion masses.
In the chiral limit J (t) and d1(t) exhibit infinitely steep slopes at t = 0, and d1(0) takes the value −3.46, which does not fit on the scale in
Fig. 7(c).

055207-8



PION MASS DEPENDENCE OF THE NUCLEON FORM . . . PHYSICAL REVIEW C 75, 055207 (2007)

-4

-3

-2

-1

 0

 0  0.2  0.4  0.6  0.8  

(b)d1

mπ (GeV)

exact model result
chiral expansion up to O(mπ)

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  

(a)Mdip (GeV)

mπ (GeV)

M2(t)
d1(t)

J(t)

FIG. 8. (Color online) (a) The dipole masses
as defined in Eq. (25) for the form factors
M2(t), d1(t), and J (t) from the CQSM vs. mπ .
Notice that d1(t) and J (t) cannot be approxi-
mated by dipoles for mπ = 0. (b) The constant
d1 as function of mπ at low scale. (Solid line)
The exact result from the CQSM. (Dotted line)
The chiral expansion of d1(mπ ) to linear order
in mπ according to (26). The square marks the
physical point.

consistent for they mean that entire momentum and spin of
the nucleon are carried by quark degrees of freedom. The
numerical results satisfy these constraints within a numerical
accuracy of better than 1%; see Figs. 7(a) and 7(b).

In contrast, no principle fixes the normalization of the form
factor d1(t) at t = 0 neither in the model nor in QCD. For all mπ

we find d1 = d1(0) < 0. This condition has been conjectured
to be dictated by stability requirements [60]. Figure 8(b) shows
the mπ dependence of d1, which is rather strong. This is
due to the fact that d1 receives a large leading nonanalytic
contribution proportional to mπ . (The “nonanalyticity” refers
to the current quark mass m ∝ m2

π .) The chiral expansion of
d1 reads

d1(mπ ) =
◦
d1 + k

5 g2
AMN

64 π f 2
π

mπ + . . . (26)

where
◦
d1 denotes the chiral limit value of d1, and the dots

indicate subleading terms in the chiral limit. Because the limits
Nc → ∞ and mπ → 0 do not commute [81,82] one has in
Eq. (26) k = 1 for finite Nc [31] and k = 3 in the large-Nc

limit [60]. The latter corresponds to the situation in the CQSM.
It is interesting to observe that the leading nonanalytic term

in the chiral expansion of d1 in Eq. (26) dominates the chiral
behavior of d1 up to the physical point, see Fig. 8(b). But
for larger mπ higher orders in the chiral expansion become
important, and change the qualitative mπ -behavior of d1(mπ ).
We shall come back to this point in Sec. VII.

Finally, we discuss mπ dependence of the mean square
radius 〈r2

F 〉 of the trace of the total EMT operator given due to
the trace anomaly [83] by

T̂ µ
µ ≡ β

2g
FµνFµν + (1 + γm)

∑
a

maψ̄aψa. (27)

Let F (t) denote the form factor of the operator (27) which
is normalized as F (0) = 1. Its slope at t = 0 defines 〈r2

F 〉 =
6F ′(0) which can be related as

〈
r2
F

〉 = 〈
r2
E

〉 − 12 d1

5M2
N

(28)

to 〈r2
E〉 and d1, see Ref. [60]. Figure 9 shows how 〈r2

F 〉 depends
on the pion mass. In the chiral limit 〈r2

F 〉 is the mean square
radius of the operator FµνFµν and its large value there is in
contrast to what is known about the mean square radii of other
gluonic operators [84].

VI. COMPARISON TO LATTICE RESULTS

It is instructive to compare the results for the form factors
of the EMT to lattice QCD data [24–28]. Presently, this offers
actually the only available test for the model results. For the
comparison it is necessary to evolve the model results from a
low initial scale µ0 ∼ 0.6 GeV to typically µ ∼ 2 GeV in the
lattice calculations which we shall do to leading logarithmic
accuracy. Under evolution the quark (flavor-singlet) form
factors mix with the corresponding gluon form factors. We
set the latter to zero at the initial scale.

In this context it is worthwhile recalling that in early
parametrizations of unpolarized parton distributions f a

1 (x),
the gluon (and sea quark) distribution(s) and thus MG

2 were
assumed to be zero at a low initial scale [85]. One success
of these approaches was that they were able to explain the
observation M

Q
2 ≈ 0.5 at µ2 ∼ 5 GeV2. That is, starting with

M
Q
2 = 1 and MG

2 = 0 at a low scale, which is the situation
in the CQSM, it is possible to reproduce the observation
M

Q
2 ≈ 0.5 at several GeV2. However, with the advent of more

data (especially at low x) it became clear [86] that nonzero
gluon (and see quark) distributions are required already at
low initial scales. Modern parametrizations performed at low
scales require a sizable gluon distribution and MG

2 ≈ 0.3
[87]. This is not in disagreement with the instanton picture
where twist-2 gluon operators are suppressed with respect
to quark operators by the instanton packing fraction which
is numerically of order 30% [74]. Thus in some sense the
phenomenologically required “portion of gluons” is within
the accuracy of the model [51]. With these remarks in mind
we conclude that the CQSM result M

Q
2 = 1 at the low scale of

the model is in agreement with phenomenology—within the
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FIG. 9. (Color online) The mean square radius 〈r2
F 〉 of the trace

of the total EMT operator vs. mπ .
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FIG. 10. (Color online) The form
factors of the energy momentum tensor
Au+d

20 (t) ≡ AQ(t) = M
Q

2 (t) and Bu+d
20 (t) ≡

BQ(t) = 2J Q(t) − M
Q

2 (t) as functions of t

at the scale µ = 2 GeV in a world with pion
mass mπ = 900 GeV. (See Appendix for the
discussion of different notations.) The lattice
data points are by the LHPC and SESAM
Collaborations [26]. The solid curves are the
results from the CQSM obtained here.

accuracy of this model. Next, before we compare the results
from the model to those from lattice QCD, let us confront
the lattice results [24–28] with predictions from the large-Nc

limit. In this limit one has for |t | � M2
N independently of the

scale [19]

(Au + Ad )(t)︸ ︷︷ ︸
O(N0

c )

	 |(Au − Ad )(t)|︸ ︷︷ ︸
O(N−1

c )

,

|(Bu − Bd )(t)|︸ ︷︷ ︸
O(Nc)

	 |(Bu + Bd )(t)|︸ ︷︷ ︸
O(N0

c )

, (29)

|(Cu + Cd )(t)|︸ ︷︷ ︸
O(N2

c )

	 |(Cu − Cd )(t)|︸ ︷︷ ︸
O(Nc)

,

cf. Appendix for the explanation of the notation. For complete-
ness let us quote that the gluon form factors satisfy

AG(t) = O
(
N0

c

)
, BG(t) = O

(
N0

c

)
, CG(t) = O

(
N2

c

)
,

(30)

which is the same large-Nc behavior as the corresponding
quark-flavour-singlet form factors.

Remarkably, although in the real world Nc = 3 does not
seem to be large, nevertheless lattice data [24–28] reflect the
large-Nc flavor dependence of the quark form factors (29).
In fact, large-Nc relations of the type (29), (30) are observed
to be satisfied in phenomenology [88] and serve within their
range of applicability as useful guidelines [89]. The soliton
approach is justified in the large-Nc limit [44] and satisfies
general large-Nc relations of the type (29). The observation
that the lattice results [24–28] are compatible with (29) is
therefore an encouraging prerequisite for our study.

Let us first compare the model results to the lattice
data computed by the LHPC and SESAM Collaborations
[26]. There unquenched SESAM Wilson configurations on
a 163 × 32 lattice at β = 5.6 with κ = 0.1560 were used. This
corresponds to mπ = (896 ± 6) MeV and a lattice spacing of
a = 0.098 fm with physical units fixed by extrapolating the
nucleon mass. The form factor Au+d

20 (t) = AQ(t) ≡ M
Q
2 (t)

was computed omitting disconnected diagrams at a scale
µ = 2 GeV for 0 � |t | � 3.1 GeV2. (The different notations are
discussed in Appendix) The lattice data for AQ(t), which can

be fit to the dipole form, are shown in Fig. 10(a). In Fig. 10(a)
we also show the CQSM results evolved to the same scale for
|t | <∼ 1 GeV2. We observe that the model results agree with the
lattice data [26] to within 15% which is within the accuracy to
which the CQSM results typically agree with phenomenology.

Figure 10(b) shows the form factor Bu+d
20 (t) = BQ(t) ≡

2JQ(t) − M
Q
2 (t) from Ref. [26] which was computed in the

range −t ∈ [0.59, 3.1] GeV and was found consistent with
zero within the statistical accuracy of the simulation. Also
in the CQSM we find BQ(t) close to zero—in reasonable
agreement with the lattice data; see Fig. 10(b). Notice that
in the model, at the low scale, we have BQ(0) = 0 because
M

Q
2 (0) = 2JQ(0) (and equal unity); see Secs. IV A and

IV B. This implies a vanishing quark contribution to the
“gravitomagnetic moment” of the nucleon [58] conjectured
in Ref. [90]. The smallness of BQ(t) implies that to a good
approximation 2JQ(t) ≈ M

Q
2 (t). We come back to this point

below.
Next, let us compare to the quenched lattice results by

the QCDSF Collaboration [27], which were obtained using
nonperturbatively O(a) improved Wilson fermions on a 163 ×
32 lattice at β = 6.0 using varying values of κ . In Figs. 11(a),
11(b), and 11(c) the form factors Au+d

2 (t) = AQ(t) ≡ M
Q
2 (t)

and Bu+d
2 (t) = BQ(t) ≡ 2JQ(t) − M

Q
2 (t) and Cu+d

2 (t) =
CQ(t) ≡ 1

5d1(t) are shown for mπ = 640 MeV [27]. The
results refer to a scale of µ = 2 GeV and cover the regions
−t ∈ [0, 2.8] GeV2 for AQ(t) and [0.6, 2.8] GeV2 for BQ(t)
and CQ(t). For comparison we plot the CQSM results at the
corresponding scale and value of mπ . Also here we observe
a satisfactory agreement with the lattice data within model
accuracy and/or within the statistical accuracy of the lattice
data.

Notice that the presence of explicit kinematical factors of
O(�) in the case of BQ(t), and of O(�2) in the case of CQ(t),
see Eq. (A1) in App. A, practically amplifies the statistical
errors of the form factors—as can be seen in Figs. 10 and 11.
This is also the reason why no results for CQ(t) were presented
in the exploratory study of Ref. [26].

The value of 2JQ(t) ≡ (AQ + BQ)(t) at t = 0 is of partic-
ular interest since it gives the percentage of the total nucleon
spin carried by quarks [5]. The lattice calculations yield
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FIG. 11. (Color online) The form factors of the energy momentum tensor Au+d
2 (t) ≡ AQ(t) = M

Q

2 (t) and Bu+d
2 (t) ≡ BQ(t) = 2J Q(t) −

M
Q

2 (t) and Cu+d
2 (t) ≡ CQ(t) = 1

5 d
Q

1 (t) as functions of t at the scale µ = 2 GeV in a world with pion mass mπ = 640 GeV. (For notations see
Appendix.) The lattice data points are from the QCDSF Collaboration [27]. The solid curves are the results from the CQSM obtained here.

2JQ(0) =




0.60 ± 0.07 at µ = 1.76 GeV extrapolated to the physical point [24]
0.70 ± 0.20 at µ ∼ 1.8 GeV for mπ ∼ 0.8 GeV [25]
0.66 ± 0.07 at µ = 2 GeV extrapolated to the physical point [27]
0.682 ± 0.018 at µ = 2 GeV for mπ = 900 MeV [26].

(31)

In the CQSM we have 2JQ(0) = 1 for any mπ at the low scale
of the model, because there are only quarks and antiquarks
to carry the nucleon angular momentum, and they must, of
course, carry 100% of it. Considering evolution one obtains

2JQ(0) ≈ 0.75 from CQSM at µ ≈ (1.7 − 2.0) GeV,

(32)

and 2JG(0) ≈ 0.25. The result [Eq. (32)] is—within model
accuracy—in good agreement with the lattice data in Eq. (31).

For other aspects in the context of the nucleon spin structure
discussed from the CQSM point of view the reader is referred
to Ref. [59].

VII. CHIRAL EXTRAPOLATION OF LATTICE DATA

Let us draw from our study some conclusions which could
be of interest in the context of the chiral extrapolation of lattice
data. Unfortunately, the model cannot provide any insights in
this respect concerning the mπ dependence of M

Q
2 or JQ. At

the low scale M
Q
2 = 2JQ = 1 which expresses consistently

that the total nucleon momentum and angular momentum
in the model are carried by quarks—irrespective the value
of mπ . The model provides, however, interesting results for
the t dependence of M

Q
2 (t), JQ(t), and d

Q
1 (t), including the

normalization of the latter.
For that let us imagine that for some reason we were

able to compute in the CQSM the EMT form factors only
for mπ >∼ (400–500) MeV, and then forced to extrapolate the
results down to small mπ to compare to the real world—using
the model results from the large-mπ region as main guideline.
What would we obtain?

First of all we emphasize that in the CQSM all form factors
of the EMT can be well approximated by dipoles. Though
there is some prejudice in this respect based on the experience
with the electric and magnetic form factors of the proton, this
is an important and nontrivial observation.

Next, we consider the dipole masses of the form factors
M

Q
2 (t) and JQ(t). From the approximately linear mπ -behavior

of the respective dipole masses in the region of mπ >∼
(400–500) MeV we might have been tempted to assume also a
linear behavior in the region of mπ down to the physical point.
Such an extrapolation would have resulted in a surprizingly
accurate estimate for the dipole masses of M

Q
2 (t) and JQ(t) at

the physical point, see Fig. 8(a).
However, this procedure would have failed in the case

of the dipole mass of d
Q
1 (t). In fact, also this dipole mass

exhibits an approximately linear mπ behavior in the region
mπ >∼ 500 MeV, see Fig. 8(a). But presuming that this linear
behavior continues to hold also for mπ <∼ 500 MeV would have
resulted in a strong overestimate of the dipole mass of d1(t) at
the physical point of about 30%, see Fig. 12.

Finally, let us discuss the mπ dependence of the form factor
d

Q
1 (t) at zero momentum transfer. We observe an mπ behavior

of d
Q
1 ≡ d

Q
1 (0) in the region of mπ > 400 MeV which is linear

to a very good approximation. However, if we assumed that this
linear mπ -dependence continued down to small pion masses
we would have underestimated the absolute value of d

Q
1 at the

physical point by about 25%, and in the chiral limit by 50%,
see Fig. 12(b).

Recall that the chiral expansion of d
Q
1 to linear order in

mπ—i.e., up to the leading non-analytic contribution (in large
Nc) according to Eq. (26)—approximates the full result rather
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FIG. 12. (Color online) (a) The dipole mass
Mdip of the form factor d

Q

1 (t) vs. mπ as obtained
from the CQSM. The linear mπ dependence
in the region mπ >∼ 500 MeV is emphasized.

(b) The pion mass dependence of the constant dQ

1

as obtained from the CQSM at low scale. (Solid
line) The exact result from the CQSM. (Dotted
line) The chiral expansion of d1(mπ ) to linear
order in mπ according to Eq. (26). (Dashed line)
The attempt of a “chiral extrapolation” from the
region of large mπ >∼ 400 MeV. In both figures
the cross marks the physical point.

well up to the physical point. It is an interesting result that in
our model d

Q
1 exhibits in the region of large mπ > 400 MeV

again a linear mπ dependence—just as at low mπ <∼ 140 MeV,
however, with a roughly 30 times smaller slope!

Of course, we make these observations in an effective chiral
theory formulated in the large Nc limit. The situation could be
different in full QCD simulations performed at finite Nc = 3.
However, the model was observed—in spite of its caveats like
large vs. finite Nc—to provide a qualitatively good description
of lattice results on the pion mass dependence of the nucleon
mass in the region 300 MeV <∼ mπ <∼ 1.5 GeV [41]. Therefore
it could be worth it to keep in mind the lessons we learn here
from this model.

VIII. CONCLUSIONS

We have presented a study of the nucleon EMT form
factors in the large-Nc limit in the framework of the CQSM
in the region of pion masses 140 MeV � mπ � 1.2 GeV. This
work supplements the study of the nucleon EMT form
factors in the region 0 � mπ � 140 MeV [60]. There is a good
reason why these studies have been presented separately.
The CQSM [42,43] has been used extensively to study the
nucleon at the physical point and in the chiral limit with
considerable phenomenological success [46–59]. The model
owes its success to the facts that it is a QCD-inspired field
theoretic approach [72–74] which correctly describes chiral
symmetry playing an essential role in the description of the
nucleon.

Here we studied the CQSM at model parameters corre-
sponding to large pion masses far above the physical point,
i.e., far away from the chiral limit. Is the model applicable in
this situation? First exploratory studies in this direction have
indicated a positive answer [40,41]. To shed further light to this
question we have focused here on the nucleon form factors of
the EMT which is a central quantity for any field theoretic
approach.

In our study we have demonstrated that the soliton solutions
for large mπ obtained numerically in Ref. [41] correspond
to stable solitons, which is an important prerequisite for the
applicability of the approach. We have shown that the model
results for the energy density, the angular momentum density,
and the distributions of strong pressure and shear forces are in
qualitative agreement with what one expects as the constituents
building up the nucleon become heavy and the range of the

pion cloud diminishes. Namely the spatial extension of the
nucleon shrinks, the energy density increases, the absolute
values of the forces inside the nucleon increase—resulting in
a smaller and more tightly bound nucleon. These densities are
related to the form factors of the EMT [3].

To test the model results in a more quantitative way we
have compared them to results for the EMT form factors
from lattice QCD simulations [24–28] performed at lattice
parameters corresponding to mπ >∼ 500 MeV. We observe a
good agreement with the lattice data within an accuracy of
(10–30)%. Also at the physical point the model was observed
to work to within a similar accuracy [46–53].

The good performance of the model at the physical point
and in the region of large pion masses raises the question
whether the model results could be used as a guideline for
the chiral extrapolation of lattice data. Given the generally
observed accuracy of the model it is clear that it cannot be
used as a precision extrapolation tool. However, the model
results can be helpful in two respects.

First, our results can be of use as qualitative guidelines for
the extrapolation of lattice data. For example, the model results
indicate that the EMT form factors can be well approximated
by dipole fits, and that the dipole masses of M

Q
2 (t) and JQ(t)

exhibit to a good approximation a linear mπ dependence from
mπ = 1.2 GeV down to the physical point. But our results
indicate also that the chiral extrapolation of the form factor
d

Q
1 (t) from the region mπ >∼ (400–500) MeV could be a subtle

and difficult task.
Second, the success of the model at large pion masses

could provide a justification for applying the “pion cloud”
idea to the description of nucleon up to pion masses of
O(1 GeV) as explored in the finite range regulator ap-
proach. This approach may provide a useful and precise
tool for the chiral extrapolation of lattice data as argued in
Ref. [37,38].

To conclude, we observe that the CQSM provides a
consistent description of the nucleon at large pion masses
indicating that effective quark and pion degrees of freedom
can account for the gross features of the nucleon properties
also in this regime. Work which may provide further insigths
in this direction is in progress.

Note added in proof. After this work was completed
the work [91] appeared where the flavor dependence of the
constant d1 and its pion mass dependence were studied in a
similar framework.
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APPENDIX: ALTERNATIVE DEFINITION OF
FORM FACTORS

By means of the Gordon identity 2MNū′γ αu =
ū′(iσ ακ�κ + 2P α)u one can rewrite (1) as (see, e.g.,

in Ref. [5])

〈p′|T̂ Q,G
µν (0)|p〉 = ū(p′)

[
AQ,G(t)

γµPν + γνPµ

2

+BQ,G(t)
i(Pµσνρ + Pνσµρ)�ρ

4MN

+CQ,G(t)
�µ�ν − gµν�

2

MN

± c̄(t)gµν

]

× u(p), (A1)

where AQ,G(t) = M
Q,G
2 (t), AQ,G(t) + BQ,G(t) = 2 JQ,G(t),

CQ,G(t) = 1
5 d

Q,G
1 (t). In this notation the constraints (8)

read AQ(0) + AG(0) = 1 and BQ(0) + BG(0) = 0. The latter
constraint is sometimes rephrased as the “vanishing of the total
nucleon gravitomagnetic moment.”
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