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Initial-state Coulomb interaction in the dd → απ 0 reaction
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The effects of initial-state Coulomb interactions in the charge-symmetry-breaking reaction dd → απ0 are
investigated within a previously published formalism. This is a leading order effect in which the Coulomb
interaction between the two initial state protons leads to the breakup of the two deuterons into a continuum state
that is well connected to the final απ 0 state by the strong emission of a pion. As a first step, we use a simplified
set of d and α wave functions and a plane-wave approximation for the initial dd state. This Coulomb mechanism,
by itself, yields cross sections that are much larger than the experimental ones, and which are comparable in
size to the contributions from other mechanisms. Inclusion of this mechanism is therefore necessary in a realistic
calculation.
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I. INTRODUCTION

The concepts of charge independence and charge symmetry
provide powerful tools in organizing the multiplet structure
of systems of hadrons and nuclei. These symmetries are not
perfect; diverse small but interesting violations have been
discovered; see the reviews of Refs. [1,2]. Our concern here is
with charge symmetry breaking.

Hadronic states can be regarded as approximately charge
symmetric, i.e. invariant under a rotation by 180◦ around the
two-axis in isospin space. Charge symmetry (CS) is a subset
of the general isospin symmetry, charge independence (CI),
which requires invariance under any rotation in isospin space.
In quantum chromodynamics (QCD), CS requires that the
dynamics are unchanged under the exchange of the up and
down quarks [1]. In the language of hadrons, this symmetry
translates into, e.g., the invariance of the strong interaction
under the exchange of protons and neutrons. However, since
the up and down quarks do have different masses (mu �= md )
[3,4], the QCD Lagrangian is not charge symmetric and neither
are the strong interactions of hadrons. This symmetry violation
is called charge symmetry breaking (CSB). The different
electromagnetic interactions of the up and down quarks also
contribute to CSB.

Observing the effects of CSB interactions therefore pro-
vides a probe of mu and md , which are fundamental, but
poorly known, parameters of the standard model. For example,
the light quark mass difference causes the neutron to be
heavier than the proton. If this were not the case, our universe
would be very different, as a consequence of the dependence
of Big-Bang nucleosynthesis on the relative abundances of
protons and neutrons. Experimental evidence for CSB has been
demonstrated many times, see, e.g., Refs. [1,2]. Two exciting
recent observations of CSB in experiments involving the
production of neutral pions have stimulated current interest:
Many years of effort led to the observation of CSB in np →
dπ0 at TRIUMF. After a careful treatment of systematic errors,
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the CSB forward-backward asymmetry of the differential cross
section was found to be Afb = (17.2 ± 8 ± 5.5) × 10−4 [5],
where the former error is statistical and the latter systematical.
In addition, the final experiment at the IUCF Cooler ring has
reported a very convincing dd → απ0 signal near threshold
(σ = 12.7 ± 2.2 pb at Td = 228.5 MeV and 15.1 ± 3.1 pb
at 231.8 MeV) [6]. These data are consistent with the pion
being produced in an s-wave, as expected from the proximity
of the threshold (Td = 225.6 MeV). Studies of the dd → απ0

reaction thus present exciting new opportunities for developing
the understanding of CSB.

The reaction dd → απ0 obviously violates isospin conser-
vation, but more specifically, it violates charge symmetry since
the deuterons and the α-particle are self-conjugate under the
charge-symmetry operator, with a positive eigenvalue, while
the neutral pion wave function changes sign. This reaction
could thus not occur if charge symmetry were conserved,
and its cross section is proportional to the square of the
CSB amplitude. This phenomenon is unique, because all
other observations of CSB involve interferences with charge-
symmetric amplitudes.

Due to the recent availability of high-quality experimental
data on CSB, a theoretical interpretation using fundamental
CSB mechanisms is called for. At momenta comparable to
the pion mass, Q ∼ mπ , QCD and its symmetries (and in
particular CSB) can be described by a hadronic effective
field theory (EFT), called chiral perturbation theory (χPT),
for extensive reviews see Refs. [7–9]. This EFT has been
extended to pion production in Refs. [10–14] where typical
momenta are Q ∼ √

mπM , with M as the nucleon mass (see
also Ref. [15] where pion production was studied neglecting
this large momentum in power counting). The EFT formalism
provides specific CSB effects in addition to the nucleon mass
difference. In particular, there are two pion-nucleon seagull
interactions related by chiral symmetry to the quark-mass and
electromagnetic contributions to the nucleon mass difference
[16,17].

In previous works [18,19], the cross section for the reaction
dd → απ0 was computed near threshold by chiral EFT
techniques, using a chiral power counting scheme to assess
the expected importance of different interaction terms. The
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TIMO A. LÄHDE AND GERALD A. MILLER PHYSICAL REVIEW C 75, 055204 (2007)

first paper [18] used a plane wave approximation along
with Gaussian bound-state wave functions. These initial
calculations yielded computed cross sections that are a factor
of ∼2 larger than the measured ones. The effects of initial-state
interactions and realistic bound-state wave functions were
included later [19], with resulting cross sections of the order
of several hundred pb or more. It is thus clear that more
work is needed to understand the order of magnitude of the
measured cross section, such as a treatment of the effects of
loop diagrams along the lines of Ref. [20].

We consider here one specific contribution that has
previously been neglected—the influence of the Coulomb
interaction in the initial state. The formalism employed is
similar to that of Ref. [18]. The main objective is to assess the
relevance of this mechanism, so we use simple bound-state
wave functions and neglect the effects of strong interactions in
the initial state. It is worthwhile to explain some basic features
of the calculation that result from invariance principles: Spin,
isospin, and symmetry requirements restrict the partial waves
allowed for the dd → απ0 reaction. In the spectroscopic
notation 2S+1LJ l, where S,L, and J are, respectively, the
spin, orbital, and total angular momenta of the dd state, and
l denotes the pion angular momentum, the lowest allowed
partial waves are 3P0s and 5D1p. Hence, production of an
s-wave pion requires that the initial deuterons be in a relative
P -wave, with spins coupled to a spin-1 state, forming together
a state with zero total angular momentum. On the other hand,
a p-wave pion is produced only when the deuterons are in
a relative D-wave, with spins maximally aligned to spin 2,
requiring either a coupling with �L = �S = 2 or D-states of
d or α. Interferences between s- and p-waves disappear for any
unpolarized observable. We shall therefore be concerned with
the production of an s-wave pion. In the mechanism proposed
here, the Coulomb interaction between the two protons of
differqent deuterons converts the initial relative P -wave state
into an S-wave state. Parity conservation then requires that
one of the resulting pairs of nucleons be in a p-wave with
orbital angular momentum unity. The strong pseudovector
pion production operator then converts this p-wave state into
an s-wave state.

This paper is organized in the following manner. The
relevant Coulomb mechanism is described in Sec. II, which
also explains how the formalism of Ref. [18] is to be employed.
We use the simple Gaussian bound-state wave functions of
Ref. [18], but extend the calculation by also considering
Hulthén wave functions for the deuteron. The detailed evalua-
tion and numerical results are given in Sec. III. For comparison,
the effects of Coulomb interactions in the final state are
considered in Sec. IV. These have been calculated in Ref. [19]
and were found to be very small. Finally, Sec. V assesses our
results and discusses how these effects can be included in a
realistic calculation that incorporates the strong interactions in
the initial state.

II. COULOMB MECHANISM

In the present study, CSB arises from the initial-state
Coulomb interaction between the two deuterons, followed by

FIG. 1. Diagrams relevant for the inclusion of the Coulomb
initial-state interaction. The wiggly lines represent the Coulomb
interaction between the two protons of the initial state. The dashed
lines represent the emitted pion. For each Coulomb interaction,
anyone of the four nucleons may emit the pion.

strong pion emission, as shown in Fig. 1. We note that the
electromagnetic contributions can be ordered [18] relative to
each other in the same fashion as the effects of strong CSB.
In this case, the leading order (LO) term considered here is of
O[αemM/(4πf 3

π p)], with M as the nucleon mass. This term is
roughly of the same size as the LO strong CSB term which is
of O[md−mu

md+mu
m2

π/(M4πf 3
π p)].

The CSB pion production operator OC is given by

OC = O1 (E − H0 + iε)−1 VC, (1)

where VC is the Coulomb interaction between the two protons
in the initial state, which acts to form a four-body continuum
state that propagates according to (E − H0 + iε)−1. It is
convenient to write VC as a sum of pairwise operators:

VC =
∑

j<k=1,4

QjQkv
j,k

C , (2)

where the Qj,k are nucleon charge operators. The operator H0

is the sum of the kinetic energies of each of the four nucleons.
The strong pion production operator is denoted by O1 and is
given by

O1 = gA

2fπ

∑
i

τz,iσ i ·
[
qi − ω

2M
(k′

i + ki)
]

→
(

− gA

2fπ

)
µ

M

∑
i

τz,iσ i · ki , (3)

where the ki , k′
i are nucleon momenta before and after the

pion emission, respectively. The p-wave term with qi = − pπ

can be ignored in the threshold regime considered here. The
factor ω is also replaced by the pion mass µ = 134.974 MeV.

The present analysis uses a plane-wave approximation and
the simplest possible d and α bound-state wave functions,
those of a Gaussian form. Assuming spatially symmetric
bound-state wave functions, the invariant amplitude is given
by

M =
∫

d3rd3ρ1d
3ρ2〈A|O|DD〉, (4)

with

|A〉 =
√

2Eα
α(r, ρ1, ρ2)|α〉, (5)

|DD〉 = √
s�d (ρ1)�d (ρ2)|dd〉, (6)

where 
α and �d are the spatial parts of the α-particle
and deuteron bound-state wave functions, and s = 4E2

d is
the total c.m. energy squared. The ket vectors |α〉 and |dd〉
contain the fully anti-symmetrized spin and isospin wave
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functions. Because of symmetry requirements, the plane-wave
dd scattering wave function is included in |dd〉 as given by
Eqs. (16) and (17) below. The invariant amplitude can then be
written as

M =
√

2Eαs

∫
d3rd3ρ1d

3ρ2

†
α(r, ρ1, ρ2)

×〈α|O|dd〉�d (ρ1)�d (ρ2). (7)

The matrix element 〈α|O|dd〉 contains all the spin-isospin
couplings of the nucleons and the pion production operator
O. The wave functions are expressed in terms of the (2+2)
Jacobian coordinates

R = 1
4 (r1 + r2 + r3 + r4) (≡ 0 in c.m.),

r = 1
2 (r1 + r2 − r3 − r4),

(8)
ρ1 = r1 − r2,

ρ2 = r3 − r4,

with the corresponding momenta

K = k1 + k2 + k3 + k4 (≡ 0 in c.m.),

k = 1
2 (k1 + k2 − k3 − k4)

= 1
2 ( p1 − p2) (≡ p in c.m.), (9)

κ1 = 1
2 (k1 − k2),

κ2 = 1
2 (k3 − k4),

defined so that
∑

i ki · r i = K · R + k · r + κ1 · ρ1 + κ2 · ρ2.
The Jacobians are equal to unity in both representations.

The ground-state wave functions are represented by
Gaussian functions, and these may be explicitly expressed in
the above coordinates using

∑
i<j (r i − rj )2 = 4r2 + 2ρ2

1 +
2ρ2

2, yielding


α(r, ρ1, ρ2) = 8

π9/4α9/2
exp

[
−

(
2r2+ρ2

1+ρ2
2

)
α2

]
, (10)

�d (ρi) = 1

π3/4β3/2
exp

(
− ρ2

i

2β2

)
, i = 1, 2, (11)

where the parameters α = 2.77 fm and β = 3.189 fm have
been fixed using the measured α and d rms point radii
〈r2

α〉1/2 = 1.47 fm and 〈r2
d 〉1/2 = 1.953 fm [21]. We shall work

in momentum space and therefore record the corresponding
wave functions


̃α(k, κ1, κ2) = Nα exp

[
−α2

8

(
k2 + 2κ2

1 + 2κ2
2

)]
,

(12)

Nα ≡ α9/2

8π9/4
,

�̃d (κi) = Nd exp

(
−κ2

i β
2

2

)
, i = 1, 2,

(13)

Nd ≡
(

β2

π

)3/4

.

In order to study the sensitivity of our results to the choice of
wave functions, we also use a deuteron wave function of the

Hulthén form:

�̃H
d (κ i) = NH

d

(
1

κ2
i + a2

− 1

κ2
i + b2

)
, i = 1, 2,

NH
d =

√
ab(a + b)

π (a − b)
, (14)

where the parameters are given by a = 0.23161 fm−1 and
b = 1.3802 fm−1 [22].

Since we have assumed that the orbital parts of the wave
functions are symmetric under the exchange of any pair of
nucleons, we may define the initial- and final-state spin-isospin
wave functions as

|α〉 = 1√
2

{((1, 2)1, (3, 4)1)0 [[1, 2]0, [3, 4]0]0

− ((1, 2)0, (3, 4)0)0 [[1, 2]1, [3, 4]1]0}
≡ 1√

2
(|α1〉 + |α2〉) (15)

|dd〉 = 1√
3

(1 − P23 − P24) |d12d34〉 , (16)

|d12d34〉 = ((1, 2)1, (3, 4)1)S[[1, 2]0, [3, 4]0]0

× 1√
2

[ei p·r + (−)Le−i p·r ], (17)

where (i, j )s and [i, j ]T are the spin and isospin Clebsch-
Gordan couplings, with magnetic quantum numbers sup-
pressed, for nucleons, or nucleon pairs, i and j coupling to spin
s and isospin T , respectively. We shall refer to the first term of
Eq. (15) as the “dd” component of the α because the pairs (12)
and (34) each have the spin and isospin of the deuteron.
In the above equations, Pij is the permutation operator of
the indicated nucleons. The symmetry requirements for the
exchange of the deuterons are represented by the (orbital
angular momentum dependent) combination of plane waves
in Eq. (17), with p as the relative momentum of the deuterons.
Even though the expression for the α state superficially singles
out a (12)+(34) configuration, it is indeed fully antisymmetric
in all indices. This particular form is used because it closely
matches the form of the initial-state wave functions, thereby
simplifying the evaluation of the spin-isospin summations in
the matrix element. In practice, the dd wave function can be
simplified to

|dd〉 =
√

6 ((1, 2)1, (3, 4)1)S [[1, 2]0, [3, 4]0]0 ei p·r , (18)

since each of the three terms in Eq. (16) gives an identical
contribution to the matrix element.

The expressions (15) through (18) provide insight that
simplifies the calculation: The Coulomb interaction has no
spin operator, so the initial state is connected only with the
“dd” component of the alpha particle, which means that only
the Class III [1] part of the Coulomb operator (τz,i + τz,j )
contributes. One of these τz operators finds another from
within the pion production operator and is squared to ± unity.
As a result, the matrix element turns out to be proportional
to the spin operators of the (1,2) and (3,4) systems. In the
normalization used here, the spin-averaged cross section (for
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s-wave pions) is given by

σ = 1

16πs

| pπ |
| p|

1

9

∑
pol.

|M|2, (19)

where the summation is over the deuteron polarizations.

III. EVALUATION

The analysis is most conveniently performed in momentum
space. Combination of Eq. (1) with Eq. (4) yields, upon Fourier
transformation, the Coulomb contribution of present interest,
MC :

MC =
√

Eαs

(
− gA

2fπ

)
µ

M

∫
d3k d3κ1d

3κ2

×〈α1|
̃α(k, κ1, κ2)
∑
i=1,4

τz,iσ i · ki

E − 2κ2
1+2κ2

2+k2

2M
+ iε

× (k, κ1, κ2|VC |dd, p〉, (20)

where the relation
∑

j=1,4 k2
j = 2κ2

1 + 2κ2
2 + k2 has been

applied in the free propagator, and |dd, p〉 represents the
initial dd (relative plane wave) state of Eq. (18), including
the internal spatial, spin, and isospin degrees of freedom.
Further, (k, κ1, κ2|VC |dd, p〉 denotes the momentum space
representation of the state formed by the action of VC on the
initial state. The round bracket notation used here signifies that
only the spatial degrees of freedom are included.

A. Reduction to quadrature

The first step in the calculation is the simplification of the
pion production operator in Eq. (20). Define the operator X

according to

X =
∑

i,j<k=1,4

τz,iσ i · kiQjQkv
j,k

C (21)

= (τz,3σ 3 · k3 + τz,4σ 4 · k4)
(1 + τz,3)

2

×
[

(1 + τz,1)

2
v

3,1
C + (1 + τz,2)

2
v

3,2
C

]
+ (τz,3σ 3 · k3 + τz,4σ 4 · k4)

(1 + τz,4)

2

×
[

(1 + τz,1)

2
v

4,1
C + (1 + τz,2)

2
v

4,2
C

]
+ (τz,1σ 1 · k1 + τz,2σ 2 · k2)

(1 + τz,1)

2

×
[

(1 + τz,3)

2
v

3,1
C + (1 + τz,4)

2
v

4,1
C

]
+ (τz,1σ 1 · k1 + τz,2σ 2 · k2)

(1 + τz,2)

2

×
[

(1 + τz,3)

2
v

3,2
C + (1 + τz,4)

2
v

4,2
C

]
. (22)

It is instructive to consider the first term of Eq. (22): It
should be noted that the operators v

3,1
C , v

3,2
C do not flip the

spin of their deuteron. Also, the initial-state deuteron (1,2)
is connected to the deuteron-like (1,2) component of the α.
Thus the terms with τz,1, τz,2 can be dropped, and the initial-
state deuteron (3,4) is similarly connected to the deuteron-
like (3,4) component of the α. We are required to have CSB,
so only the terms proportional to τz,3 are relevant. For the (3,4)
“deuteron” of the final state we have τz,3 = −τz,4. Thus the first
term of Eq. (22) simplifies to 1

4 (σ 3 · k3 − σ 4 · k4)(v3,1
C + v

3,2
C ).

Similar manipulation of the remaining terms in Eq. (22) leads
to the result

X =
(
σ 3 · k3 − σ 4 · k4

4

)[
v

3,1
C + v

3,2
C − v

4,1
C − v

4,2
C

]
+

(
σ 1 · k1 − σ 2 · k2

4

)[
v

3,1
C + v

4,1
C − v

3,2
C − v

4,2
C

]
. (23)

Next define the spin operators S1 = 1
2 (σ 1 + σ 2), S2 = 1

2 (σ 3 +
σ 4),�1 = 1

2 (σ 1 − σ 2),�2 = 1
2 (σ 3 − σ 4), such that each of

the σ i is a linear combination of the Si and �i . Only the
terms proportional to Si connect the initial state to the “dd”
component of the α. Thus one finds

X → S2 · κ2

2

[
v

3,1
C + v

3,2
C − v

4,1
C − v

4,2
C

]
+ S1 · κ1

2

[
v

3,1
C + v

4,1
C − v

3,2
C − v

4,2
C

]
. (24)

Further, it is permissible to interchange indices 3 and 4 in the
spatial wave functions multiplying the first term of Eq. (24),
and similarly to interchange 1 and 2 in those multiplying the
second term. The final form of the operator X is thus

X → S2 · κ2
[
v

3,1
C + v

3,2
C

] + S1 · κ1
[
v

3,1
C + v

4,1
C

]
. (25)

The next task is to compute the momentum space matrix
element of the operator X. This is given by

(k, κ1, κ2|X|dd, p)

= S2 · κ2(k, κ1, κ2|
(
v

3,1
C + v

3,2
C

)|dd, p) + S1 · κ1

× (k, κ1, κ2|
(
v

3,1
C + v

4,1
C

)|dd, p), (26)

with the spatial matrix elements

(k, κ1, κ2|vj,k

C |dd, p)

=
∫

d3ρ1d
3ρ2d

3r

(2π )9/2
e−iκ1·ρ1−iκ2·ρ2−ik·r αem

|rj − rk|e
i p·r

×�d (ρ1)�d (ρ2), (27)

which are thus found to be products of the momentum-space
Coulomb interaction with deuteron wave functions evaluated
at shifted values of the momentum. In particular, we define
v ≡ k − p and obtain

(k, κ1, κ2|v3,1
C |dd, p)

= 4παem

(2π )3/2v2
�̃d

(
κ1 − v

2

)
�̃d

(
κ2 + v

2

)
,

(k, κ1, κ2|v3,2
C |dd, p)

= 4παem

(2π )3/2v2
�̃d

(
κ1 + v

2

)
�̃d

(
κ2 + v

2

)
,
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(k, κ1, κ2|v4,1
C |dd, p)

= 4παem

(2π )3/2v2
�̃d

(
κ1 − v

2

)
�̃d

(
κ2 − v

2

)
. (28)

Insertion of these results into Eq. (26) finally gives

(k, κ1, κ2|X|dd, p) = 8παem

(2π )3/2v2
(S2 · κ2 − S1 · κ1)

× �̃d

(
κ1 + v

2

)
�̃d

(
κ2 + v

2

)
. (29)

Examination of Eq. (20) reveals that p is the only momentum
remaining after the integrals have been performed. Thus the
terms with κ1 and κ2 in Eq. (29) both end up being proportional
to p̂, which we may take as the z-axis. Furthermore, as the
integrands of both terms are identical, the whole operator must
be proportional to (S2z − S1z) and the integrand to κ1+κ2

2 . We
thus need to consider the spin matrix element

〈1M1, 1M2|0, 0〉〈1M1, 1M2|(S2z − S1z)|1M1, 1M2〉
= 〈1M1, 1M2|0, 0〉(M2 − M1)

= 2M2〈1M1, 1M2|0, 0〉, (30)

where 〈1M1, 1M2|0, 0〉 is the Clebsch-Gordan coefficient that
couples the spins in the “dd” component to zero. Armed with
this knowledge, we may now use Eqs. (18) and (29),(30) in
the matrix element (20) to obtain

MC =
√

6Eαs

(
−µgA

fπ

)
8παem

(2π )3/2
× M2〈1M1, 1M2|0, 0〉

×
∫

d3kd3κ1d
3κ2

(κ1 + κ2) · p̂
v2

× [
2ME − (

2κ2
1 + 2κ2

2 + k2) + iε
]−1


̃α(k, κ1, κ2)

× �̃d

(
κ1 + v

2

)
�̃d

(
κ2 + v

2

)
. (31)

The above equation is our main result, and it allows for the
use of general radial wave functions. However, because of the
zeros in the energy denominator, it may not be well suited
to evaluation using Monte Carlo techniques. Nevertheless, if
certain simple wave functions are used, Eq. (31) may be sim-
plified further. In the next subsection, this will be performed
for wave functions of the Gaussian and Hulthén types.

B. Gaussian and Hulthén deuteron wave functions

If the Gaussian wave functions of Eqs. (12) and (13) are
used, the expression (31) becomes

MC =
√

6Eαs

(
−µgA

fπ

)
8παem

(2π )3/2
× M2〈1M1, 1M2|0, 0〉

×NaN
2
d × Ig, (32)

Ig =
∫

d3kd3κ1d
3κ2

(κ1 + κ2) · p̂
v2

[
2ME − (

2κ2
1 + 2κ2

2

+ k2) + iε
]−1

exp

[
−α2

8

(
k2 + 2κ2

1 + 2κ2
2

)]
× exp

[
−β2

2

(
κ1 + v

2

)2
]

exp

[
−β2

2

(
κ2 + v

2

)2
]
,

(33)

where we recall the definition v ≡ k − p. The factors in
the denominator of Eq. (33) may be rewritten in terms of
Gaussians, giving

v−2 =
∫ ∞

0
dγ exp[−γ (v2 + ε1)], (34)[

2ME − (
2κ2

1 + 2κ2
2 + k2) + iε

]−1

= −i

∫ ∞

0
dν exp

[
iν

(
2ME − (

2κ2
1 + 2κ2

2 + k2) + iε
)]

,

(35)

where the regulator ε assures that the integral over ν converges,
and ε1 is included to handle the point k = p. The use of the
above identities leads to an 11 dimensional integral, of which
nine dimensions involve products of Gaussian functions,
such that these integrals may be computed analytically by
successive completion of squares in the exponents. This
procedure yields a two-dimensional integral over ν and γ ,
which is then computed numerically. In this way, using the
definitions

κ ≡ κ1 + κ2, l ≡ κ1 − κ2

2
, κ1 = κ

2
+ l,

(36)

κ2 = κ

2
− l, κ2

1 + κ2
2 = 2l2 + κ2

2
,

the integral Ig may be rewritten as

Ig = −i

∫ ∞

0
dν dγ

∫
d3vd3κd3lκ · p̂

× exp

[
− (v + p)2α2

8
−

(
2l2 + κ2

2

) (
α2

4
+ β2

2

)]
× exp

[
−κ · vβ2

2
− v2β2

4
− γ (v2 + ε1)

]
× exp [iν (2ME − 4l2 − κ2 − (v + p)2 + iε)], (37)

where the completion of squares is facilitated by the definitions

ᾱ2 ≡ α2 + 8iν, R2
l ≡ α2

2
+ β2 + 4iν,

(38)

R2
v ≡ R2

l

4
+ γ − β4

4R2
l

, E = p2

Md

= p2

2M
.

For all successive equations, we will define Ij =
−i| p|π9/2I1j . At this point, the regulators ε and ε1 may be
safely dropped. By combination of the above results and
definitions, we find for the case of Gaussian deuteron wave
functions

MC =
√

6Eαs

(
−µgA

fπ

)
8παem

(2π )3/2
× M2〈1M1, 1M2|0, 0〉

×NaN
2
d × (−i| p|π9/2) × I1g,

I1g =
∫ ∞

0
dν dγ

β2ᾱ2

R8
l R

5
v

exp

{
− p2

[
α2

8

(
1 − α2

8R2
v

)
+ ν2

R2
v

]}
× exp

(
iν p2α2

4R2
v

)
. (39)

If the Hulthén wave function, given in Eq. (14), is used
for the deuteron, the product of deuteron wave functions
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in Eq. (31) may be rewritten as

�̃h
d

(
κ1 + v

2

)
�̃h

d

(
κ2 + v

2

)
= (

Nh
d

)2
∫ ∞

0
dη1dη2

{
exp

[
−η1

(
κ1 + v

2

)2
]

× (
e−η1a

2 − e−η1b
2)} {

exp

[
−η2

(
κ2 + v

2

)2
]

× (
e−η2a

2 − e−η2b
2)}

, (40)

after which the calculation proceeds, as before, through
successive completion of squares, but in the Hulthén case we
are left with a four-dimensional integral suitable for numerical
evaluation. The end result is that the integral I1g of Eq. (39)
should be replaced by I1h, which is given by

I1h =
∫ ∞

0
dν dγ dη1dη2

η12ᾱ
2

8R3
l R

5
κR

5
v

× exp

{
− p2

[
α2

8

(
1 − α2

8R2
v

)
+ ν2

R2
v

]}
× exp

(
iν p2α2

4R2
v

)
fab(η1, η2), (41)

where the definitions

η12 = η1 + η2

4
− (η1 − η2)2

4R2
l

, R2
l = ᾱ2

2
+ η1 + η2,

(42)

R2
κ = ᾱ2

8
+ η12, R2

v = R2
κ + γ − η2

12

R2
κ

,

fab(η1, η2) = e−a2(η1+η2) + e−b2(η1+η2)

− 2 e−a2η1e−b2η2 , (43)

are used. These expressions represent the complete amplitude.
In order to obtain the cross section, it is necessary to evaluate
the spin sum ∑

M1,M2

M2
2 〈1M1, 1M2|0, 0〉2 = 2

3
(44)

and insert everything into Eq. (19), yielding

σg = Eα

(
µgA

fπ

)2 | p|| pπ |α2
em

288

α9β6

√
π

∣∣I1g

∣∣2
, (45)

σh = Eα

(
µgA

fπ

)2

× | p|| pπ |α2
em

288

α9

π3/2

a2b2(a + b)2

(a − b)4
|I1h|2 , (46)

where σg and σh again denote the expressions relevant for the
Gaussian and Hulthén deuteron wave functions, respectively.
It should also be noted that the above expressions remain valid
for the Coulomb interaction in the 4He bound state, which is
considered in Sec. IV.

FIG. 2. Diagrams relevant for the inclusion of the Coulomb final-
state interaction. The wiggly lines represent the Coulomb interaction
between the two protons in the final state. The dashed lines represent
the emitted pion.

IV. COULOMB IN THE 4HE BOUND STATE

A complete assessment of all Coulomb effects should
include a treatment of the Coulomb interactions in both the
initial and final states (see Fig. 2). Our focus here is on
the initial-state effects, as these have not been considered
up to now. However, it is also worthwhile to compute the
effects of the Coulomb interactions in the final state within the
present framework. We recall that in this framework, the strong
interaction between the initial-state deuterons is neglected, and
simple bound-state wave functions are used. If the effects of
Coulomb interactions in the 4He bound state are included, the
reaction dd → απ0 can proceed via strong pion production,
which is here assumed to be initiated by the one-body
operator. The relevant CBS pion production operator is then
given by

OF
C = VC (−εB − H0 + iε)−1 O1, (47)

where εB � 28.3 MeV is the 4He binding energy. It is
instructive to define the operator Y according to

Y =
∑

i,j<k=1,4

QjQkv
j,k

C τz,iσ i · ki (48)

= (1 + τz,3)

2

[
(1 + τz,1)

2
v

3,1
C + (1 + τz,2)

2
v

3,2
C

]
× (τz,3σ 3 · k3 + τz,4σ 4 · k4)

+ (1 + τz,4)

2

[
(1 + τz,1)

2
v

4,1
C + (1 + τz,2)

2
v

4,2
C

]
× (τz,3σ 3 · k3 + τz,4σ 4 · k4)

+ (1 + τz,1)

2

[
(1 + τz,3)

2
v

3,1
C + (1 + τz,4)

2
v

4,1
C

]
× (τz,1σ 1 · k1 + τz,2σ 2 · k2)

+ (1 + τz,2)

2

[
(1 + τz,3)

2
v

3,2
C + (1 + τz,4)

2
v

4,2
C

]
× (τz,1σ 1 · k1 + τz,2σ 2 · k2). (49)

In the above equation, the one-body operator can either
maintain the spin-parity isospin quantum numbers of a single
deuteron, or produce a single two-nucleon state with S = 0.
As the operators v

3,1
C , v

3,2
C do not flip the spin of their

two-nucleon system, the quantum numbers of the dd state
must be maintained. Manipulations similar to those of Sec. III
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lead to the simplification

Y = [
v

3,1
C + v

3,2
C − v

4,1
C − v

4,2
C

] (
σ 3 · k3 − σ 4 · k4

4

)
+ [

v
3,1
C + v

4,1
C − v

3,2
C − v

4,2
C

] (
σ 1 · k1 − σ 2 · k2

4

)
, (50)

and finally to

Y → [
v

3,1
C + v

3,2
C

]
S2 · κ2 + [

v
3,1
C + v

4,1
C

]
S1 · κ1, (51)

which is analogous to that of Eq. (25) for the initial-state
Coulomb interaction. Computation of the momentum space
matrix element then leads to the result

(k, κ1, κ2|Y |dd, p) = 8παem

(2π )3/2v2

[
S2 ·

(
κ2 + v

2

)
− S1 ·

(
κ1 + v

2

)]
�̃d

(
κ1 + v

2

)
�̃d

(
κ2 + v

2

)
. (52)

Since p is again the only momentum remaining after integra-
tion, the above matrix element may be treated along the same
lines as Eq. (29). Thus it is again possible to extract a factor
(S2z − S1z), giving finally

MF
C =

√
6Eαs

(
−µgA

fπ

)
8παem

(2π )3/2
× M2〈1M1, 1M2|0, 0〉

×NaN
2
d × IF

g

IF
g =

∫
d3kd3κ1d

3κ2
(κ1 + κ2 + v) · p̂

v2
(53)

× [−2MεB − (
2κ2

1 + 2κ2
2 + k2)]−1

× exp

[
−α2

8

(
k2 + 2κ2

1 + 2κ2
2

)]
× exp

[
−β2

2

(
κ1 + v

2

)2
]

exp

[
−β2

2

(
κ2 + v

2

)2
]
,

where the Gaussian wave functions of Eqs. (12) and (13) have
been employed. We proceed by writing the last two factors of
Eq. (33) in terms of Gaussians, and note that the only difference
with the general procedure of the previous section is that we
may use[ − 2MεB − (

2κ2
1 + 2κ2

2 + k2)]−1

= −
∫ ∞

0
dν exp

[ − ν
(
2MεB + 2κ2

1 + 2κ2
2 + k2)], (54)

upon which IF
g becomes an 11-dimensional integral, of which

nine can again be computed analytically by completion of
squares in the exponents. Analogously to the previous section,
we employ the notation

α̃2 ≡ α2 + 8ν, R̃2
l ≡ α2

2
+ β2 + 4ν,

(55)

R̃2
v ≡ R̃2

l

4
+ γ − β4

4R̃2
l

,

along with the definition IF
j = | p|π9/2IF

1j . The matrix element
in Eq. (54) then becomes

MF
C =

√
6Eαs

(
−µgA

fπ

)
8παem

(2π )3/2
× M2〈1M1, 1M2|0, 0〉

×NaN
2
d × | p|π9/2 × IF

1g,
(56)

IF
1g =

∫ ∞

0
dν dγ

α̃4

2R̃8
l R̃

5
v

× exp

[
− p2α̃2

8

(
1 − α̃2

8R̃2
v

)]
exp (−2ν MεB) .

The evaluation of the final-state Coulomb mechanism of
the preceding subsection can also be implemented using the
Hulthén wave functions for the deuteron, given in Eq. (14).
The net result is that the integral IF

1g should be replaced by IF
1h,

with

IF
1h =

∫ ∞

0
dν dγ dη1dη2

α̃4

64R̃3
l R̃

5
κ R̃

5
v

× exp

[
− p2α̃2

8

(
1 − α̃2

8R̃2
v

)]
× exp (−2ν MεB) fab(η1, η2), (57)

where the definitions

ζ12 = η1 + η2

4
− (η1 − η2)2

4R̃2
l

, R̃2
l = α̃2

2
+ η1 + η2,

(58)

R̃2
κ = α̃2

8
+ ζ12, R̃2

v = R2
κ + γ − ζ 2

12

R̃2
κ

,

are used. The cross sections can then be computed using the
expressions given in the previous section on the initial-state
Coulomb interaction.

V. NUMERICAL RESULTS AND DISCUSSION

The model parameters used in the present calculations
are given in Table I, and the calculated cross sections at
Td = 228.5 MeV and Td = 231.8 MeV are summarized in
Table II, such that σg and σh denote the results for the
initial-state Coulomb interaction, obtained with Gaussian and

TABLE I. Summary of parameters used in
the calculation. The values of α and β, which
appear in the expressions for the Gaussian
bound-state wave functions, are from Ref. [21],
whereas a and b are relevant for the Hulthén
deuteron, and have been taken from Ref. [22].

α [fm] 2.770
β [fm] 3.189
a [fm−1] 0.23161
b [fm−1] 1.3802
MεB [fm−2] 0.68
fπ [MeV] 92.4
gA 1.26
α−1

em 137.04
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TABLE II. Summary of momenta, calculated cross sections and
integrals for the matrix elements. The quantities with the subscripts
g and h correspond to the Gaussian and Hulthén deuteron wave
functions, respectively. The energies and momenta correspond to
those of Ref. [6].

Td = 228.5 MeV Td = 231.8 MeV

p [MeV] 462.913 466.924
pπ [MeV] 19.372 28.266
Eα [MeV] 3727.430 3727.487

I1g [fm−5] (1.3638, 1.3919) × 10−5 (1.2440, 1.3213) × 10−5

IF
1g [fm−5] 2.3043 × 10−6 2.1713 × 10−6

I1h [fm−1] (2.7011, 2.1617) × 10−3 (2.4919, 2.0821) × 10−3

IF
1h [fm−1] 1.1465 × 10−3 1.0957 × 10−3

σg [pb] 58.95 75.25
σh [pb] 85.77 111.2

σF
g [pb] 0.824 1.077

σF
h [pb] 9.419 12.66

Hulthén deuteron wave functions. If Gaussian wave functions
are used throughout, the results are 59 pb and 75 pb at the
two energies considered. If Hulthén wave functions are used
instead for the deuterons, these results increase to 87 pb and
111 pb. In either case, the effects of the initial-state Coulomb
interaction are significant, as the experimental values are 12.7
and 15.1 pb, respectively. It should also be noted that these
differences are much smaller than those encountered between
the CD-Bonn and Argonne V18 potentials in Ref. [19]. The

first toy-model calculations yielded nominal values of 23 pb
and 30 pb. The present mechanism is therefore clearly large
enough to warrant inclusion in a fully realistic calculation.

The results for the Coulomb interaction in the final state
are denoted σF

g and σF
h , and are also given in Table II. If

Gaussian wave functions are used throughout, the results are
much smaller, about 1 pb, which represents ∼1% of those
found for the Coulomb interaction in the initial state. The use
of Hulthén deuteron wave functions in the initial state is found
to enhance the effects of the final-state Coulomb interaction.
However, they are still relatively small, about 10% of those of
the initial-state Coulomb interaction.

The principal result of this study is the manifest need to
incorporate the effects of Coulomb interactions in the initial
state into the realistic calculation that includes strong initial-
state interactions. Recent progress in the treatment of Coulomb
interactions in few-body scattering calculations [23] should
eventually allow such computations to be performed.
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