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η-meson production in nucleon-nucleon collisions within an effective Lagrangian model
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We investigate the pp → ppη and pn → pnη reactions within an effective Lagrangian model for
laboratory kinetic energies ranging from very close to the η-meson production threshold to about 10 GeV.
Production amplitudes include contributions from the mechanisms of excitation, propagation, and decay of
N∗(1535), N∗(1650), and N∗(1710) baryonic resonances. The initial interaction between two incoming nucleons
is modeled by the exchange of π, ρ, ω, and σ mesons where the vertex parameters are taken to be the same as
those used in the previous applications of this model. Parameters of the resonance vertices also are taken from
our earlier studies wherever applicable. Calculations are done for total as well as differential η-production cross
sections. To describe the data for energies closer to the production threshold, final state interactions among the
outgoing particles are included by means of a generalized Watson-Migdal method. Terms corresponding to the
excitation of N∗(1535) resonance and the pion exchange process dominate the cross sections. With a single set of
vertex parameters, our model describes well the available data on total cross sections for beam energies ranging
from close to threshold to up to 10 GeV.
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I. INTRODUCTION

The low energy behavior of the quantum chromodynamics
(QCD) is not accessible to the perturbative approaches; the
lattice gauge theory [1] is the ideal tool for this purpose.
Despite the enormous computational power necessary for the
numerical realization, lattice QCD calculations have started,
very recently, to describe masses and other constants of the
baryonic ground as well as excited states [2]. Experimentally,
the determination of baryonic resonance properties proceeds
indirectly by exciting the nucleon with the help of a hadronic or
electromagnetic probe and performing measurements for their
decay products (mesons and nucleons). The reliable extraction
of nucleon resonance properties from such experiments is a
major issue of the hadron physics.

In recent years, important advances have been made in
the experimental investigation of meson production reactions
in nucleon-nucleon (NN ) collisions, particularly at beam
energies very close to the respective production thresholds
[3–15]. Low incident energies also provide the opportunity
to investigate the meson-nucleon interactions through these
reactions, since in this energy regime the final state interactions
among the outgoing particles affect strongly the meson
production cross sections.

The η meson, which is the next lightest nonstrange member
in the meson mass spectrum, has been a subject of considerable
interest. It has been thought of as a probe for the ss̄ component
in the nucleon wave function [16]. There is also interest in
measuring the rare decays of η which could provide a new
rigorous test of the standard model [17] or even of the physics
beyond this. The nucleon resonance N∗(1535) [S11(1535)]
with spin 1

2 , isospin 1
2 , and odd parity, has a remarkably large

ηN branching ratio. It lies very close to the threshold of the
NN → NNη reaction and contributes to the amplitude of
this reaction even at the threshold. Therefore, the study of
η-meson production in NN collisions at the near threshold
beam energies provides the unique opportunity to investigate

the properties of N∗(1535), which have been the subject of
some debate recently (see, e.g., Ref. [18]). The attractive nature
of the η-nucleon interaction may lead to the formation of bound
(quasibound) η-nucleus states (see, e.g., Refs. [19–23]). This
subject has been a topic of intense discussion at a recent work
shop [24].

Production of η meson in heavy ion collisions also is of
great interest. Because of the high threshold of the elementary
production reaction, η mesons in such collisions are produced
only by very energetic nucleons and reflect, therefore, the
tails of the nucleon momentum distributions as they arise in
a high density and high temperature phase of the collision
[25]. The elementary NNη production cross sections are a
crucial ingredient in the transport model studies of η-meson
production in nucleus-nucleus collisions.

Since lattice QCD calculations are still far from being
amenable to the low and intermediate energy scattering and
reaction processes, the effective methods are mostly used
for the description of the dynamics of the meson production
reactions in hadronic collisions. These approaches introduce
the baryonic resonance states explicitly in their framework
and try to extract their properties by comparing the theoretical
results with experimental observables. Several authors have
used models of such type in describing the η-meson production
in NN collisions [26–32].

The main objective of this paper is to investigate η-
meson production in NN collisions in the framework of
an effective Lagrangian model (ELM) which has been used
rather successfully to describe the pion [33,34], associate
kaon [35], and dilepton [36] production data in such collisions.
The motivation here is to see how far one can explain the
recently measured data on total and differential cross sections
of pp → ppη [11–15] and the pn → pnη [10] reactions
within this model using the same set of entrance channel and
resonance channel parameters that was used in the model’s
previous applications [35,36].
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Within the ELM, the initial interaction between two
incoming nucleons is modeled by an effective Lagrangian
which is based on the exchange of π, ρ, ω, and σ mesons.
The coupling constants at the nucleon-nucleon-meson vertices
are determined by directly fitting the T matrices of the NN

scattering in the relevant energy region [37]. The effective La-
grangian uses the pseudovector (PV) coupling for the nucleon-
nucleon-pion vertex, because it is consistent with the chiral
symmetry requirement of the QCD [38–40] and because it
leads to negligible contributions from the negative energy
states (pair suppression phenomena) [41]. The η-meson pro-
duction proceeds via excitation of N∗(1535), N∗(1650), and
N∗(1710) intermediate baryonic resonance states which have
known branching ratios for the decay into the ηN channel. The
coupling constants at the resonance-nucleon-meson vertices
are determined from the experimental widths for the decay
of the resonances into the relevant channels except for those
involving the ω meson, for which they are determined from the
vector meson dominance (VMD) hypothesis. The interference
terms between amplitudes corresponding to various meson
exchanges and the intermediate resonance states have been
included.

The final state interaction (FSI) among the outgoing
particles strongly affects the cross sections of the NN →
NNη reaction at near threshold beam energies [29,30,32].
In applications of the ELM to describe the near threshold
meson production reactions in NN collisions [34,35], the FSI
effects were included within the Watson-Midgal theory [42]
which is based on the assumption that the FSI effects are
strong in relation to the production process and that they
occur attractively between only one particular pair of outgoing
particles. In Ref. [35], this method was used somewhat
arbitrarily for all three outgoing pairs of particles. However,
Watson’s method as such is not applicable, in a strict sense, to
those cases in which the attraction between outgoing particles
is not so pronounced or where the interaction between more
than one pair is to be included in the calculations. In this paper,
we employ a generalized Watson method in which three-body
states are treated by splitting the total interaction into pairwise
net interactions which leads to a series decomposition of the
net scattering among all the particles in terms of separate
total scattering between pairs of particles (see, e.g., Ref. [43]).
However, the three-body interactions are neglected. In view
of the arguments presented in Refs. [32,44] in favor of using
the three-body scattering theory to describe the NNη process,
it would be interesting to see to what extent this generalized
method is able to explain the NNη production data.

In the next section, a brief description of the ELM covers
the main ingredients of the theory and gives all the input
parameters used in our calculations. The generalized Watson
method of FSI effects is also described. The results of our
calculations are presented and discussed in Sec. III. Summary
and conclusions of our work are given in Sec. IV.

II. FORMALISM

A representative of the lowest order Feynman diagrams
contributing to the η-meson production considered by us is

FIG. 1. Feynman diagrams for η-meson production in nucleon-
nucleon collisions. Diagrams (a) and (b) show direct processes;
(c) and (d) exchange ones. R represents a baryonic resonance.

shown in Fig. 1. Momenta of various particles are indicated
in Fig. 1(a). q, pi , and pη are four-momenta of the exchanged
meson, the intermediate resonance, and the η-meson, respec-
tively. To evaluate various amplitudes, we used the effective
Lagrangians for the nucleon-nucleon-meson and resonance-
nucleon-meson vertices as described below.

A. Nucleon-nucleon-meson vertex

As done before in the investigation of pp → ppπ0, pp →
pnπ+ [33], pp → p�K+ [35], and NN → NNe+e− [36]
reactions, the parameters for nucleon-nucleon-meson vertices
are determined by fitting the NN elastic scattering T matrix
with an effective NN interaction based on the π, ρ, ω, and σ

meson exchanges. The effective NN -meson Lagrangians are
(see, e.g., Refs. [45,46])

LNNπ = −gNNπ

2mN

�̄Nγ5γµτ · (∂µ�π )�N, (1)

LNNρ = −gNNρ�̄N

(
γµ + kρ

2mN

σµν∂
ν

)
τ · ρµ�N, (2)

LNNω = −gNNω�̄N

(
γµ + kω

2mN

σµν∂
ν

)
ωµ�N, (3)

LNNσ = gNNσ �̄Nσ�N. (4)

In Eqs. (1)–(4), we used the notation and conventions of
Bjorken and Drell [47], and the definitions of various terms
are the same as those given there. In Eq. (1), mN denotes
the nucleon mass. Note that we use a PV coupling for the
NNπ vertex. Since these Lagrangians are used to directly
model the NN T matrix, we also included a nucleon-nucleon-
axial-vector-isovector vertex, with the effective Lagrangian
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given by

LNNA = gNNA�̄γ5γµτ� · Aµ, (5)

where A represents the axial-vector meson field. This term is
introduced because if the mass of the axial meson A is chosen
to be very large (�mN ) [37] and gNNA is defined as

gNNA = 1√
3
mA

(
gNNπ

2mN

)
, (6)

it cures the unphysical behavior in the angular distribution
of NN scattering caused by the contact term in the one-pion
exchange amplitude. It should be mentioned here that A is
different from the a1(1260) meson resonance. The role of the
A vertex is to explicitly subtract out the contact term of the
one-pion exchange part of the NN interaction. A similar term
in the coordinate space potential is effectively switched off by
the repulsive hard core.

At each interaction vertex, the following form factor is
introduced

FNN
i =

(
λ2

i − m2
i

λ2
i − q2

i

)
, i = π, ρ, σ, ω, (7)

where qi and mi are the four-momentum and mass of the
ith exchanged meson, and λi is the corresponding cutoff
parameter. The latter governs the range of suppression of
the contributions of high momenta which is done via the
form factor. Since NN scattering cross sections decrease
gradually with the beam energy (beyond a certain value),
and since we fit the elastic T matrix directly, the coupling
constants are expected to be energy dependent. Therefore,
while keeping the cutoffs λi [in Eq. (7)] energy independent,
we take energy-dependent meson-nucleon coupling constants
of the form

g(
√

s) = g0 exp(−�
√

s), (8)

where s is the square of the total c.m. energy. The parameters
g0, �, and λ were determined by fitting to the T matrices of
the relevant proton-proton and proton-neutron scattering data
at beam energies in the range of 800 MeV to 4.00 GeV [37].
This procedure also fixes the signs of the effective Lagrangians
[Eqs. (1)–(5)]. The values of various parameters are shown in
Table I (the signs of all the coupling constants g are positive).
In this table, the parameters of the A exchange vertex are not
explicitly shown, as they are related to those of the pion via
Eq. (6). We would like to remark that the same parameters
were also used to describe the initial NN interaction in the
calculations reported in Refs. [33,35,36]. This ensures that
the elastic NN elastic scattering channel remains the same in
the description of various inelastic processes within this model.

The main criterion for choosing the meson exchanges as
discussed above is to describe the NN scattering in the relevant
beam energy region. We have left out the η-meson exchange in
our description of the NN interaction, because the contribution
of the exchange terms of this particle (having a mass much
larger than that of the pseudoscalar pion) is expected to be
very small on account of the pseudoscalar (PS) nature of its
coupling. Furthermore, the coupling constant for the NNη

vertex is small, as confirmed by several studies (see, e.g.,
Refs. [48–51]).

TABLE I. Coupling constants for NN -meson vertices used in
calculations.

Meson g2/4π � � (GeV) Mass (GeV)

π 12.562 0.1133 1.005 0.138
σ 2.340 0.1070 1.952 0.550
ω 46.035 0.0985 0.984 0.783
ρ 0.317 0.1800 1.607 0.770
kρ = 6.033,
kω = 0.0

B. Resonance-nucleon-meson vertex

As the η meson has zero isospin, only isospin- 1
2 nucleon

resonances are allowed. Below 2 GeV c.m. energy, N∗(1535)
has a prominent decay branching ratio of 40–60% into the Nη

channel (see, e.g., the latest review of the Particle Data Group
[52]). On the other hand, N∗(1650) and N∗(1710) resonances
have small but non-negligible decay branching ratios of 3–10%
and 6 ± 1%, respectively, to this channel. Compared to these,
the branching ratio for the decay of N∗(1520) resonance to Nη

channel is negligibly small, and we have not included it in our
description. In several previous studies of the NN → NNη

reaction, contributions from only the N∗(1535) resonance have
been considered.

Since all three resonances can couple to the meson-nucleon
channels considered in the previous section, we require the
effective Lagrangians for all four resonance-nucleon-meson
vertices corresponding to all the included resonances. At the
spin- 1

2 resonance N − π (η) vertices, we have the choice of
PS or PV couplings. The corresponding effective Lagrangians
can be written as [35,48,53,54]

LPV
N∗

1/2Nπ = −gN∗
1/2Nπ

M
�̄N∗
µτ · (∂µ�π )�N + h.c., (9)

LPS
N∗

1/2Nπ = −gN∗
1/2Nπ�̄N∗ i
τ�π�N + h.c., (10)

LPV
N∗

1/2Nη = −gN∗
1/2η

M
�̄N∗
µτ · (∂µ�η)�N + h.c., (11)

LPS
N∗

1/2Nη = −gN∗
1/2Nη�̄N∗ i
τ�η�N + h.c., (12)

where M = (mN∗ ± mN ), with the upper sign for even parity
and lower sign for odd parity resonance. The operators 
,
µ,
are given by


 = γ5, 
µ = γ5γµ, (13)


 = 1, 
µ = γµ, (14)

for resonances of even and odd parities, respectively. We
performed calculations with both of these couplings. The
effective Lagrangians for the coupling of resonances to other
mesons are

LN∗
1/2Nρ = −gN∗

1/2Nρ�̄N∗
1

2mN


µν∂
ντ · ρµ�N + h.c., (15)

LN∗
1/2Nω = −gN∗

1/2Nω�̄N∗
1

2mN


µν∂
νωµ�N + h.c., (16)

LN∗
1/2Nσ = gN∗

1/2Nσ �̄N∗
′σ�N + h.c., (17)
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where operators 
′ and 
µν are


′ = 1, 
µν = σµν (18)


′ = γ5, 
µν = γ5σµν, (19)

for resonances of even and odd parities, respectively.
We assume that the off-shell dependence of the NN∗

vertices are determined solely by multiplying the vertex
constants by form factors. Similar to Refs. [46,55], we use
the following form factors for N∗N -meson vertices:

FNN∗
i =

[ (
λN∗

i

)4(
λN∗

i

)4 + (
q2

i − m2
i

)2

]
, i = π, ρ, σ, ω. (20)

The resonance couplings are determined from the ex-
perimentally observed branching ratios for the decay of
the resonances to the corresponding channels. Since the
resonances considered in this study have no known branching
ratios for the decay into the Nω channel, we determine the
coupling constants for the N∗Nω vertices by the strict vector
meson dominance (VMD) hypothesis [56], which is based
essentially on the assumption that the coupling of photons to
hadrons takes place through a vector meson. For details of
these calculations, refer to Ref. [35].

The resonance properties and values of various coupling
constants are given in Table II. Value of the cutoff parameter
(λN∗

i ) is taken to be 1.2 GeV for all the vertices, which is the
same as that used in Refs. [36,55]. Fixing λN∗

i to one value
minimizes the number of free parameters.

It should, however, be stressed that the branching ratios
determine only the square of the corresponding coupling
constants, thus their signs remain uncertain in this method.
Predictions from independent studies are used as a guide to
fix these signs. We followed here the results of Ref. [46] for
this purpose. The propagators for various meson and nucleon
resonances in the calculation of the amplitudes were taken to
be the same as those discussed in Refs. [35,36].

TABLE II. Resonance parameters and coupling constants for
various decay vertices. Coupling constants at N∗Nω vertices are
obtained from the vector-meson dominance hypothesis (see, e.g.,
Ref. [35]).

Resonance Width (GeV) Decay channel g

N∗(1535) 0.150 Nπ 0.6840
Nρ 3.9497
Nω 1.4542
Nσ 2.5032
Nη 2.2000

N∗(1650) 0.150 Nπ 0.8096
Nρ 2.6163
Nω 1.8013
Nσ 2.5032
Nη −0.5469

N∗(1710) 0.150 Nπ 1.0414
Nρ 2.9343
Nω 1.5613
Nσ 0.6737
Nη 1.0328

TABLE III. Isospin factors for various diagrams.
Isovector corresponds to π and ρ exchange graphs;
isoscalar, to ω and σ ones.

Graph Isovector Isoscalar

pp → ppη

Direct 1.0 1.0
Exchange 1.0 1.0

pn → pnη

Direct −1 1
Exchange 2 0

C. Amplitudes and cross sections

Having established the effective Lagrangians, coupling
constants, and form of the propagators, we can calculate the
amplitudes for various diagrams associated with the NN →
NNη reaction in a straight forward manner by following
the well-known Feynman rules. The isospin part is treated
separately. This gives rise to a constant factor for each graph,
as shown in Table III.

It should be stressed here that signs of various amplitudes
are fixed by those of the effective Lagrangians, coupling
constants, and propagators as described above. These signs
are not allowed to change anywhere in the calculations.

The general formula for the invariant cross section of the
NN → NNη reaction is written as

dσ = m4
N

2
√[

(p1 · p2)2 − m4
N

]
× 1

(2π )5
δ4(Pf − Pi)|Tf i |2

3∏
a=1

d3pa

Ea

, (21)

where Tf i represents the total amplitude, Pi and Pf the sum of
all the momenta in the initial and final states, respectively, and
pa the momenta of the three particles in the final state. The
corresponding cross sections in the laboratory or c.m. systems
can be written from this equation by imposing the relevant
conditions.

D. Final state interaction

For describing the data for the NN → NNη reaction
at beam energies very close to the η production threshold,
consideration of the FSI among the three outgoing particles
is important. We follow here an approximate scheme in line
with the Watson-Migdal theory of FSI [42]. In this approach,
the energy dependence of the cross section due to FSI is
separated from that of the primary production amplitude. This
is based on the assumption that the reaction takes place over a
small region of space, a condition fulfilled rather well in near
threshold reactions involving heavy mesons. This method has
been extensively applied to study the low momentum behavior
of the pion [34,57,58], η-meson [59–61], associated hyperon
[35,62], and φ-meson [63] production in NN collisions. The
total amplitude is written as

Tf i = T0(NN → NNη) · Tff , (22)
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where T0(NN → NNη) is the primary production amplitude,
while Tff describes the re-scattering among the final particles
which goes to unity in the limit of no FSI. The factorization
of the total amplitude into those of the FSI and primary
production [Eq. (22)] enables one to pursue the diagrammatic
approach for the latter within an effective Lagrangian model
and investigate the role of various meson exchanges and
resonances in describing the reaction.

Watson’s original method [42] was developed for those
cases where the final state interaction is strong in relation to
the production process and where it is confined only to one
particular pair of particles (mostly among nucleons in case
of nucleon-nucleon-meson final states). On the other hand, in
certain cases it may be necessary to include FSI among all three
outgoing particles, since even if the meson-baryon interactions
are weak, they can still be influential through interference. In
Ref. [35], the T matrix Tff was written (without providing any
proof) as a coherent sum of the transition matrices describing
the final state interaction among all three two-body subsystems
of the final state nucleon-nucleon-meson system. We show
here that this result can be obtained (in a slightly different
form) by following the technique of multiple FSI as discussed
in Ref. [43]. To that end, we first try to represent the total
amplitude Tf i in terms of an expression similar to that given
by Eq. (22) where the FSI amplitude Tff is appropriately
constructed.

To introduce the treatment of the FSI for the three-particle
system, we assume that the three-particle final states can be
represented by additive potentials of the form U = U12 +
U31 + U23 ≡ U3 + U2 + U1. With this assumption, the total
amplitude Tf i can be written as a iteration series in terms
of the production amplitude T0 [defined in Eq. (22)] and the
three-body final state pair interaction amplitudes Tij ≡ Tk (see
the Appendix for details).

Tf i = T0 +
∑

k

TkG0T0 +
∑
k �=j

TkG0TjG0T0 + · · · , (23)

where the FSI transition matrices Tk are as defined in the
Appendix. G0 is Green’s function corresponding to the free
Hamiltonian (kinetic energy). Neglecting processes depicted
by the third term, this decomposition can be expressed by the
diagram in Fig. 2. It is easy to show that the result of the Watson
FSI theory are recovered if one retains only the amplitude T0

and a single pair amplitude, say, T12.
Any practical calculation requires evaluation of the matrix

element 〈123|T12G0T0|N1N2〉, where N1 and N2 denote two
particles of the incident channel and 1, 2, and 3 represent
the outgoing channel particles. Introducing a complete set of
intermediate states of particles, say, 1 and 2, we get for this
channel

Tf i = 1

(2π )3

∫
d3k′

1

2E′
1

d3k′
2

2E′
2

δ3(k′
1 + k′

2 − k1 − k2)

× 〈k1k2|T12|k′
1k′

2〉〈k′
1k′

2k3|T0|N1N2〉
E − (E3 + E′

1 + E′
2) + iε

. (24)

Note that in this form, each particle lies on the mass
shell, and three-momentum is conserved in the intermediate
processes. Introducing the total and relative momenta, p′ =

FIG. 2. Final state scattering among three particles evaluated to
the lowest order.

k′
1 + k′

2, 2q ′ = k′
1 − k′

2, and evaluating the integral in the
barycentric frame of 1 and 2, we obtain

Tf i = 1

(2π )3

∫
T12(ξ, θ ; ξ ′, θ ′)T0(ξ ′, θ ′, k3; ki)

ξ − ξ ′ + iε

2q ′dξ ′d�′

ξ ′ ,

(25)

where ξ is the energy of 1 and 2 in this frame, ξ ′ is the
intermediate state, and θ denotes the orientation (θ, φ) of q
with respect to a fixed axis.

For further evaluation of the integral, we make a partial-
wave decomposition of the amplitude; for each partial wave,
we rewrite the integral as

T �m
f i ∝ T12(ξ, ξ )T0(ξ )

×
∫

[T12(ξ, ξ ′)T0(ξ ′)/T12(ξ, ξ )T0(ξ )]

ξ − ξ ′ + iε

2q ′dξ ′d�′

ξ ′ , (26)

Now we make the assumption that the ratio within the square
brackets in the integrand of Eq. (26) is constant up to a certain
energy ξc and is zero thereafter. Extending this procedure to
all three interacting pairs, we get in the low energy and s-wave
limit,

Tf i � T0(ξ )Tff (ξ ). (27)

In Eq. (27) Tff is defined as

Tff (ξ ) =
∑
i �=j

cij Tij (ξ, ξ ), (28)

where

cij = 1

π
cosh−1

[
1 + 16mi − mj (ξc − mimj )

(mi + mj )3

]
. (29)

It is obvious that Eq. (28) allows interference among the final
state scattering amplitudes. We further note that apart from the
factor cij , this equation is similar to that used in Ref. [35].
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The derivation of Eq. (27) is independent of the strength
of the interaction and of whether it is attractive or repulsive.
The quantity cij can be regarded as the amount of final state
scattering that takes place in a particular channel ij . A plausible
value of the cutoff ξc comes from the constraint that for the
NN substate, cij should come out to be unity since in the limit
of FSI in only this substate, we should recover Watson’s result.
With the same value of ξc, the cij for the ηN substate comes
out to be 1.07. Note, however, that this procedure determines
the value of the cij at best only for the NN channel. It remains
largely undetermined for the η − p substate, which could even
be dependent on the relative energy of this channel. Since, for
the time being, we do not have a definite method to determine
this quantity, we have taken the same value for the parameter
ξc for both substates.

For calculating the FSI amplitude for the ηN substate, we
note that there are no direct measurements of the elastic ηN

scattering and the information about the ηN elastic scattering
amplitude has to be obtained by describing the πN → ηN

and γN → ηN data within some model. Recently, it was
suggested that the ηN scattering amplitude be determined
from the studies of associated photoproduction of φ and η

mesons off the proton [64]. We adopt here the results reported
in Ref. [65], where ηN scattering parameters were obtained
by fitting the πN → πN, πN → ηN, γN → ηN data in an
energy range from threshold to about 100 MeV, in a K matrix
method. These authors write the elastic ηN scattering T matrix
as

T −1 = 1/a + r0

2
q2

η + sq4
η − iqη, (30)

where qη is the momentum in the ηN c.m. system. Seven sets
of values of the parameters a, r0, and s are given in Ref. [65].
We found that the best description of the data (within the
realm of our overall input parameter sets given in Tables I
and II), is provided by the ηN scattering amplitudes with the
parameter set a = 0.51 + i0.26 fm, r0 = −2.50 − i0.310 fm,
and s = −0.20 − i0.04 fm3. Note that the real part of the ηN

scattering length of this parameter set (aR) is about half that
of the preferred set of Ref. [65]. A larger aR is also supported
by the calculations presented in Ref. [66]. However, we note
that in the theoretical description of the pp → ppη reaction
as reported in Refs. [27,67], the value of aR was similar to that
used by us. A smaller aR is also consistent with that extracted
in Ref. [54] in an effective Lagrangian model analysis of the
meson-nucleon scattering. Furthermore, Ref. [68] noted that
within a three-body model, the shapes of the np → ηd cross
sections can be explained over a wide energy range only with
a aR around 0.42 fm. A smaller value of aR is also consistent
with the Jülich model [69].

The FSI amplitude TNN was calculated by following the Jost
function method using the effective range expansion (ERE) of
the NN phase shifts, as discussed in Refs. [34,35,42]. For
the proton-proton substate, the Coulomb modified ERE was
used [70]. The effective range parameters for the NN channel
were taken to be the same as those used in Ref. [34].

It should, however, be mentioned here that the use of
on-shell forms to describe the FSI T matrices Tff has been
criticized by some authors. It has been argued in Refs. [71,72]

that the absolute magnitudes of the cross sections obtained by
such a procedure could be uncertain because of the of-shell
effects. Even the Jost function method has been shown [73]
to produce inadequate results in an study where the scattering
length parameters for the � − p final state were extracted from
the pp → p�K+ data. In the next section, we examine the
role of the off-shell effects in the NN substate in more detail.

III. RESULTS AND DISCUSSIONS

The major aim of this paper is to check the suitability of
our model and the vertex parameters appearing therein to
describe η production cross sections over a wide range of
beam energies. We therefore applied our approach to describe
the total cross sections for the pp → ppη reaction for beam
energies ranging from near threshold to 10 GeV and for
the pn → pnη reaction for beam energies from threshold to
1.6 GeV. These are the energy regimes in which experimental
data are available for the two reactions. We also used this
method to describe one set of the exclusive data, namely, the η

angular distributions for the former reaction. Calculations were
performed by using both the PS and PV couplings for N∗Nπ

and N∗Nη vertices. We note that the cross sections remain
almost unchanged by switching from one type of coupling
to another. In all the calculations shown below, the coupling
constants and cutoff parameters for various vertices were the
same as those discussed in Sec. II.

A cleaner check of the vertex parameters used in calculating
the amplitude T0(NN → NNη) is provided by comparing
our calculations with the data for beam momenta above
3 GeV/c, since at these energies FSI effects are most likely
to be unimportant. In Fig. 3, we compare our calculations and
the experimental data (taken from Ref. [74]) for the total cross
section of the pp → ppη reaction at higher beam energies.
We notice that the measured cross sections are reproduced
reasonably well by our calculations (solid line) in the entire
range of beam momenta.

Individual contributions of various nucleon resonance
intermediate states to the pp → ppη reaction are also shown in
Fig. 3. Cross sections corresponding to N∗(1535), N∗(1650)
and N∗(1710) resonances are represented by dashed, dotted
and dashed-dotted lines, respectively while their coherent sum
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FIG. 3. Total cross section for the p + p → p + p + η reaction
as a function of the beam momentum, showing contributions of
three baryonic resonance intermediate states and their coherent sum.
Experimental data are from Ref. [74].
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FIG. 4. Total cross sections for the p + p → p + p + η reaction
as a function of excess energy, obtained with FSI effects included
only in the pp substate of the final channel, with no FSI at all, and
with full FSI effects. Experimental data are from Refs. [11–15].

is shown by the solid line. We note that the contributions
of the N∗(1535) resonance dominate the total cross section
for all the beam momenta. In comparison, those of N∗(1650)
and N∗(1710) resonances are smaller by factors ranging from
5 to 10. However, the interference terms of the amplitudes
corresponding to various resonances are not negligible. It must
again be emphasized that we have no freedom in choosing the
relative signs of the interference terms.

The results shown in Fig. 3 fix the parameters of all the
vertices. In the application of our model to describe NNη data
at near threshold beam energies, the amplitude T0(NN →
NNη) has been calculated with exactly the same values for
all the parameters. For these energies, the FSI effects in the
outgoing channels were included by using Eqs. (27)–(30). The
experimental cross sections in this energy regime are given
as a function of the excess energy ε, which is defined as ε =√

s − 2mp − mη, where
√

s is the invariant mass.
In Figs. 4 and 5, we present comparisons of our calculations

with the experimental data for total cross sections of the pp →
ppη and pn → pnη reactions, respectively, as a function of ε.
The lines show the results obtained by including the full FSI
effects in all the three subsystems, FSI only in the pp (or pn)
channel, and no FSI at all. Note that no arbitrary normalization
constant has been introduced in any of the results shown in
these figures. For the case of the pp → ppη reaction, our full
calculations describe the data quite well for ε values in the
range of 15–130 MeV. On the other hand, for the pn → pnη

reaction, they are in excellent agreement with the available
data for all the beam energies. The FSI in the ηp substate is
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FIG. 5. Same as Fig. 4, but for the p + n → p + n + η reaction.
Experimental data are from Ref. [10].

indeed quite important in our model. The difference between
results obtained with FSI in only the pp substate and that in
all the three subsystems of the final channel is comparable
to that reported in the three-body calculations of Ref. [32].
Those authors presented their results for ε values up to only
60 MeV. It would be interesting to see the results of their model
also at higher values of ε. Note, however, that the description
of the data for the pn → pnη reaction within the three-
body model is less satisfactory than that for the pp → ppη

reaction.
We see that the ELM can describe both the energy

dependence and the absolute magnitudes of the experimental
cross sections for the η-meson production in both pp and
pn channels for excess energies > 15 MeV. However, it
underpredicts the pp channel data for ε values below 15 MeV.
Such a trend was also seen in calculations presented in
Refs. [29,30] where the η-meson production in NN collisions
was investigated within a relativistic meson exchange model
including the initial state interactions and FSI only in the
NN subsystem. Those authors attributed the near threshold
underestimation of the experimental total cross section to the
noninclusion of the ηp FSI in their model.

Since the ingredients of the primary production amplitude
of our model have already been checked and fixed by
calculations done at higher beam energies where FSI effects
are absent, the underestimation of the pp → ppη cross section
for very low values of ε indicates that we need to improve the
treatment of the FSI effects. Inclusion of the off-shell effects
in the calculations of FSI is one of the likely improvements.
The knowledge about the off-shell nature of the ηN interaction
is still very sparse. However, we can use the results presented
in Ref. [61] to investigate the effects of using off-shell pp

FSI on the near threshold η production cross sections. In
Fig. 6, we compared the results for the total cross sections
for the pp → ppη reaction obtained by including FSI in pp

substate calculated within Jost function technique and that
obtained with the method described in Ref. [61] which includes
off-shell effects. In the results presented in this figure, no ηp

FSI were considered. We note that the off-shell effects in the
pp FSI do increase the cross section for ε < 60 MeV. However,
the increase is not enough to explain the underprediction of
the experimental data by our theory at smaller energies. One
needs to have a better understanding of the ηN scattering
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FIG. 6. Total cross section for the p + p → p + p + η reaction
as a function of the excess energy with only the pp FSI effects
calculated with the Jost function method or with the method described
in Ref. [61].
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FIG. 7. Contributions of baryonic resonances to the total cross
section for pp → ppη reaction.

amplitude. Further improvement may come by including the
three-body terms in the expansion of the scattering amplitude
given by Eq. (23). It has been shown in Ref. [32] that NNη FSI
effects calculated within a three-body scattering theory lead to
enhanced cross sections at very low values of ε.

Note that the differences in the cross sections of pn →
pnη and pp → ppη reactions are not only due to different
isospin factors, but also due to differences in the FSI effects.
The low energy scattering parameters between pp and pn are
different; the latter involves also a triplet spin state together
with the singlet one. A crucial difference between them is the
Coulomb interaction. This is not included in the three-body
model calculations of the pp → ppη reaction reported in Ref.
[32]. Inclusion of this term is likely to reduce the cross section
for beam energies very close to the threshold.

In Figs. 7 and 8, we show the individual contributions
of various nucleon resonances to the total cross sections
of the pp → ppη and pn → pnη reactions, respectively, at
the near threshold beam energies. Similar to the situation at
higher beam energies, the cross sections are dominated by the
N∗(1535) resonance excitation. Since N∗(1535) is the lowest
energy baryonic resonance having an appreciable branching
ratio for the decay into the Nη channel, its dominance in this
reaction even at beam energies near the η production threshold
is to be expected. The contribution of the N∗(1650) resonance
state is small and that of the N∗(1710) resonance is even
smaller at these lower beam energies. Note, however, that the
resonance-resonance interference terms are not negligible. For
the pp → ppη reaction, the total cross sections are smaller
than those corresponding to the N∗(1535) resonance alone.
For the pn → pnη reactions, the difference between the two
is not visible in Fig. 8.
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FIG. 8. Same as Fig. 7, but for the pn → pnη reaction.

0 20 40 60 80 100120
ε (MeV)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

σ to
t (

n
b

)

π exchange
ρ exchange
σ exchange
ω exchange
Total

p + p      p + p + η

FIG. 9. Contributions of various meson exchange processes to
the total cross section for the pp → ppη reaction as a function of the
excess energy.

We found that the inclusion of the amplitudes corre-
sponding to the nucleon intermediate states (the nucleon
bremsstrahlung) made a negligible difference in the results
reported in Figs. 1–8 if the value of the coupling constant gNNη

was taken below 3.0. With the largest value of gNNη used in the
literature (6.14), the results were affected to the extent of only
a few percent. This result agrees with that reported in Ref. [29].
It is obvious that due to a considerable amount of uncertainty
in the value of gNNη, the nucleon excitation amplitudes are
quite uncertain (see, e.g., Refs. [48,75,76]) and their inclusion
makes an insignificant difference in the results reported
above.

In Fig. 9, we show contributions of various meson ex-
changes to the pp → ppη reaction at near threshold beam
energies. We see that the one-pion exchange graphs make
the largest contribution to the reaction in this energy regime.
However, a striking feature of this figure is that despite a larger
value for the gN∗Nρ coupling used in our calculations, the
contributions of ρ meson exchange are still much smaller than
those of the pion exchange graphs. Hence, in contrast to
the results reported in Refs. [67,77], the ρ meson exchange
terms do not dominate the total NNη production cross
sections. To understand this difference, we note that while
in Refs. [67,77] γ5γµ couplings were used for the ρNN∗
vertex, we took a γ5σµν coupling for the same which is
an extension of the γNN∗ couplings (due to vector-meson
dominance reasons [48]). This is also compatible with the
forms of the ρNN∗ couplings used in the literature [46,78,79].
Since the ρ-meson exchange amplitudes calculated with the
γ5σµν couplings involve delicate cancellations among leading
terms, contributions of these exchange diagrams to the η

production cross sections are weakened. This is the main
reason for differences between our results and those of
Refs. [67,77].

In Ref. [29], although the form of the ρNN∗ coupling is
the same as ours, relatively lower ρ meson exchange cross
sections result from the use of a very small value for the
coupling constant gN∗Nρ which is based on the lower limit of
the branching ratio for the radiative decay of this resonance.
Our value for this constant, on the other hand, is calculated
from the branching ratio of the decay of this resonance to the
Nρ channel as quoted in Ref. [52].

We see that the ω-meson exchange process contributes
insignificantly to the NNη production, but the σ -meson
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FIG. 10. Total cross section for the pp → ppη reaction calcu-
lated with pseudovector and pseudoscalar couplings for the N∗Nπ (η)
vertex for the resonances considered in this paper, as a function of
the excess energy.

exchange terms are relatively more important. Larger contribu-
tions from the latter have also been seen in other subthreshold
reactions analyzed within our model. It indicates that σ -meson
exchange may be an efficient means of mediating the large
momentum mismatch involve in the meson production in NN

collisions [80,81].
In Fig. 10, we investigate the effects of using PS or PV

couplings for the N∗Nπ (η) vertices. We notice hardly any
difference in the cross sections calculated by the two types of
couplings. Similar results were also observed in Ref. [46]. This
result is not surprising, since the two couplings are constructed
in such a way that both are equivalent on the mass shell. Of
course, they start having different energy behaviors in the far
off-shell region where resonance contribution is suppressed
anyway due to dominance of the corresponding propagator.
It is only in the NNπ case that differences in the PS and
PV couplings are obvious with a clear preference for the
PV coupling in line with the chiral symmetry as discussed
earlier.

After establishing the dynamical content of our model in
relation to the description of the total production cross sections,
we now turn our attention to more exclusive data. In Fig. 11,
we compare our calculations with the data for the angular
distribution of η meson in the pp → ppη reaction for ε values

0

0.1

0.2

0.3

0.4

d
σ/

d
Ω

 (
µb

)

-1 -0.5 0 0.5 1
cos(θη)

0.0

0.2

0.4

0.6

d
σ/

d
Ω

 (
µb

)

p + p      p + p + η

ε = 15 MeV

ε = 41 MeV

FIG. 11. Differential cross sections of the pp → ppη reaction as
a function of η-meson angle in the c.m. frame of the total system
at e excess energies of 15 and 41 MeV. Experimental data are from
Ref. [8].

of 15 and 41 MeV. Since the angular distribution data are
normalized to the total cross sections for both values of ε,
we did the same in our calculations shown in this figure. We
note that shapes of the angular distributions are described well
by our model at both energies. At the lower beam energy,
the data as well as our calculations have essentially isotropic
distributions. However, for ε = 41 MeV, our calculations tend
to show slight enhancements at forward and backward angles,
which is typical of the π exchange dominance process in the
N∗(1535) excitation. Because of large statistical errors in the
data, it is difficult to conclude that they show a trend different
from our calculations. It would be useful to have better quality
data with less statistical errors to determine whether other
mechanisms that may show a trend different from ours are also
important. In any case, it is quite unlikely that the ρ-meson
exchange mechanism which might lead to a distribution
different from that seen in our calculations [28] is a dominant
mechanism as has already been discussed.

IV. SUMMARY AND CONCLUSIONS

In this paper, we investigated the η-meson production in
proton-proton and proton-neutron collisions for beam energies
ranging from near threshold to about 10 GeV within an
effective Lagrangian model which had been used previously
to describe successfully pion, associated kaon, and dilepton
production in NN collisions. The interaction between two
nucleons in the initial state was modeled by the effective
Lagrangians based on the exchange of π, ρ, ω, and σ mesons.
The parameters of the corresponding vertices were taken to
be the same as those used in the previous applications of this
model, which restricts the freedom of varying the parameters
to get fits to the data. The η-meson production proceeds via
excitation, propagation, and decay of N∗(1535), N∗(1650),
and N∗(1710) intermediate nucleon resonance states. The
coupling constants at the resonances-nucleon-meson vertices
were determined from the experimental branching ratios of
the decays of the resonances into the relevant channels. Here
again we used the same coupling constants as those used
in the previous applications of the model at vertices that
appeared also in those calculations. The interference terms
among various amplitudes are included in the total transition
matrix.

To describe the data at the near threshold beam energies,
the FSI effects among the outgoing particles are included by
a generalized Watson-Migdal method which allows us to have
these effects in all three two-body subsystems of the outgoing
channel. This method involves a parameter determined from
the constraint that in the limit of FSI in only the NN subsystem,
the result of the usual Watson method is reproduced.

In this paper, we presented the analysis of the data for total
cross sections for the pp → ppη and pn → pnη reactions
and for the η angular distributions in the former reaction. With
the same set of vertex parameters, the model provides a good
description of the data for the pp → ppη reaction at higher
as well as near threshold beam energies, except for the excess
energies below 15 MeV where our calculations underpredict
the experimental data. The experimental total cross sections
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of the pn → pnη reaction are also well described by our
model. The data for the η angular distributions in the case
of pp → ppη reaction are also well reproduced at two
beam energies. Imprecise knowledge of the ηN scattering
amplitudes and noninclusion of the three-body effects are the
most likely reasons for underestimation of the pp channel data
by our model at very low beam energies.

In this study, we have not investigated the observables
related to meson energy dependence, e.g., final pp and ηp

invariant mass distributions. There are some open theoretical
issues concerning the explanation of the corresponding exper-
imental data. While in Ref. [30], the inclusion of contributions
of the non-s-wave states in the pp subsystem were found to
be essential to explain these data, the three-body effects in
the ppη system and not the contribution of the higher partial
waves were shown to be crucial for this purpose by the authors
of Ref. [32]. At this stage, our theory excludes both these
effects. Extension of our model to include these mechanisms
is vital before we can make some meaningful contribution
toward settling of this issue.

Within our model, one-pion exchange processes make the
largest contributions to cross sections in the entire energy
regime. Despite our using a large coupling constant for
the N∗(1535)Nρ vertex, the cross sections of the ρ-meson
exchange process are still lower than those of the pion
exchange mechanism. Therefore, ρ-meson exchange being the
dominant mechanism of N∗(1535) resonance excitation [28] is
not supported by our calculations. The individual contributions
of the ω-meson exchange diagrams are very small everywhere.
On the other hand, the σ exchange terms make relatively larger
contributions.

The excitation of the N∗(1535) resonance dominates the
NNη production at both higher and near threshold beam
energies. The contributions of N∗(1650) and N∗(1710) are
small in comparison. However, the interference among various
resonance contributions is not negligible. Unlike the NNπ

vertex, where there is a clear preference for the PV coupling,
the present reaction does not distinguish between PS and
PV couplings at the N∗Nη vertex involving spin-1/2 even
or odd parity resonances. We point out that the mechanism
of the ppη production via preferential excitation of the
N∗(1535) intermediate baryonic resonance state in the one-
pion exchange process has received support recently from
an experimental study [82] of the analyzing powers of the
p̄ + p → p + p + η reaction.

This work fixes the parameters of the effective Lagrangian
model for most of the vertices involved in the η-meson produc-
tion processes. An interesting further check of this model will
be provided by the analysis of the η photoproduction data on
nucleons (see, e.g., Refs. [83,84]). An exciting recent result
is that the integrated cross section of the photoproduction
of η meson on neutrons shows an additional maximum at
center-of-mass energies around 1.66 GeV. This has recently
been explained in terms of the excitation of the N∗(1650)
and N∗(1650) resonance states [85]. Furthermore, the vertex
parameters derived by us will also be useful in applications of
the effective Lagrangian method in describing the production
of η-mesic nuclei in proton and photon induced reactions (see,
e.g., Refs. [86,87]).
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APPENDIX: FINAL STATE INTERACTION AMPLITUDES
FOR THREE-PARTICLE STATES

We give here some clarifications and steps leading to the
derivation of Eq. (23).

The total Hamiltonian of the three-particle system is written
as H = H0 + U, where H0 is the kinetic energy operator of
the system and the interaction U is taken as U = U23 + U31 +
U12 ≡ U1 + U2 + U3 assuming that the three-particle states
interact by means of the additive pair interactions represented
by Uk . Green’s functions corresponding to H and H0 are,
respectively,

G(±)(E) = lim
ε→0

1

E − H0 − U ± iε
, (A1)

G
(±)
0 (E) = lim

ε→0

1

E − H0 ± iε
. (A2)

We will also need the Hamiltonian describing the two particles
interacting while the third one is free, namely, Hk = H0 + Uk

and the corresponding Green’s functions

G
(±)
k (E) = lim

ε→0

1

E − H0 − Uk ± iε
. (A3)

The full three-body transition operator T satisfies the
Lipmann-Schwinger equations

T (E) = U + UG0T (E), (A4)

which can also be written as

T (E) =
∑

k

Uk +
∑

k

UkG0T (E). (A5)

Equation (A5) leads to the iteration

T (E) =
∑

k

[Uk + UkG0Uk + UkG0UkG0Uk + · · ·]

+
∑
k �=j

[Uk + UkG0Uk + · · ·]G0

× [Uj + UjG0Uj + · · ·] + · · · . (A6)

In the study of the final state interaction problems, one
usually has in addition to potential U [which is responsible
for the transition from the initial state to the free final states
characterized by the transition matrix T0 in Eq. (22)], an
additional interaction V that describes a type of internal
interaction among the constituents of the final state. The total
Hamiltonian is then written as H0 + U + V, and one can make
use of the standard two-potential formalism of Goldberger and
Watson (see, e.g., Ref. [42]) to write the total scattering matrix
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element (Tf i) as a sum of two terms, one of them involving the
matrix elements of the interaction U between the exact initial
state wave function and the final scattering state wave function
corresponding to interaction V . From the general theory, we
can write

Tf i = 〈χf |U + V
∣∣ψ (+)

i

〉
, (A7)

where ψ
(+)
i completely describes the initial state with the out-

going wave boundary condition, and χf is the final plane wave
state. One can eliminate χf by introducing wave functions
φ

(−)
f , which are the eigenfunctions of the Hamiltonian H0 + V,

as

φ
(−)
f = χf + G

(−)
0 V φ

(−)
f . (A8)

Substituting Eq. (A8) into Eq. (A7), one gets after some
manipulation,

Tf i = 〈φ(−)
f |U |ψ (+)

i 〉 + 〈φ(−)
f |V |χi〉, (A9)

where χi is the initial plane wave state. The final state
interactions of interest are contained in φ

(−)
f .

In applications of relevance to us, the second term of
Eq. (A9) would vanish, because we assume V cannot create
real mesons. Equation (23) can be obtained by using an
iteration similar to that given by Eq. (A6) in the remaining
(first) term of Eq. (A9). The amplitude T0 is defined in the
same way as the first term of Eq. (A9) with a plane wave
final state. The amplitude Tk in the second term of Eq. (23)
represents the matrix elements of the interaction Vk between
the plane wave and the scattering states of particle ij . We
define Vk for the partition k in the same way as Uk .
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th/0610011 (unpublished)

[85] V. Shklyar, H. Lenske, and U. Mosel, arXiv:nucl-th/0611036
(unpublished).

[86] M. Kh. Anikina et al., arXiv:nucl-ex/0412036 (unpublished).
[87] V. A. Baskov, J. P. Bocquet, V. Kouznetsov, A. Lleres, A. I.

L’vov, L. N. Pavlyuchenko, V. V. Polyanski, D. Rebrevend,
G. A. Sokol, arXiv:nucl-ex/0306011 (unpublished).

055201-12


