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Determination of the pion charge form factor for Q2 = 0.60–1.60 GeV2
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The data analysis for the reaction 1H(e, e′π+)n, which was used to determine values for the charged pion form
factor Fπ for values of Q2 = 0.6–1.6 GeV2, has been repeated with careful inspection of all steps and special
attention to systematic uncertainties. Also the method used to extract Fπ from the measured longitudinal cross
section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and
the extracted values of Fπ are presented.
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I. INTRODUCTION

Hadron form factors are an important source of information
on hadronic structure. Of these, the electric form factor, Fπ ,
of the charged pion plays a special role. One of the reasons is
that the valence structure of the pion is relatively simple. The
hard part of the π+ form factor can be calculated within the
framework of perturbative QCD (pQCD) as the sum of loga-
rithms of Q2 multiplied by powers of 1/Q2 [1]. As Q2 → ∞,
only the leading-order term remains

Fπ (Q2 → ∞) → 16παs(Q2)f 2
π

Q2
, (1)

where αs is the strong-coupling constant and fπ the pion decay
constant. Thus, in contrast to the nucleon case, the asymptotic
normalization of the pion function is known from the decay of

the pion. The theoretical prediction for Fπ at experimentally
accessible Q2 is less certain, because the calculation of the soft
contributions is difficult and model dependent. This is where
considerable theoretical effort has been expended in recent
years. Some examples include next-to-leading order (NLO)
quantum chromodynamics (QCD) [2,3], QCD sum rules [4,5],
constituent quark models [6], and Bethe-Salpeter equation
[7] calculations. (See Ref. [8] for a review.) Some of these
approaches are more model independent than others, but it is
fair to say that all benefit from comparison to high-quality Fπ

data to delineate the role of hard versus soft contributions at
intermediate Q2.

The experimental measurement of the pion form factor is
quite challenging. At low Q2, Fπ can be measured in a model-
independent manner via elastic scattering of π+ from atomic
electrons such as at the CERN Super Proton Synchrotron
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(SPS) [9]. Above Q2 > 0.3 GeV2, one must determine Fπ

from pion electroproduction on the proton. The dependence
on Fπ enters the cross section via the t-channel process,
in which the incident electron scatters from a virtual pion,
bringing it on-shell. This process dominates near the pion pole
at t = m2

π . The physical region for t in pion electroproduction
is negative, so measurements should be performed at the
smallest attainable values of −t . To minimize background
contributions, it is also necessary to separate the longitudinal
cross section σL, via a Rosenbluth L/T(/LT/TT) separation.
The value of Fπ (Q2) is then determined by comparing the
measured longitudinal cross section at small values of −t ,
where it is dominated by the t-pole term, which contains
Fπ , to the best available model for the reaction 1H(e, e′π+)n,
adjusting the value of Fπ in the latter.

Using the electroproduction technique, the pion form factor
was studied for Q2 values from 0.4 to 9.8 GeV2 at CEA/Cornell
[10] and for Q2 = 0.35 and 0.70 GeV2 at DESY [11,12].
Reference [12] performed a longitudinal/transverse separation
by taking data at two values of the electron energy. In the
experiments done at CEA/Cornell, this was done in a few
cases only, but even then the resulting uncertainties in σL were
so large that the L/T separated data were not used, and σL

was determined by assuming a certain parametrization for σT .
Consequently, the values of Fπ extracted from these data have
sizable systematic uncertainties.

More recently, the 1H(e, e′π+)n reaction was measured at
the Thomas Jefferson National Accelerator Facility (JLab)
to study the pion form factor from Q2 = 0.6–1.6 GeV2.
Because of the excellent properties of the electron beam and
experimental setup at JLab, L/T separated cross sections
were determined with high accuracy. These data were used
to determine the value of Fπ and the results were published
in Ref. [13]. Since then, the whole analysis chain has been
repeated with careful investigation of all steps, including the
contribution of various systematic uncertainties to the final
uncertainty of the separated cross sections. Furthermore, the
method to determine Fπ from the longitudinal cross sections
was reinvestigated, leading to a different method to extract
Fπ . In this article, we report on these studies and present
final results for the longitudinal and transverse cross sections,
as well as the extracted values of Fπ from these data. We
also discuss in detail the extraction of Fπ from the measured
cross sections, and the related extraction uncertainties (model
dependence).

II. EXPERIMENT AND CROSS SECTION DATA ANALYSIS

The cross section for pion electroproduction can be written
as

d3σ

dE′d�e′d�π

= �V J (t)
d2σ

dtdφ
, (2)

where

�v = α

2π2

E′
e

Ee

1

Q2

1

1 − ε

W 2 − M2

2M
(3)

is the virtual photon flux factor, φ is the azimuthal angle of
the outgoing pion with respect to the electron scattering plane,

t = (pπ − q)2 is the Mandelstam variable, J is the Jacobian
for the transformation from d�π to dtdφ, and W is the photon-
nucleon invariant mass.

The twofold differential cross section can be written as

2π
d2σ

dtdφ
= ε

dσL

dt
+ dσT

dt
+

√
2ε(ε + 1)

dσLT

dt
cos φ

+ ε
dσT T

dt
cos 2φ, (4)

where ε = (1 + 2 |q2|
Q2 tan2 θ

2 )−1 is the virtual-photon polariza-

tion parameter. The σX ≡ dσX
dt

cross sections depend on W,Q2,
and t . By using the φ acceptance of the experiment and
taking data for the same (central) kinematics (W,Q2, t) at
two energies, and thus two values of ε, the cross sections
σL, σT , σLT , and σT T can all be determined.

Using 2.4–4 GeV electron beams impinging on a liquid
hydrogen target, data for the 1H(e, e′π+)n reaction were
taken at a central value of W = 1.95 GeV for central Q2

values of 0.6, 0.75, 1.0, and 1.6 GeV2. The scattered electron
was detected in the short orbit spectrometer (SOS) and the
produced pion in the high momentum spectrometer (HMS) of
Hall C.

The data analysis is an updated version of that in Ref. [13].
First, experimental yields were determined. Electrons in the
SOS were identified by using the combination of a lead glass
calorimeter and gas Čerenkov detector. Pion identification in
the HMS was accomplished by requiring no signal in a gas
Čerenkov detector and by using time-of-flight between two
scintillator hodoscope planes. The momenta of the scattered
electron and the pion at the target vertex were reconstructed
from the wire chamber information of the spectrometers,
correcting for energy loss in the target. From these, the values
of Q2,W, t , and the missing mass were reconstructed. A cut on
the latter of 0.925 to 0.96 GeV was used to select the neutron
exclusive final state, excluding additional pion production
(Fig. 1). Experimental yields as function of Q2,W, t , and
φ were then determined by subtracting random coincidences
(varying with bin but typically 1.2%) and aluminum target
window contributions (typically 0.6%) and correcting for
trigger, tracking and particle-identification efficiencies, pion
absorption, local target-density reduction due to beam heating,
and dead times. Details of these procedures are similar to those
found in Ref. [14].
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FIG. 1. (Color online) Representative missing mass distribution.
Cuts at 0.925 and 0.960 GeV were applied to select the recoil neutron
final state.
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Cross sections were obtained from the yields using a de-
tailed Monte Carlo (MC) simulation of the experiment, which
included the magnets, apertures, detector geometries, realistic
wire chamber resolutions, multiple scattering in all materials,
optical matrix elements to reconstruct the particle momenta
at the target from the information of the wire chambers of
the spectrometers, pion decay (including misidentification of
the decay muon as a pion), and internal and external radiative
processes.

Calibrations with the overdetermined 1H(e, e′p) reaction
were instrumental in various applications. The beam momen-
tum and the spectrometer central momenta were determined
absolutely to better than 0.1%, whereas the incident beam
angle and spectrometer central angles were determined with
an absolute accuracy of about 0.5 mrad. The spectrometer
acceptances were checked by comparison of the data to the
MC simulations. Finally, the overall absolute cross section
normalization was checked. The calculated yields for e + p

elastics agreed to better than 2% with predictions based on a
parametrization of the world data [15].

In the pion production reaction, the experimental accep-
tances in W,Q2, and t are correlated. By using a realistic
cross-section model in the MC simulation, possible errors
resulting from averaging the measured yields when calculating
cross sections at average values of W,Q2, and t can be
minimized. A phenomenological cross-section model was
obtained (see below) by fitting the different cross sections σX

of Eq. (4) globally to the data as a function of Q2 and t in the
whole range of Q2. The dependence of the cross section on W

was assumed to follow the phase-space factor (W 2 − M2
p)−2,

which is supported by previous data [12].
The experimental cross sections can then be calculated from

the measured and simulated yields via the relation[
dσ (W,Q

2
, t, φ)

dt

]
exp

= 〈Yexp〉
〈YMC〉

[
dσ (W,Q

2
, t, φ)

dt

]
MC

. (5)

This was done for five bins in t at each of the four Q2 values.
Here, 〈Y 〉 indicates that the yields were averaged over the W

and Q2 acceptance, W and Q
2

being the acceptance (of high
and low ε together) weighted average values for that t bin. By
using these average values, possible errors due to extrapolating
the MC model cross section used to outside the region of the
experimental data, is avoided.

By combining for every t bin (and for the four values of
Q2) the φ-dependent cross sections measured at two values of
the incoming electron energy, and thus of ε, the experimental
values of σL, σT , σLT , and σT T can be determined by fitting the
φ and ε dependence (Fig. 2). In this fit, the leading order sin θ

(sin2 θ ) of σLT (σT T ), where θ is the angle between the three-
momentum transfer and the direction of the outgoing pion, was
taken into account.1 Those values were then used to improve
on the model cross section used in the MC simulation. This

1In the previous analysis [13], first σLT and σT T were determined by
adjusting their values (plus a constant term) until the ratios Yexp/YMC

were constant as function of θ and φ. After that, σL and σT were
determined in a Rosenbluth separation. The present method is more
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FIG. 2. Example of the measured cross sections, d2σ/dtdφ, as
a function of φ at Q2 = 0.6 GeV2 for two values of ε. The curves
shown represent the model cross section used in the Monte Carlo
simulation.

whole procedure was iterated until the values of σL, σT , σLT ,
and σT T converged. The dependence of σL (and σT ) on the
MC input model was small (see below).

The separated cross sections σL and σT are shown in
Fig. 3. They are presented as differential cross sections dσ/dt

as a function of t at the center of the t bin. The longitudinal
cross section exhibits the expected t-pole behavior. The
transverse cross section is mostly flat.

The total uncertainty in the experimental cross sections is
a combination of statistical and systematic uncertainties. All
contributions to the systematic uncertainty were carefully in-
vestigated, also using the results of extensive single-arm L/T

separation experiments and of 1H(e, e′p) calibration reactions
in Hall C [16]. The experimental systematic uncertainties
include contributions that, like the statistical uncertainties, are
uncorrelated between the measurements at the two ε values
and others that are correlated. Most of the uncorrelated ones
are common to all t bins, but there is a small contribution,
estimated as 0.7%, that is also uncorrelated in t . The
ε-uncorrelated uncertainties in σL are inflated by the factor
1/	ε in the L/T separation, where 	ε is the difference
(typically 0.3) in the photon polarization between the two
measurements. The effect on σT depends on the exact ε values.
The ε-uncorrelated systematic uncertainty in the unseparated
cross sections common for all t bins was estimated to be
1.7%, whereas the total correlated uncertainty is 2.8–4.1%,
depending on t . Apart from a dependence of the separated cross
sections on the MC model used, which ranges from 0.2% to a
maximum of 3% for one highest t bin, the largest contributions
are: the detection volume (1.5%), dependence of the extracted
cross sections on the momentum and angle calibration (1%),
target density (1%), pion absorption (1.5%), pion decay (1%),
the simulation of radiative processes (1.5%), and detector
efficiency corrections (1%). The overall uncertainty is slightly
smaller than used in Ref. [13].

The unseparated cross sections and hence also the values
of σL and σT of the present analysis differ from those of
our earlier analysis presented in Ref. [13]. Compared to that
analysis, small adjustments were made in the values of cuts and

straightforward and has the advantage that the uncertainties in the
separated cross sections are obtained more directly.
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TABLE I. Separated cross sections σL and σT from this work. The two listed
uncertainties for σL are the combination of statistical and t-uncorrelated systematic
uncertainties, and the combination of the ε-correlated and -uncorrelated uncertainties.
The statistical and t-uncorrelated uncertainties are applied before fitting the VGL model to
the data, whereas the ε-correlated and -uncorrelated uncertainties are applied afterwards.
The listed errors for σT include all experimental uncertainties.

Q2 W −t dσL/dt dσT /dt

(GeV2) (GeV) (GeV2) (µb/GeV2) (µb/GeV2)

0.526 1.983 0.026 31.360 ± 1.602, 1.927 8.672 ± 1.241
0.576 1.956 0.038 24.410 ± 1.119, 1.774 10.660 ± 1.081
0.612 1.942 0.050 20.240 ± 1.044, 1.583 10.520 ± 1.000
0.631 1.934 0.062 14.870 ± 1.155, 1.366 10.820 ± 0.992
0.646 1.929 0.074 11.230 ± 1.469, 1.210 10.770 ± 1.097
0.660 1.992 0.037 20.600 ± 1.976, 1.895 9.812 ± 1.532
0.707 1.961 0.051 16.280 ± 1.509, 1.788 10.440 ± 1.344
0.753 1.943 0.065 14.990 ± 1.270, 1.573 8.580 ± 1.150
0.781 1.930 0.079 11.170 ± 1.214, 1.416 9.084 ± 1.091
0.794 1.926 0.093 9.949 ± 1.376, 1.277 8.267 ± 1.110
0.877 1.999 0.060 14.280 ± 1.157, 1.103 7.084 ± 0.791
0.945 1.970 0.080 11.840 ± 0.887, 0.978 6.526 ± 0.657
1.010 1.943 0.100 9.732 ± 0.773, 0.837 5.656 ± 0.572
1.050 1.926 0.120 7.116 ± 0.789, 0.747 5.926 ± 0.570
1.067 1.921 0.140 4.207 ± 1.012, 0.612 5.802 ± 0.656
1.455 2.001 0.135 5.618 ± 0.431, 0.442 3.613 ± 0.294
1.532 1.975 0.165 4.378 ± 0.356, 0.390 3.507 ± 0.257
1.610 1.944 0.195 3.191 ± 0.322, 0.351 3.528 ± 0.241
1.664 1.924 0.225 2.357 ± 0.313, 0.310 3.354 ± 0.228
1.702 1.911 0.255 2.563 ± 0.356, 0.268 2.542 ± 0.227

efficiencies. Also, a small mistake was found in calculating the
value of θ , which affects the calculation of the cross section
in Eq. (5). Finally, as mentioned, the method to separate the
cross sections was changed. The cross sections in Table I are
our final values. Except for a few cases, the difference with the
previous values is well within the total uncertainty quoted in
Ref. [13]. As an example, the old and the new cross sections for
the case Q2 = 0.75 GeV2 are shown in Fig. 4. It can be seen
that the differences in the extracted unseparated cross sections
(top panels) are very small, but the L/T separation increases
them. On average over the four Q2 cases, σL is 6% smaller
than in Ref. [13] and σT is 3% larger. The largest differences
occur for Q2 = 1.0 GeV2, where σL is 14% smaller and σT is
10% larger.

III. EXTRACTION OF Fπ (Q2) FROM THE DATA

It should be clear that the differential cross sections σL

versus t over some range of Q2 and W are the actual
observables measured by the experiment. The extraction of
the pion form factor from these cross sections can be done
in a number of approaches, each with their own merits and
associated uncertainties.

Frazer [17] originally proposed that Fπ be extracted from
σL via a kinematic extrapolation to the pion pole, and
that this be done in an analytical manner, à la Chew-Low
[18]. This extrapolation procedure fails to produce a reliable

answer, because different polynomial fits, each of which are
equally likely in the physical region, differ considerably when
continued to t = m2

π . Some attempts were made [19] to reduce
this uncertainty by providing some theoretical constraints on
the behavior of the pion form factor in the unphysical region,
but none proved adequate.

Bebek et al. [10] embraced the use of theoretical input when
they used the Born term model of Berends [20] to perform a
form-factor determination. Brauel et al. [12] similarly used
the Born term model of Gutbrod and Kramer [21] to extract
Fπ . The presence of the nucleon and its structure complicates
the theoretical model used, and so an unavoidable implication
of this method is that the extraction of the pion form factor
becomes model dependent.

As in Ref. [13,22], the Regge model by Vanderhaeghen,
Guidal, and Laget (VGL, Ref. [23]) is used here to extract Fπ .
In this model, the polelike propagators of Born term models
are replaced with Regge propagators, and so the interaction is
effectively described by the exchange of a family of particles
with the same quantum numbers instead of the exchange of one
particle. The model was first applied to pion photoproduction.
Most of the model’s free parameters were determined from
data on nucleon resonances. The use of Regge propagators,
and the fact that both the π (J = 0) and the ρ (J = 1)
trajectories are incorporated in the model proved to be essential
to obtain a good description of the W and t dependence of
the photoproduction data for both π+ and π− particles. For
electroproduction, the pion form factor and the ρπγ form
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FIG. 3. (Color online) Separated cross sections σL (solid) and σT (open). The error bars represent the combination of statistical and
t uncorrelated systematic uncertainties. In addition, there is an overall systematic uncertainty of about 6%, mainly from the t correlated,
ε uncorrelated systematic uncertainty. The solid and dashed curves denote VGL model calculations for σL and σT with parameters �2

π = 0.393,
0.373, 0.412, 0.458 GeV2 for Q2 = 0.6–1.6 GeV2, and with common �2

ρ = 1.5 GeV2. The discontinuities in the curves result from the different

average W and Q
2

of each t bin.

factor are added as adjustable parameters, parametrized with
a monopole form

Fπ (Q2) = [
1 + Q2

/
�2

π

]−1
. (6)

The Regge model does a superior job of describing the t

dependence of the differential pion electroproduction cross
sections of Refs. [11,12] than the Born term model. Over the
range of −t covered by this work, σL is completely determined
by the π trajectory, whereas σT is also sensitive to the ρ

exchange contribution. The value of �2
ρ is poorly known,

whereas �2
π is much better known and in the end is determined

by the fitting of the model to the σL data.
The VGL model for certain choices of �2

π and �2
ρ is

compared to our data in Fig. 3. The VGL cross sections have
been evaluated at the same W and Q2 values as the data,
resulting in the discontinuities shown. The model strongly
underestimates σT for any value of �2

ρ used (variation of
�2

ρ within reasonable values can change σT by up to 40%).
Because the JLab data have been taken at relatively low
values of W ≈ 1.95 GeV, this may be due to contributions

from resonances, enhancing the strength in σT . No such
terms are included explicitly in the Regge model. The VGL
model calculation for σL gives the right magnitude, but the t

dependence of the data is somewhat steeper than that of the
calculations. This is most visible at Q2 = 0.6 GeV2. As in
the case of σT , the discrepancy between the data and VGL
is attributed to resonance contributions. This is supported by
the fact that the discrepancy is strongest at the lowest Q2

value, at higher Q2 the resonance form factor reduces such
contributions.

Given this discrepancy in shape between the VGL cal-
culations and the σL data, the questions are as follows:
(i) how to determine the value of Fπ from the measured
longitudinal cross sections σL and (ii) what is the associated
“model uncertainty” in doing so? The difficulty is that
there is no theoretical guidance for the assumed interfering
background. This applies even if one assumes that the
background is due to resonances: virtually nothing is known
about the L/T character of resonances at W = 1.95 GeV, let
alone their influence on σL (via interference with the VGL
amplitude).
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1H(e,e′π+)n, Q2=0.75
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FIG. 4. Differential cross section comparison between our earlier
Q2 = 0.75 GeV2 results (open circles) (Ref. [13]) and this work
(filled circles). The unseparated cross sections (σuns = εσL + σT ) at
high and low ε are nearly identical, but the differences between the
separated σL and σT are somewhat larger. The σuns error bars include
the statistical and epsilon uncorrelated systematics only and are in
many cases smaller than the plotting symbols. Those for σL,T include
the contribution of all statistical and systematic uncertainties.

A. Summary of our previous extraction method

In our previous analysis [13], the following procedure was
adopted. When fitting the value of �2

π (and hence Fπ ) for the
separate t bins the value of �2

π increases when −t decreases,
because the data are steeper in |t | than the VGL calculations.
The value of Fπ extracted from the lowest |t | bin, which is
closest to the pole, was thus taken as a lower limit.

An upper limit for Fπ was obtained by assuming that the
background effectively yields a constant negative contribution
to σL. This background and the value of �2

π were then fitted
together, assuming that the background is constant with t .
The fitted contribution of the background was found to drop
strongly as Q2 increased from 0.6 to 1.6 GeV2. Because in
σT this “missing background” (i.e., the difference between the
data and VGL model) decreases, at least for Q2 = 0.6 GeV2,
with decreasing −t (Fig. 3), and assuming that this also holds
for σL, these assumptions give an upper estimate for Fπ . The
best estimate for Fπ was then taken as the average of the two
results and one half of the average of the (relative) differences
was taken as the “model uncertainty.”

However, the asumptions made in this procedure may
be questioned. First, the value of Fπ extracted from the
lowest |t | bin does not have to be a lower limit and, second,
the assumption of a negative interfering t-independent cross
section in the upper limit calculation requires a special
magnitude and phase for the interfering amplitude with respect
to the VGL amplitude.

B. Another form factor extraction method

Since the publication of those results, we have looked at
the discrepancy between the t dependence predicted by the

VGL model and the data in more detail by assuming, in
addition to the VGL amplitude, a t-independent interfering
background amplitude, and fitting the latter together with the
value of �2

π . The fitting uncertainty in �2
π varies between 5 and

18%, whereas the magnitude and phase of the fit background
amplitude are very poorly constrained (uncertainties in the
hundreds of percent).

Although the fitting uncertainties are very large, the results
of this exercise suggest an interfering amplitude whose
magnitude decreases monotonically with increasing Q2, but
whose phase with respect to the VGL amplitude does not
necessarily result in a net-negative cross section contribution
to σL, as has been assumed in the previous analysis. However,
here also a special assumption was used, i.e., an interfering
amplitude with a magnitude and phase that do not depend on t .
Thus, determining Fπ in this way is not a viable method, either.

C. Adopted form factor extraction method

Given that no information is available on the background,
we are forced to make some assumptions in extracting Fπ

from these data. Our guiding principle is to minimize these
assumptions to the greatest extent possible. The form-factor
extraction method that we have adopted relies on the single
assumption that the contribution of the background is smallest
at the kinematic endpoint tmin.

Our best estimate for Fπ is thus determined in the following
manner. Using the value of �2

π as a free parameter, the
VGL model was fitted to each t bin separately, yielding
�2

π (Q2,W, t) values as shown in Fig. 5. The values of �2
π

tend to decrease as −t increases, presumably because of an
interfering background not included in the model. Because
the pole cross section containing Fπ increases strongly with
decreasing −t , and the background presumably remains ap-
proximately constant, as suggested by the difference between
data and VGL calculations for σT , we assume that the effect
of this background will be smallest at the smallest value of
|t | allowed by the experimental kinematics, |tmin|. Thus, an
extrapolation of �2

π to this physical limit is used to obtain our
best estimate of Fπ . The value of �2

π at tmin is obtained by a
linear fit to the data in Fig. 5. The resulting �2

π and Fπ values
are listed in Table II. The first uncertainty given represents both
the experimental and the linear fit extrapolation uncertainties.

TABLE II. �2
π and Fπ values from this work, and the reanalyzed

data from Ref. [12] using the same method. The first error includes
all experimental and analysis uncertainties, and the second error is
the “model uncertainty” as described in the text.

Q2 W �2
π Fπ

(GeV2) (GeV) (GeV2)

0.60 1.95 0.458 ± 0.031+0.255
−0.068 0.433 ± 0.017+0.137

−0.036

0.75 1.95 0.388 ± 0.038+0.135
−0.053 0.341 ± 0.022+0.078

−0.031

1.00 1.95 0.454 ± 0.034+0.075
−0.040 0.312 ± 0.016+0.035

−0.019

1.60 1.95 0.485 ± 0.038+0.035
−0.027 0.233 ± 0.014+0.013

−0.010

0.70 2.19 0.627 ± 0.058+0.096
−0.085 0.473 ± 0.023+0.038

−0.034
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FIG. 5. (Color online) Values of �2
π determined from the fit of the VGL model to each t bin, and linear fit to same. The error bars reflect

the statistical and t-uncorrelated systematic uncertainties. The additional overall systematic uncertainties, which are applied after the fit, are
not shown.

The Fπ values listed in Table II correspond to the true
values within the context of the VGL model if, and only
if, the background vanishes at |t − tmin| = 0. Because of the
uncertainty inherent in this assumption, we also estimate a
“model uncertainty” to account for the possible influence
of the missing ingredient in the VGL model (background)
at |t − tmin| = 0. Lacking a model for the background, we
can only try to make a fair estimate of this uncertainty.
This was done by looking at the variation in the fitted
values of �2

π when using two different assumptions for the
background. We used the two cases considered earlier in this
article when trying to determine Fπ . The first case assumes
the t-independent negative background in addition to the
VGL model used in Sec. III A. The second case assumes
the interfering background amplitude with a t-independent
magnitude and phase discussed in Sec. III B. However, here
they are not used to determine Fπ , but only to estimate the
model uncertainty in our best value of Fπ determined above.

The estimated model uncertainty is determined from the
spread of the �2

π values at each Q2 given by these two methods.
Each effectively represents a different background interference
with the VGL model. To keep the number of degrees of
freedom the same in all cases, the background was fixed to
the minimum χ2 value determined in each of the above two
studies, and �2

π and its uncertainty was then determined in a
one-parameter fit of the VGL model plus background to the σL

data. Because there is a strong statistical overlap between the
two fits, the statistical plus random uncertainties of the data
were quadratically removed from the �2

π uncertainties. The
model uncertainty at each Q2 is then assigned to be the range
plus fitting uncertainty given by the two methods, relative to the
value of �2

π at tmin. The resulting (asymmetric) uncertainties
are listed as the second uncertainty in Table II.

The model uncertainty in the Fπ value drops from about
20% at Q2 = 0.6 GeV2 to about 5% at 1.6 GeV2. This
is consistent with the fact that the discrepancy with the t

dependence of the VGL calculation is smaller for the larger
values of Q2. It is also at least compatible with the idea that
resonance contributions, which presumably have a form factor
that drops fast with Q2, are responsible. The corresponding
model uncertainty quoted in Ref. [13] was approximately 8.5%
at all Q2, but that was based on a more restrictive assumption
on the background (in essence case 1).

IV. RESULTS AND DISCUSSION

Because of the arguments given above, the values presented
in Table II and Fig. 6 are our final estimate of Fπ from
these data using this model. However, we stress that the
primordial results of our experiment are the σL cross sections.
When improved models for the 1H(e, e′π+)n reaction become
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FIG. 6. (Color online) Q2Fπ data from this work, compared to
previously published data. The Brauel et al. [12] point has been
reanalyzed using the Fπ extraction method of this work. The outer
error bars for this work and the reanalyzed Brauel et al. data include
all experimental and model uncertainties, added in quadrature,
whereas the inner error bars reflect the experimental uncertainties
only. Also shown are the light front quark model [6] (dash-dot),
Dyson-Schwinger [7] (solid), QCD sum-rule [24] (dot), dispersion
relation [25] (long-dash), and quark-hadron duality [26] (short-dash)
calculations.

available, other (better) values of Fπ may be extracted from
the same cross sections.

The present values for Fπ are between 7 and 16% smaller
than our previously published values [13], which is about the
combined experimental and model uncertainty. The largest
difference is at Q2 = 0.75 GeV2. On average, one-quarter of
the difference is because the final values of σL are smaller than
those of Ref. [13] (see Fig. 4 for a representative comparison),
and the remaining three-quarters are due to the Fπ extraction
method, the present method being closer to the method used
in Ref. [13] to obtain the lower limit.

Analyses of other data at higher W indicate that the
discrepancy with the t dependence of the VGL calculation is
much smaller at higher values of W . The data from Brauel et al.
[12], taken at Q2 = 0.70 GeV2 and a value of W = 2.19 GeV,
were reanalyzed using the Fπ extraction method presented
here. The result is 0.4% higher than that obtained using
the Fπ extraction method of Ref. [13]. This indicates that
our Fπ extraction methods are robust when the background
contribution is small, as appears to be the case at this higher
value of W .

The data from our second experiment [22] at W =
2.22 GeV and Q2 = 1.6, 2.45 GeV2 are also shown in Fig. 6.
There, the VGL model adequately describes the t dependence
of the σL data, again indicating that the background contribu-
tions for σL are smaller at higher W , even though the model
strongly underpredicts the magnitude of σT . In that case, the

VGL model was fit to the full t range of the σL data with
only small fitting uncertainties. It is seen in the figure that the
revised Q2 = 1.6 GeV2 result from this work agrees well with
that from our second experiment, taken at higher W and 30%
closer to the π+ pole. The excellent agreement between these
two results, despite their significantly different tmin values,
indicates that the uncertainties due to the π+ electroproduction
reaction mechanism seem to be under control, at least in this
Q2 range.

Figure 6 compares our final data from this work and from
our second experiment [22] to several QCD-based calcula-
tions. The combined data sets are consistent with a variety
of models. Up to Q2 = 1.5 GeV2, the Dyson-Schwinger
calculation of Ref. [7], the light front quark model calculation
of Ref. [6], and the QCD sum-rule calculation of Ref. [24] are
nearly identical, and are all very close to the monopole form
factor constrained by the measured pion charge radius [9].
Such a form factor reflects non-perturbative physics. Our
revised data are below the monopole curve. A significant
deviation would indicate the increased role of perturbative
components at moderate Q2, which provide in that region a
value of Q2Fπ ≈ 0.15–0.20 only [2]. The dispersion relation
calculation of Geshkenbein et al. [25] is closer to our results
in the Q2 = 0.6–1.6 GeV2 region, whereas still describing the
low Q2 data used for determining the pion charge radius. The
quark-hadron duality calculation by Melnitchouk [26] is not
expected to be valid below Q2 = 2.0 GeV2. This is reflected
in its significant deviation from the monopole curve at low Q2.
To better distinguish between these different models, it is clear
that especially higher Q2 data, as well as more data at higher
values of W in the Q2 = 0.6–1.6 GeV2 region, are needed.
Plans are underway to address both of these at JLab.

V. SUMMARY AND CONCLUSIONS

To summarize, the data analysis for our 1H(e, e′π+)n
experiment at Q2 = 0.6–1.6 GeV2, centered at W =
1.95 GeV, has been repeated with careful inspection of all
steps. The final unseparated cross sections presented here are
in most cases consistent with our previous analysis within
experimental uncertainties. After the magnifying effect of the
L/T separation, the resulting σT values are slightly larger
than before, and the σL values are correspondingly smaller.
The experimental systematic uncertainties were critically
reviewed, and are slightly smaller compared to the previous
analysis.

As before, we use a fit of the Regge model of Ref. [23]
to our σL data to extract Fπ . The data display a steeper t

dependence than the model, which we attribute to the presence
of longitudinal background contributions not included in the
model. After revisiting our prior assumptions used to extract
Fπ from σL with the model, we conclude that some of our
prior analysis assumptions were unwarranted. Therefore, we
employ a revised Fπ extraction method which relies only on
the assumption that the background contributions are minimal
at tmin. The resulting values are our best estimate of Fπ from
these data with this model, and are between 8 and 16% smaller
than before, primarily due to the different extraction method.
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The Brauel et al. [12] data at similar Q2 but higher W are robust
against our fitting assumptions, consistent with our expectation
that a longitudinal background contribution not included in the
Regge model is the cause of the discrepancy.

The new analysis, in addition to providing our final Fπ

results for the Q2 = 0.6–1.6 GeV2 range, gives an indication
of the contribution of the analysis assumptions to the Fπ deter-
mination. A detailed analysis yields model uncertainties that
decrease with increasing Q2 and W . They are consistent with
the differences in the values of Fπ determined using the previ-
ous and present extraction methods. They indicate that, given
the present electroproduction model, the uncertainty in the de-
termination of Fπ in this W and Q2 range is of the order of 10%.

The revised data indicate that for Q2 > 0.5 GeV2, Fπ starts
to fall below the monopole curve that describes the low Q2

elastic-scattering data. These results are consistent with those
of our second, more precise experiment at higher Q2 and W

[22]. The two sets of data at Q2 = 1.6 GeV2 are taken with
significantly different tmin, and so if the various form factor
extraction issues were not being handled well by the VGL
model, a significant discrepancy would have been expected to
result. Their good agreement lends further credibility to the
analysis presented here. It will be useful to acquire additional
electroproduction data in the 0.5 < Q2 < 1.5 GeV2 range at
higher W to be able to extract more precise values of Fπ

without the difficulties encountered here.
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