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Specific heat in hadronic matter and in quark-gluon matter
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A parton and hadron cascade model, PACIAE, is applied to follow the particle transport in partonic and the
hadronic stages in 0–5% most central Au+Au collisions at energies from SPS to RHIC. We have determined the
specific heat of hadron matter (π+ + π−) in the hadronic final state and the specific heat of quark-gluon matter
(u + d + g) in the partonic initial state in Au+Au collisions as a function of the reaction energy (excitation
function). It turns out that the quark-gluon matter (QGM) specific heat is hard to survive the hadronization and
there is not a peak structure in the specific heat excitation functions in studied energy region.
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I. INTRODUCTION

The statistical model has been very successful in describing
the heavy ion collision both at the intermediate energy [1–4]
and the relativistic energy [5–9]. One of the most important
thermodynamic variables is the heat capacity because it is
a measure of the temperature (energy) fluctuation and its
singularity behavior is relevant to the phase transition.

It was first reported in Ref. [1] that the peak structure in the
heat capacity as a function of temperature characterizes the
phase transition in disassembly of the hot nucleus (fireball)
formed in the intermediate energy heavy ion collisions. This
observation was further confirmed as an evidence of the liquid-
gas phase transition in heavy ion collisions at intermediate
energies [10–12].

In the field of relativistic heavy ion collisions a similar study
was first proposed in Refs. [13,14]. A lot of investigations
were then stimulated [15–23]. Although most methods used
to extract the heat capacity are all based on the statistical
physics [24], the resulting values are very different from each
other. The specific heat of charged pions extracted from the
experimental charged pion transverse momentum distribution
in Pb+Pb collisions at 158A GeV [25] is 60±100 (if the
average temperature 〈T 〉 is 180 MeV) [16]. While a π+
specific heat of 1.66 was extracted from the theoretical π+
transverse mass distribution in central Pb+Pb collisions at
158A GeV [18]. A specific heat of 13.2 was found for
pions in Ref. [22]. On the other hand, the specific heat
of quantum chromodynamics (QCD) matter (quark-gluon-
matter, QGM) was studied using the thermodynamic potential
of perturbative QCD (pQCD) [17] and found that the specific
heat of QGM is larger than the specific heat of an ideal
gas of ∼30 (if the running coupling constant αs = 0.65
and the ratio of temperature to chemical potential is within
0.012<T/µ<0.07). However, in Ref. [20] it was reported that
the specific heat of QGM is lower than the ideal gas (∼21, if
T/Tc = 2 and Tc here is the critical temperature) in a pure
gauge theory.
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The present status in the study of specific heat is so unclear
that a further study is required. In this paper we study the
QGM and hadron matter (HM) heat capacities using a uniform
method of a dynamical simulation followed by the statistical
model. In order to explore the way of using experimental
hadronic event-by-event transverse momentum distributions
to measure the hadron specific heat [21], the high energy
nucleus-nucleus collisions are our objective. The partons
(u + d + g) at the initial partonic stage and the charged pions
(π+ + π−) at the hadronic final stage in Au+Au collisions
are regarded, respectively, as the representative of the QGM
and the HM scenarios. Our goal is to study the influence
of the QGM specific heat at the initial partonic state on the
HM specific heat at the final hadronic state in 0–5% most
central Au+Au collisions at energies from SPS to RHIC and
to explore the evidence for quark-gluon plasma (QGP) phase
transition. In the dynamical simulation a parton and hadron
cascade model, PACIAE [26,27], is applied to follow the
particle transport (first for partons and then hadrons) in Au+Au
collisions. Once the HM and QGM transverse momentum
distributions are calculated event-by-event, the temperature
fluctuation (distribution) is extracted by fitting the transverse
momentum distribution to an exponential distribution. Finally,
the HM and QGM heat capacities are calculated according
to the assumption in statistical physics that the temperature
fluctuation should be a Gaussian distribution [24]. It turns out
that there is no peak structure in the QGM and HM specific heat
excitation functions in the studied energy region. However, it
is hard for the QGM specific heat to survive the hadronization
and to influence the HM specific heat.

II. MODEL

We first introduce the PACIAE model briefly for self-
consistency. A simplified version of the PACIAE model is
given in [26] and a detailed description has been published
in [27]. The PACIAE model is composed of four parts: the
parton initialization, the parton evolution, the hadronization,
and the hadron evolution.
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In the first part, a nucleus-nucleus collision is decomposed
into nucleon-nucleon collisions. A nucleon in the colliding
nucleus is randomly distributed in spatial coordinate space
according to a Woods-Saxon distribution (r) and the 4π

uniform distribution (θ and φ) and it is given the beam
momentum (the Fermi motion is neglected). A distance of
closest approach and the corresponding collision time are
calculated for each nucleon-nucleon (NN) collision pair along
their straight line trajectories under the requirement that the
above distance must be less than or equal to

√
σtot/π . Here

σtot refers to the total cross section of NN collision assumed
to be 45 mb. The particle list and the NN collision (time) list
are constructed. A NN collision with smallest collision time
is selected and decomposed into parton-parton collisions. The
hard parton-parton collision is modeled by the lowest Leading-
Order (LO) pQCD parton-parton interaction [28] modified
by the parton distribution function in a nucleon and the soft
parton-parton interaction is considered empirically [29]. Both
interactions are performed by the PYTHIA model [29] where
the string fragmentation is switched off. Thus the produced
particles in a NN collision are the quark pairs, diquark
pairs, and the gluons. The diquark (anti-diquark) splits into
quarks (antiquarks) randomly. The produced partons, similar
to the nucleons, propagate along a straight line trajectory in a
time interval equal to the difference between last collision time
and the current collision time. After a NN collision both the
particle list and the NN collision list are updated. The next
NN collision is selected from the updated NN collision list and
the processes above are repeated until the NN collision list
is empty. Therefore, the consequence of a nucleus-nucleus
collision is a configuration of quarks (q), antiquarks (q̄),
and gluons (g), besides the spectator nucleons and the beam
remnants [29].

The next step is the parton evolution including parton-
parton scattering. Here we use a leading order (LO) pQCD
differential cross section [28] regularized by the color screen
mass to describe the 2→2 scattering processes. The differential
cross section of a subprocess ij → kl reads

dσij→kl

dt̂
= πα2

s

ŝ

∑
ij→kl

, (1)

where, for the subprocess q1q2 → q1q2 for instance, the∑
ij→kl

is just

∑
q1q2→q1q2

= 4

9

ŝ
2 + û

2

(t̂ − µ2)2 . (2)

In the above equations the ŝ, t̂ , and û are the Mandelstam
variables, αs is the running coupling constant, and µ is the
color screening mass. The total cross section of the parton
collision i + j can be obtained as

σij (ŝ) =
∑
k,l

∫ 0

−ŝ

d t̂
dσij→kl

dt̂
. (3)

Thus the parton evolution can be simulated by including
differential and total cross sections into a Monte Carlo
calculation.

As of now, only 2↔2 processes are considered. Among
them there are six elastic and three inelastic channels [28].
However the parton shower [30,31] is taken into account in
terms of partonic final state QCD radiation, as an option.

In the hadronization we first assume that the partons begin
to hadronize when the interactions among them have ceased
(freeze-out). They can hadronize by either the fragmentation
model [32,33] or the coalescence model [34,35]. The frag-
mentation models we have used here are the independent
fragmentation (IF) model (i.e., the Field-Feynman model) [32]
and the Lund string fragmentation model (LSF) [33]. The
program built in [29] is employed for the implementation of
the fragmentation model, however we do write a program
ourselves for the coalescence model. The ingredients of our
coalescence model are briefly summarized as follows:

(i) The Field-Feynman parton generation mechanism [32]
is applied to deexcite the energetic parton and thus to
increase the parton multiplicity. This deexcitation of
an energetic parton plays a similar role as the multiple
fragmentation of a string in the Lund model [33].

(ii) The gluons are forcibly split into qq̄ pair randomly.
(iii) There is a hadron table composed of mesons and baryons

in the program of coalescence model. The pseudoscalar
and vector mesons made of u, d, s, and c quarks, the
B+, B0, B∗0, and the ϒ are involved for the moment.
As for the baryon, the SU(4) multiplets of baryons made
of u, d, s, and c quarks (except those with double c
quarks) and the �0

b are considered.
(iv) Two partons can coalesce into a meson and three partons

into a baryon (antibaryon) according to both the flavor,
momentum, and spatial coordinates of partons and the
valence quark structure of hadron.

(v) When the coalescing partons can form either a pseu-
doscalar meson or a vector meson (e.g., ud̄ can form
either a π+ or a ρ+) a principle of less discrepancy
between the invariant mass of coalescing partons and the
mass of coalesced hadron is invoked to select one from
them. In case of baryon the same principle is invoked
to select one baryon from both of the 1

2
+

and the 3
2

+

baryons (e. g. both p and the 	+ are composed of uud).
(vi) Three momentum conservation is required.

(vii) There is a phase space requirement

16π2

9
	r3	p3 = h3

d
, (4)

where h3/d is the volume occupied by a single hadron
in the phase space, d = 4 refers to the spin and
parity degeneracies, 	r and 	p stand for the spatial
and momentum distances between coalescing partons,
respectively.

The last part of the hadron evolution (hadronic rescattering)
is followed by a hadron cascade model, LUCIAE [36], which
is based on the two-body collisions.

It should be mentioned here that in the above partonic
initialization process, a NN collision is ended at a partonic
state where the leading nucleon is very rare. Thus a nucleon
suffers only one NN collision most probably, the consequent
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number of the participant nucleons (〈Npart〉) and the binary
NN collisions (〈Nbin〉) may not be large enough. In order
to overcome this shortcoming and to have the coherence
among the four parts of the model, the simulation can be
performed as follows: For each NN collision selected from
the NN collision list the PYTHIA model [29] with string
fragmentation switched off is applied to have a parton initial
state. That is directly followed by the parton scattering, the
hadronization, the upgrade of particle list, and the upgrade of
NN collision list (hadronic rescattering is involved here). Such
kind of simulation is referred to as the coherent version in
order to distinguish with the default one.

The heat capacity, Cv , is the quantity of heat needed to raise
the temperature of a system by one unit of temperature (one
GeV, for instance), it reads [24]

Cv = T

(
∂S

∂T

)
V

=
(

∂E

∂T

)
V,N

, (5)

where the T , V,N, S and the E are, respectively, the temper-
ature, volume, number of particles, entropy, and the internal
energy of the system. And the specific heat, cv , stands for the
heat capacity per particle which composes the system.

Fitting the particle transverse momentum distribution
measured (or calculated) in the relativistic nucleus-nucleus
collision

P (pt ) = 1

pt

dN

dpt

(6)

to an exponential distribution

PT (pt ) = A exp
[
−pt

T

]
, (7)

the temperature can be extracted event-by-event. In the above
equation A is a normalization factor and T refers to the
apparent temperature.

If the reaction system (fireball) is in equilibrium, the event-
by-event temperature fluctuation obeys

P (T ) ∼ exp

[
−Cv

2

(	T )2

〈T 〉2

]
, (8)

where 〈T 〉 is the mean (equilibrium) temperature and the
	T = T − 〈T 〉 refers to the temperature variance [24].
Comparing the above temperature distribution to the general
Gaussian distribution

P (x) = 1√
2πσ

exp

[
−1

2

(	x)2

σ 2

]
, (9)

where σ = 〈x − 〈x〉〉 is the standard deviation, one finds the
following expression for the heat capacity [24]:

1

Cv

= 〈T 2〉 − 〈T 〉2

〈T 〉2
. (10)

III. CALCULATIONS AND RESULTS

In the simulations for 0–5% most central Au+Au collisions
at energies from SPS to RHIC the model parameters are fixed
and the IF model [32] is adopted for hadronization in the

coherent version of the PACIAE model. The results from the
full model simulations will be labeled by “HM via QGM”
since the hadronic final state here is evolved from the partonic
initial state. If the simulation is ended at the stage of partonic
scattering before hadronization the result will be referred
as “QGM” (QGM scenario). In addition, a third simulation
for a pure hadronic scenario is performed, where the string
fragmentation in PYTHIA switches on and follows directly
by the hadronic rescattering, the corresponding results will
be labeled by “HM”. In this third simulation only the hadron
transport is taken into account similarly to the HIJING [37],
RQMD [38], UrQMD [39], JPCIAE [40], and AMPT without
string melting [41].

As mentioned above, the charged pion pair (π+ + π−, π0

decay is assumed) and the parton triplet (u + d + g) are
assumed to be the representative of HM and the QGM systems,
respectively. We assume further that the temperature of HM
and QGM systems is determined by fitting their multiplicity
weighted transverse momentum distribution

P (pt )HM = Mπ+

Mπ+ + Mπ−
P (pt )π+ + Mπ−

Mπ+ + Mπ−
P (pt )π−

(11)

and

P (pt )QGM = Mu

Mu + Md + Mg

P (pt )u

+ Md

Mu + Md + Mg

P (pt )d

+ Mg

Mu + Md + Mg

P (pt )g (12)

to Eq. (7) within pt � 1 event-by-event, respectively. Once
the HM and QGM heat capacity are calculated by Eq. (10)
their specific heat can be calculated, respectively, by the ratio
of their heat capacity to the 〈MHM〉 and 〈MQGM〉, where

〈MHM〉 = 〈Mπ+〉
〈Mπ+〉 + 〈Mπ−〉 〈Mπ+〉

+ 〈Mπ−〉
〈Mπ+〉 + 〈Mπ−〉 〈Mπ−〉, (13)

and

〈MQGM〉 = 〈Mu〉2

〈Mu〉 + 〈Md〉 + 〈Mg〉 + 〈Md〉2

〈Mu〉 + 〈Md〉 + 〈Mg〉
+ 〈Mg〉2

〈Mu〉 + 〈Md〉 + 〈Mg〉 . (14)

In the above equations the capital M is the multiplicity and the
〈· · ·〉 means the average over events. We compare HM specific
heat in the “HM” and the “HM via QGM” simulations to the
QGM specific heat in “QGM” simulations studying the effect
of the partonic initial state on the hadronic final state and
exploring the evidence for QGP phase transition in Au+Au
collisions.

In Fig. 1 is given the event averaged transverse momentum
distribution (within |y| � 4) of HM (full circles) and the QGM
(open circles) systems from the “HM via QGM” and “QGM”
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FIG. 1. The event averaged transverse momentum distribution of
HM (full circles, from “HM via QGM” simulations) and QGM (open
circles, from “QGM” simulations) in 0–5% most central Au+Au
collisions at

√
sNN = 200 GeV.

simulations for the 0–5% most central Au+Au collisions at√
sNN = 200 GeV, respectively. The solid and doted lines in

this figure are the corresponding exponential fits. Similarly, the
transverse momentum distribution of HM and QGM systems
in a single event (impact parameter b = 0.716 fm) are given
in Fig. 2. The common features in Figs. 1 and 2 have to be
discussed:

(i) The transverse momentum distribution in QGM system
is below the one in HM system in pt<1.3 GeV/c
region, because the parton multiplicity in the partonic
initial stage before hadronization is less than the hadron
multiplicity in hadronic final state.

(ii) The slope of the QGM transverse momentum distri-
bution is less than the HM in pt<1.3 GeV/c region,
because the temperature in the partonic initial state is
higher than the one in the hadronic final state.

(iii) The QGM transverse momentum distribution is much
harder than the HM transverse momentum distribution
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FIG. 2. The transverse momentum distribution of HM (full
circles, from “HM via QGM” simulations) and QGM (open circles,
from “QGM” simulations) in a single event of most central (b =
0.716 fm) Au+Au collision at

√
sNN = 200 GeV.
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FIG. 3. The QGM temperature distribution (left panel, from
“QGM” simulations) and the HM temperature distribution (right
panel, from “HM via QGM” simulations) in 0–5% most central
Au+Au collisions at top RHIC energy. The histogram and curve
are from the simulation and fitting, respectively.

in pt >1.3 GeV/c region. One have just to rely on the
multiple fragmentations of the energetic quark (in IF
model) and/or string (in LSF model) in order that the
hadron multiplicity in the final hadronic state is larger
than the parton multiplicity in the initial partonic stage
by a factor of four. That means a strong increase of the
system entropy during the hadronization.

The QGM temperature distribution (left panel, from
“QGM” simulations) and the HM temperature distribution
(right panel, from “HM via QGM” simulations) in 0–5% most
central Au+Au collisions at

√
sNN = 200 GeV are given in

Fig. 3. In this figure the dashed histograms are simulated
results and the solid curves are the corresponding fit by
Eq. (9), respectively. One sees in this figure that the QGM
in the initial partonic stage and the HM in the final hadronic
stage are reasonably to be assumed in equilibrium.

The QGM and HM temperature and specific heat excitation
functions are given in the upper and lower panels in Fig. 4,
respectively. In this figure the squares, circles, and the triangles
are, respectively, from the “QGM”, “HM via QGM”, and the
“HM” simulations. We see in the upper panel that either the
QGM or the HM temperature increases with the increasing of
reaction energy and the QGM temperature is always higher
than the HM. The “HM via QGM” temperature is higher
than “HM” indicating the the effect of the initial partonic
state on the final hadronic state. However, one knows in
lower panel that the trends of the specific heat is opposite
to the temperature because the specific heat is a measure of
the temperature fluctuation and the higher temperature the
lower fluctuation. The “HM via QGM” specific heat excitation
function is a little higher than the “HM”, that can attribute to
the competition between fluctuations of temperature and the
multiplicity. The “HM via QGM” specific heat is close to the
“HM” indicating the difficulty of QGM specific heat to survive
the hadronization.

As mentioned above, our method is similar to the one
used in Refs. [16,18], thus our HM specific heat of ∼1.94 in
“HM” simulations for 0–5% most central Au+Au collisions
at

√
sNN = 17.3 falls in the bounds given in [16] (60±100).

The difference between our result of 1.94 and 1.66 in
Ref. [18] can attribute to the differences in the reaction system
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FIG. 4. The excitation function of temperature (upper panel) and
specific heat (lower panel) in 0–5% most central Au+Au collisions
at energies from SPS to RHIC. The squares, circles, and triangles are
from “QGM”, “HM via QGM”, and “HM” simulations, respectively.

(Au+Au vs Pb+Pb), the dynamic simulation model, and the
model parameters. However, our result is nearly a factor of
7 smaller than the result of 13.2 in a complete statistical
model [22]. The differences among our QGM specific heat,
the QCD matter specific heat in a pQCD thermodynamic
method (∼10, if T/µ = 0.1 is assumed) [17], and the QCD
matter specific heat in an approximate pure gauge theory
(∼15, if T/Tc = 2) [20] are quite big. Whether the difference
between classical statistics and quantum statistics can account
for such a big discrepancy has to be studied further. We suggest
using RHIC single event charged pion transverse momentum
distribution data to extract the charged pion specific heat
exactly according to the same statistical method used here.
That can rule out the bad methods for the HM system first.
The corresponding work is progressing.

However, it is interesting to stress that there is not peak
structure in the specific heat excitation functions in the studied
energy region, unlike the results in [1,10–12] where the fix

volume is better satisfied. The conditions of fixed volume and
multiplicity are strong assumptions in the relativistic heavy
ion collisions. Because in the relativistic nucleus-nucleus
collisions (experiments or simulations) only the event averaged
(mean) particle multiplicity is fixed for instance and the
particle multiplicity in a single event is fluctuated around the
mean multiplicity. However, the strong assumption of fixed
volume and multiplicity were introduced in all the studies for
heat capacity in the heavy ion collisions [15,16,18,19,21–23].
How to satisfy the above thermodynamic conditions in the
experimental and/or theoretical studies of the specific heat
based on statistical physics in the heavy ion collisions is really
an open question. Recently it has been attempted using a
method of the event selection and/or source reconstruction
to deal with the connection between thermodynamic and the
hadronic final state in heavy ion collisions experimentally
in Refs. [42,43]. Before solving this connection properly in
experiment and the theory, it is still too early to conclude
whether a peak structure is there or not in the specific heat
excitation functions in heavy ion collisions from the AGS and
SPS to the RHIC and LHC energies.

In summary, a parton and hadron cascade model, PACIAE,
is applied investigating the specific heat for both the QGM
scenario in initial partonic stage (“QGM”) and the HM
scenario in final hadronic stage (“HM via QGM”) in 0–5%
most central Au+Au collisions at energies from SPS to RHIC.
In addition, the HM specific heat is also simulated for a
pure hadronic matter (“HM”) where the hadron transport is
considered only. The HM specific heat excitation function
resulting from “HM via QGM” simulations is close to the
one from “HM” simulations. That indicates the QGM specific
heat is hard to survive the hadronization. However, there is not
peak structure in the QGM and HM specific heat excitation
functions in the studied energy region.
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B. Söderberg, Nucl. Phys. B264, 29 (1986).

[34] T. S. Biro, P. Levai, and J. Zimanyi, Phys. Lett. B347, 6 (1995).
[35] P. Csizmadia, P. Levai, S. E. Vance, T. S. Biro, M. Gyulassy, and

J. Zimanyi, J. Phys. G 25, 321 (1999).
[36] Sa Ben-Hao and Tai An, Comput. Phys. Commun. 90, 121

(1995); Tai An and Sa Ben-Hao, ibid. 116, 353 (1999).
[37] M. Gyulassy and X.-N. Wang, Comput. Phys. Commun. 83, 307

(1994).
[38] H. Sorge, M. Berenguer, H. Stöcker, and W. Greiner, Phys. Lett.
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