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Small-x nuclear shadowing from diffractive scattering
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We calculate nuclear shadowing ratios at small Bjorken-x for nuclei in the mass range 3 < A < 239 in the
framework of a generalized form of the Gribov theory. The diffractive dissociation cross sections needed as
inputs are taken from the FNAL (Fermi National Laboratory) and HERA (Hadron-Electron Ring Accelerator)
experiments. Our calculations cover a wide range of energies between 12.8 and 231 GeV. The effects of the
inclusion of subleading Reggeons on nuclear shadowing are investigated. At lower energies our results are
compared to available data from the New Muon Collaboration (NMC) and E665 Collaboration (E665) experiments
at x � 10−4. At higher energies subleading Reggeons are found to contribute significantly to nuclear shadowing.
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I. INTRODUCTION

Nuclear shadowing is a well-established phenomenon
of significant importance to the theoretical description of
high energy nucleus-nucleus collisions. In nuclei, for small
values of the Bjorken variable x(x � 0.1), the nuclear
structure functions FA

2 are significantly reduced compared
to the product of the mass number A and the free nucleon
structure function FN

2 . Because the virtual photon-nucleus
cross section is proportional to F2, then equivalently the
virtual photon-nucleus cross section is less than A times the
one for free nucleons, σγ ∗A < Aσγ ∗N . This phenomenon is
generally known as nuclear shadowing in the strict sense.
Similar behavior is observed for real photons at sufficiently
high energies (ν � 3 GeV). Thus the nuclear shadowing ratio,
defined as FA

2 /(A∗FN
2 ) or alternatively as σγ ∗A/(A∗σγ ∗N ), is

less than unity.
The Gribov theory [1], which relates shadowing to diffrac-

tion, is an efficacious theoretical framework for understanding
nuclear shadowing. For deuteron and other sufficiently light
nuclei, the relationship involves the interaction of the diffrac-
tively produced hadronic excitations with only two nucleons.
In the case of heavier nuclei, triple and higher-order scattering
may be important and needs to be included in the formalism.
This leads to some model dependence. In the Gribov theory
shadowing is expressed in terms of the diffractive dissociation
cross section. For low masses of the hadronic excitations,
the diffractive dissociation cross section is well described
by the vector meson dominance (VMD) model while for
higher masses the triple-Regge model is usually employed.
The triple-Regge model involves parameters that are not given
by the model. These parameters are usually determined from
various experimental data on diffraction and photoproduction.

In a previous analysis [2] we used the available data on
diffractive dissociation from the Fermi National Laboratory
(FNAL) experiment [3] at an average center-of-mass energy
W � 14.3 GeV. We also restricted the analysis to the triple
pomeron contribution of the triple-Regge model. In the present
work we use the diffractive dissociation data from both the
FNAL experiment at energies W � 12.8 GeV and W �
15.2 GeV and the experiments at the Hadron-Electron Ring
Accelerator (HERA) [4–8] at average energies W � 187 GeV

and W � 231 GeV. Thus the present treatment covers a wider
energy range than the previous study. We also investigate the
effects of the inclusion of the subleading Reggeons on the
description of nuclear shadowing.

As in Refs. [2] and [9] we employ a generalized form of the
Gribov theory, incorporating the real part of the diffractive
scattering amplitude, to calculate the shadowing ratio at
very small Bjorken-x. At applicable energies we compare
to experimental results from the New Muon Collaboration
(NMC) [10,11] and E665 Collaboration [12,13] experiments.
These experimental data are all at small Q2: thus the use
of information from diffractive scattering of real photons
(Q2 = 0 GeV2 at FNAL) and quasi-real photons (Q2 <

0.01 GeV2 at HERA) is justified.
To present a reasonably self-contained analysis, we include

all the relevant details from our previous treatment. The
article is thus organized as follows: in Sec. II we review the
basic formalism of Gribov theory as applied to shadowing in
the small Bjorken-x regime. Section III deals with diffractive
production and the diffractive dissociation cross section. These
two sections are essentially the same as in the previous
analysis. In Sec. IV we describe the data analysis and fits
using the triple-Regge model. We present the results of our
calculation in Sec. V and conclude in Sec. VI.

II. NUCLEAR SHADOWING AND DIFFRACTION

A. Nuclear shadowing ratio

A high energy (virtual) photon interacting with a nuclear
system can experience nuclear effects in two distinct ways
[14]:

(i) incoherent scattering from A nucleons with modifica-
tions to the structure functions due to many-body effects
in the nuclear medium, and

(ii) coherent scattering processes involving more than one
nucleon at a time.

Coherence effects occur when hadronic excitations (or
fluctuations) produced by the high-energy photon propagate
over distances (in the laboratory frame) comparable to or
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larger than the characteristic length scale d ∼2 fm. Incoherent
scattering manifests primarily in the range 0.1 < x < 1, while
strong coherence effects occur at x < 0.1. Shadowing can be
understood in terms of coherent scattering on more than one
nucleon.

The (virtual) photon-nucleus cross section is separable
into a part that accounts for the incoherent scattering from
individual nucleons and a correction (shadowing correction)
from the coherent interaction with several nucleons:

σγ ∗A = Zσγ ∗p + (A − Z)σγ ∗n + δσγ ∗A. (1)

The single scattering part is the incoherent sum of photon-
nucleon cross sections, where Z is the nuclear charge number
and σγ ∗p and σγ ∗n are the photon-proton and photon-neutron
cross sections, respectively. The multiple scattering correction
is expressible as an expansion in the number of nucleons
in the target involved in the coherent scattering (n � 2).
The dominant contribution to nuclear shadowing comes from
double scattering, because the probability that the propagating
hadronic excitation coherently interacts with several nucleons
decreases with the number of nucleons.

We define the shadowing ratio as

RS
A = Zσγ ∗p + (A − Z)σγ ∗n + δσγ ∗A

Zσγ ∗p + (A − Z)σγ ∗n
. (2)

Thus, the evaluation of the shadowing correction, δσγ ∗A, is
central to the calculation of the shadowing ratio. We utilize the
Gribov theory in a generalized form to determine δσγ ∗A in the
next section.

B. Shadowing correction from generalized Gribov theory

We generalize the original formulation of Gribov by
including the real part of the diffractive scattering amplitude.
We denote by η the ratio of the real to imaginary parts of
the diffractive scattering amplitude. In this generalized form
incorporating the real part, the shadowing correction at the
level of double scattering is given by

δσγ ∗A = A(A − 1)

2A2
16 πRe

[
(1 − iη)2

1 + η2

×
∫

d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ W 2

4m2
π

dM2
X

d2σ diff
γ ∗N

dM2
Xdt

∣∣∣∣∣ t≈0

× ρ
(2)
A (�b, z1; �b, z2) exp

{
i
(z1 − z2)

λ

}]
, (3)

with σ diff
γ ∗N the photon-nucleon diffractive cross section. The

coherence length, λ, is given by λ = 2ν/M2
X for real

photons. As illustrated in Fig. 1, a diffractive state with
invariant mass MX is produced in the interaction of the photon
with a nucleon located at position (�b, z1) in the target. The
hadronic excitation is assumed to propagate at fixed impact
parameter �b and to interact with a second nucleon at z2.
The probability to find two nucleons in the target at the
same impact parameter is described by the two-body density
ρ

(2)
A (�b, z1; �b, z2) normalized as

∫
d3rd3r ′ρ(2)

A (�r, �r ′) = A2. The
phase factor, exp{i[(z1 − z2)/λ]}, in Eq. (3) implies that only

γ* γ*

A - 2

X

N

N

AA

FIG. 1. Double scattering contribution to nuclear DIS.

diffractively excited hadrons with a longitudinal propagation
length larger than the average nucleon-nucleon distance in the
target, λ > d � 2 fm, can contribute significantly to double
scattering. The limits of integration define the kinematically
permitted range of diffractive excitations, with their invariant
mass MX above the two-pion production threshold and limited
by the center-of-mass energy W = √

s of the scattering
process.

We approximate the two-body density ρ
(2)
A (�b, z1; �b, z2) by a

product of one-body densities ρA(�r)ρA(�r ′) because short-range
nucleon-nucleon correlations are relevant in nuclei only when
z2 − z1 is comparable to the range of the short-range repulsive
part of the nucleon-nucleon force, i.e., for distances � 0.4 fm.
However, shadowing is negligible in this case and therefore
short-range correlations are not important in the shadowing
domain.

With increasing photon energies or decreasing x down
to x 	 0.1, the longitudinal propagation length of diffrac-
tively excited hadrons rises and eventually reaches nuclear
dimensions. Thus, for heavy nuclei interactions of the excited
hadronic state with several nucleons in the target become
important and should be accounted for. Following Ref. [9]
we introduce an attenuation factor with an effective hadron-
nucleon cross section, σeff . The shadowing correction can thus
be written as

δσγ ∗A = A(A − 1)

2A2
16πRe

[
(1 − iη)2

1 + η2

×
∫

d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ W 2

4m2
π

dM2
X

d2σ diff
γ ∗N

dM2
Xdt

∣∣∣∣∣
t≈0

× ρ
(2)
A (�b, z1; �b, z2) exp

{
i
(z1 − z2)

λ

}

× exp

{
−(1/2)(1 − iη)σeff

∫ z2

z1

dzρA(b, z)

}]
. (4)

The effective hadron-nucleon cross section, σeff , in Eq. (4) is
defined as

σeff = 16π

σγN (1 + η2)

∫ W 2

4m2
π

dM2
X

d2σ diff
γ ∗N

dM2
Xdt

∣∣∣∣∣
t≈0

, (5)

where σγN is the photon-nucleon cross section. The details of
this approach and the approximations inherent in the definition
of σeff are treated thoroughly in Ref. [9]. For vector mesons
as the intermediate hadronic excitations, we take σVN as σeff

in the attenuation factor in Eq. (4), where σV N is the vector
meson-nucleon scattering cross section.
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FIG. 2. Diffractive scattering from a proton.

III. DIFFRACTIVE DISSOCIATION

A. Diffractive production

In single diffractive scattering of a (virtual) photon off of
a proton (see Fig. 2), the proton remains intact and does not
dissociate during the process. The photon, on the other hand,
dissociates into a hadronic final state X, with a well-defined
rapidity gap relative to the proton.

γ (∗) + p → X + p′. (6)

Such diffractive processes are important at small momentum
transfer, with cross sections that decrease exponentially with
the squared four-momentum transfer. In general they exhibit a
weak energy dependence.

Diffractive dissociation of real photons,

γ + N → X + N, (7)

has been studied in both fixed target and collider experi-
ments. Experiments were carried out at FNAL at average
photon-proton center-of-mass energies of W � 12.8 GeV
and W � 15.2 GeV [3]. Diffractive states with an invariant
mass squared of up to M2

X � 18 GeV2 were produced. This
experiment measured the diffractive dissociation cross section
differential in both, the invariant mass MX and the squared
four-momentum transfer t . Experiments at the HERA [4–8]
were carried out at average energies W � 187 GeV and W �
231 GeV. Diffractive states with mass MX< 30 GeV were
produced. Unlike the FNAL experiment, only dσ diff

γ ∗N/dM2
X

was measured because of poor resolution in t .
As stated in the Introduction, the available experimental

data on shadowing at small x(x � 10−4) are all at small
Q2(Q2 < 1 GeV2). At such small virtualities the photons
can be considered quasi-real, and it is thus a reasonable
approximation to regard them as real photons with Q2 =
0 GeV2. The center-of-mass energies are also low: W �
15 GeV for the NMC and W � 25 GeV for the E665 mea-
surements. The NMC energy (W � 15 GeV) is comparable
to the photon-proton center-of-mass energy at FNAL (W �
15.2 GeV). The E665 energy (W � 25 GeV) lies between
the FNAL and HERA energies. For these reasons one can
use the information from diffractive scattering of real photons
at the FNAL and almost real photons (Q2 < 0.01 GeV2) at
the HERA to calculate the shadowing ratio in the kinematic
range accessible at NMC and E665. Note that in our previous
analysis we used only the FNAL data at W � 14.3 GeV.
For completeness we also calculate the shadowing ratio at the
HERA energies.

B. Diffractive dissociation cross section

The analysis by the H1 collaboration [4] divides the HERA
photoproduction data into effectively three intervals in M2

X.
We adopt this approach in the present article, taking the first
interval (0.16 − 1.58) GeV2 to contain the region of the
low-mass vector mesons (ρ, ω, and φ). The second interval
(1.58–4.0 GeV2) covers the ρ ′ resonance region. The third
interval (M2

X > 4.0 GeV2) is that of the high-mass continuum.
The differential diffractive cross section is thus written as a
sum over contributions from these three mass intervals,

dσD
γN

dM2
Xdt

∣∣∣∣∣
t≈0

=
∑

V =ρ,ω,φ

dσV
γN

dM2
Xdt

∣∣∣∣∣
t≈0

+
∑
V =ρ ′

dσV
γN

dM2
Xdt

∣∣∣∣∣
t≈0

+ dσ cont
γN

dM2
Xdt

∣∣∣∣∣
t≈0

. (8)

In the following, we briefly summarize the various approxi-
mations applied in the three regions.

1. Low-mass vector mesons

We utilize the generalized VMD [15] to describe the
contribution of the low-mass vector mesons to the differential
diffractive cross section, i.e., the first term on the right-hand
side of Eq. (8),

dσV
γN

dM2
Xdt

∣∣∣∣∣
t≈0

= e2

16π

�V
(
M2

X

)
M2

X

σ 2
V N, (9)

with �V (M2
X) the vector meson part of the photon spectral

function �(M2
X), which is given by

�
(
M2

X

) = 1

12π2

σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
. (10)

In Eq. (9), σV N is the vector meson-nucleon cross section
and e2/4π = 1/137 is the fine structure constant. The ω

and φ mesons are narrow and thus well approximated by δ

functions. Their contribution to the photon spectral function
can be written as

�V
(
M2

X

) =
(

mV

gV

)2

δ
(
M2

X − m2
V

)
; V = ω, φ, (11)

where mV and gV (V = ω, φ) are the mass and the coupling
constant of the ω and φ mesons, respectively.

The ρ meson, unlike the ω and φ mesons, has a large width
due to its strong coupling to two-pion states. We have followed
the approach in Ref. [16] and taken this into account through
the π+π− part of the photon spectral function:

�ρ
(
M2

X

) = 1

48π2
�

(
M2

X − 4m2
π

)
×

(
1 − 4m2

π

M2
X

)3/2 ∣∣Fπ

(
M2

X

)∣∣2
, (12)

where mπ is the mass of the pion and MX = Mππ is the
invariant mass of the π+π− pair. The pion form factor, Fπ , is
taken from Ref. [17]. A full discussion is given in Ref. [16].
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We compared the result from the δ function approximation to
this more exact calculation and found that taking into account
the width of the ρ meson increases the differential diffractive
cross section by 10%.

The vector meson-nucleon cross section in Eq. (9) has an
energy dependence of the form

σVN ∼ W 2(αIP(0)−1) = W 2ε, (13)

where αIP (t = 0) = 1 + ε is the soft pomeron intercept [18].

2. Region of the ρ ′ resonances

The ρ ′ resonance region contains the ρ(1450) and
ρ(1700) mesons. These resonances were formerly classified
as the ρ(1600) [19]. The FNAL data show an enhancement in
this region. We treat this enhancement in terms of an average
ρ ′ resonance, corresponding to the earlier classification of
ρ(1600), as done in Ref. [3]. We use the available information
on the ρ(1600) from Ref. [15] in a VMD type calculation
to evaluate the contribution from this region. The average
ρ ′ resonance should have a finite width, but encouraged by
the fact that a δ function in the case of the ρ gives a good
approximation to the full-width result, we employ a narrow
resonance approximation for the ρ(1600). Thus, for the second
term of (8) we have

dσV
γN

dM2
Xdt

∣∣∣∣∣
t≈0

= e2

16π

�V
(
M2

X

)
M2

X

σ 2
V N, (14)

with

�V
(
M2

X

) =
(

mV

gV

)2

δ
(
M2

X − m2
V

)
(15)

and V = ρ(1600).

3. High-mass continuum

A full treatment of both the FNAL data and the HERA data
in this region has been carried out by the H1 Collaboration in
Ref. [4], using the triple-Regge model of photon dissociation.
Here we limit ourselves to the aspects relevant to the present
study. There are two diffractive terms in the triple-Regge
expansion: the triple-pomeron (IPIPIP) and the pomeron-
pomeron-reggeon (IPIPIR) terms. The subleading Reggeons
have the quantum numbers of the ρ, ω, a2, and f2 mesons
and their trajectories are approximately degenerate. They are
generally referred to as ρ, ω, a, and f mesons and their
isospin, signature, and C- and G-parities are ρ(1 − −+),
ω(0 − −−), a(1 + +−), and f (0 + + + ), respectively. The
pomeron has IP(0+++ ) and is thus identical to the f meson,
leading to interference. We neglect such interference effect in
the present study.

The differential dissociation cross section can thus be
written as

d2σ

dM2
Xdt

=
[

GIPIPIP(0)

M
2αIP(0)
X

+ GIPIPIR(0)

M
4αIP(0)−2αIR(0)
X

]

× (W 2)2αIP(0)−2eB(W 2,M2
X)t , (16)

where B(W 2,M2
X) = 2bpIP + 2α′

IPln(W 2/M2
X). Here bpIP is

the proton-pomeron slope parameter and α′
IP is the slope of the

pomeron trajectory. αIP and αIR are the pomeron and (effective)
reggeon intercepts, respectively. We use the values in Ref. [4]
for these parameters. Note that the value of αIP(0) (αIP(0) =
1.068 ± 0.0492) agrees within error with the soft pomeron
intercept in Ref. [18] (αIP(0) � 1.081). The triple-pomeron
approximation corresponds to putting GIPIPIR(0) = 0 in
Eq. (16).

IV. DATA ANALYSIS AND FITS

The free parameters to be determined from experimen-
tal data are the triple-pomeron coupling GIPIPIP(0) and the
pomeron-pomeron-reggeon coupling GIPIPIR(0). We adopt a
simple fitting procedure in this article: the experimental data
are fitted to Eq. (16) (and the triple-pomeron approxima-
tion of it) at the average cms energies. These are W �
12.8 GeV and W � 15.2 GeV for the FNAL experiment
and W � 187 GeV and W � 231 GeV for the HERA
experiment. We first fit the data to the triple-pomeron approx-
imation of Eq. (16), and then, to investigate the effect of the
inclusion of the subleading Reggeons, to the full expression in
Eq. (16). In the following subsections the units of GIPIPIP(0)
and GIPIPIR(0) are µb/GeV2(1+ε) and µb/GeV2(1+δ) respectively,
with ε = αIP(0) − 1 and δ = αIR(0) − 1.

A. FNAL data

The FNAL data are presented at t = −0.05; thus the data
are fitted to Eq. (16) at this value of t . Using the triple-pomeron
approximation the fit gives GIPIPIP(0) = 12.4 ± 1.8 for W �
12.8 GeV and GIPIPIP(0) = 10.2 ± 1.1 for W � 15.2 GeV.

With the full expression Eq. (16), GIPIPIP(0) = 12.0 ± 0.4
and GIPIPIR(0) = 1.5 ± 0.1 at W � 12.8 GeV. For W �
15.2 GeV, GIPIPIP(0) = 9.5 ± 0.7 and GIPIPIR(0) = 2.4 ± 0.3.

The inclusion of the subleading Reggeons does not have
a dramatic effect on the fits. This is because the low M2

X

region of the continuum is already adequately described by
the triple-pomeron contribution. The subleading Reggeons are
expected to have appreciable effects at low M2

X because their
contribution goes like M−3

X and is thus negligible at high M2
X.

The quality of the fits is shown in Fig. 3.

B. HERA data

The HERA data, unlike the FNAL data, are not presented
at a specific value of t . The data have been integrated in t over
a kinematic range relevant to the HERA experiment. Thus the
first job is to deconvolute the t-integrated data to data at t = 0.
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FIG. 3. (Color online) Triple-Regge fit to the
FNAL (12.8 GeV and 15.2 GeV) and HERA
(187 GeV and 231 GeV) data in the nonresonant
continuum (M2

X > 4 GeV2). The dashed lines
correspond to triple-pomeron only while the
thick lines correspond to pomeron+Reggeons.
The shaded circles are experimental data.

We assume a t dependence of the form

d2σ

dM2
Xdt

= d2σ

dM2
Xdt

∣∣∣∣
t=0

eB(W 2,M2
X)t , (17)

and then integrate both sides of Eq. (17) over the measured
range of t, |tmin| < |t | < 1 GeV2. Here |tmin| is the minimum
kinematically accessible value of t [19]. In the following
equations we suppress the W 2 and M2

X dependence of B. We
can then write

d2σ

dM2
Xdt

∣∣∣∣
t=0

= B

e−B|tmin| − e−B

∫ 1

|tmin|
dt

d2σ

dM2
Xdt

. (18)

Making the identification

∫ 1

|tmin|
dt

d2σ

dM2
Xdt

≡ dσ

dM2
X

, (19)

then

d2σ

dM2
Xdt

∣∣∣∣
t=0

= B

e−B|tmin| − e−B

dσ

dM2
X

. (20)

Equation (20) can now be applied to generate a new set of data
at t = 0 from the HERA t-integrated data. With only the triple-
pomeron approximation the fit gives GIPIPIP(0) = 6.3 ± 0.7 for
W � 187 GeV and GIPIPIP(0) = 6.5 ± 0.6 for W � 231 GeV.

Using the full expression Eq. (16), GIPIPIP(0) = 5.0 ± 0.8
and GIPIPIR(0) = 6.3 ± 0.8 at W � 187 GeV. For W �
231 GeV, GIPIPIP(0) = 5.3 ± 0.8 and GIPIPIR(0) = 8.5 ± 0.7.

Here the effect of the inclusion of the subleading Reggeons
is apparent. The fits at low M2

X are appreciably improved
compared with the fits using the triple-pomeron approximation
alone. We thus anticipate that the subleading Reggeons will
affect the nuclear shadowing ratio substantially at these
energies.

The fits are displayed in Fig. 3.

C. W � 25 GeV

There are no experimental data at W � 25 GeV, the
cms energy relevant to the E665 measurements. Thus we
are not able to extract both GIPIPIP(0) and GIPIPIR(0) directly
from experiment. We therefore use an indirect method to
estimate these parameters: we plot the fit parameters from
Sec. IV A and Sec. IV B as a function of W 2(2αIP(0)−2), the
energy functional in Eq. (16), and then estimate the values
at W = 25 GeV. We use the energy functional because
it occurs explicitly in the extraction of the fit parameters
from experimental data. For the triple-pomeron approximation
this approach gives GIPIPIP(0) = 8.99 ± 1.14. Applying
Eq. (16), GIPIPIP(0) = 8.04±0.79 and GIPIPIR(0) = 2.65±0.32.
This approach, of course, impacts on the accuracy of the
determination of the shadowing ratio at this energy because of
greater uncertainties associated with the approximate nature
of the fit parameters. The fits and corresponding estimates
of the fit parameters are are displayed in Fig. 4. Note that
W 2(2αIP(0)−2) = W 0.272 using αIP(0) = 1.068.

V. RESULTS

The treatment outlined in the last three sections is now
applied to calculate the shadowing correction, and hence
the shadowing ratio. The basic equation is Eq. (4), which
involves the ratio of the real to imaginary amplitudes η, the
photon-nucleon cross section σγN , the nuclear density ρA,
and the effective cross section σeff in terms of the diffractive
dissociation cross section.

We use the energy-independent η’s for the vector mesons
from Ref. [15]. For both ρ and ω mesons, η takes values
between 0 and −0.3. Here we take ηρ = ηω = −0.2 in
accordance with Ref. [15]. The results of our calculation are
not very sensitive to the precise values of ηρ(ω). For the φ

meson, we take ηφ = 0.13 [20]. For lack of information, we
take ηρ(1600) = 0. For the high-mass continuum, we follow
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FIG. 4. (Color online) Estimates for the fit parameters at W =
25 GeV as discussed in the text. The shaded circles are GIPIPIP(0)
values from the triple-pomeron approximation. The shaded upright
triangles and squares are the GIPIPIP(0) and GIPIPIR(0), respectively,
from Eq. (16). The thick, dashed, and dot-dashed lines are fits to the
parameters, respectively. The vertical dotted line corresponds to the
values of these parameters at W = 25 GeV.

Ref. [9] and define ηIP as

ηIP = π

2
(αIP(0) − 1), (21)

using the result of Gribov and Migdal [21]. The ratio of the
real to imaginary parts of the subleading exchange amplitude
ηIR is given by

ηIR = −ξ + cos(παIR(0))

sin(παIR(0))
, (22)

with ξ = ±1 the signature factor of the exchanged reggeon.
Using the value of αIR(0) = 0.55±0.10 from Ref. [4], ηIR(ξ =
−1) = 1.17 and ηIR(ξ = +1) = −0.854. The analysis in
Ref. [4] assumes a single effective trajectory αIR(t) for the four
subleading Reggeons; thus −0.854 � ηIR � 1.17. Because of
the uncertainty in αIR(0) and for reasons of symmetry we take
the uncertainty range to be −1 � ηIR � 1 as in Ref. [9].

The small difference between the photon-proton cross
section σγp and the photon-neutron cross section σγn is
neglected in this study. We use the Donnachie-Landshoff
parametrization of σγp [18] as the generic photon-nucleon
cross section σγN . For the nuclear densities three-parameter
Fermi (3pF) distributions are applied:

ρ(r) = ρ0
1 + ω(r/RA)2

1 + e(r−RA)/d
, (23)

with the parameter values taken from Ref. [22]. For mass
numbers A � 20 a harmonic oscillator (HO) density distribu-
tion may be more appropriate than the 3pF distribution. For
uniformity, we use the 3pF distributions for the whole mass
range in light of the fact that uncertainties associated with
other parameters are at least comparable.

A. Shadowing around FNAL energies

We carried out calculations at W = 12.8 and 15.2 GeV,
the cms energies of the FNAL measurements. The results are
displayed in Fig. 5. At very small x(x � 10−4), NMC has
two data points, corresponding to 6Li and 12C. The NMC
data at W � 15 GeV can be compared with the result
of our calculation at W = 15.2 GeV because the energies
are comparable. In view of the large error bars of the data,
the calculations can be said to describe the experimental
information adequately well in the applicable mass range.
There are no data for comparison at W = 12.8 GeV.

The inclusion of the Reggeons has small but discernible
effects at both the FNAL energies. At W = 12.8 GeV the
result from pomeron+Reggeons with η = −1 is pratically
similar to the result from the pomeron only. The result of
pomeron+Reggeons at η = 1 is shifted higher relative to both
pomeron only and pomeron+Reggeons with η = −1. This
shift generates a gap that is a measure of the uncertainty of
the pomeron+Reggeons calculations. Due to the smallness of
the gap the triple-pomeron approximation is quite adequate
at this energy. At W = 15.2 GeV the pomeron+Reggeons
(η = −1) result is still practically the same as that of the

0.7

0.8

0.9

1

R
AS

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Mass Number A

0

0.2

0.4

0.6

0.8

1

R
AS

0 50 100 150 200 250 300

Mass Number A

0

0.2

0.4

0.6

0.8

1

W = 12.8 GeV W = 15.2 GeV

W = 187 GeV W = 231 GeV

FIG. 5. (Color online) Shadowing ratio at the
FNAL and HERA energies. The dots are the results
from the triple-pomeron approximation. The thick
lines correspond to pomeron+subleading Reggeons
with η = 1 while the dashed lines correspond to
pomeron+Reggeons with η = −1. The shaded circles
are data from the NMC experiment.
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FIG. 6. (Color online) Shadowing ratio at W = 25 GeV. The dots
are the results from the triple-pomeron approximation. The thick line
is the result from both pomeron and subleading Reggeons with η = 1
while the dashed line corresponds to pomeron+Reggeons with with
η = −1. The shaded circles are data from the E665 experiment.

pomeron only. The gap between the η = 1 and η = −1
results is larger, signifying greater uncertainty. Despite the
wider gap the triple-pomeron approximation is still also
quite good considering the proximity of the results of the
pomeron+Reggeons calculations to the triple-pomeron result.

B. Shadowing around W � 25 GeV

At very small x(x � 10−4) the E665 experiment has four
data points: 12C, 40Ca, 131Xe, and 208Pb. The results of our
calculations and the experimental data are shown in Fig. 6.
The agreement with the experimental result is quite good
considering the approximations inherent in the determination
of the fit parameters at this energy. For small A the shadowing
ratio decreases rapidly with A, while for large A the decrease
is more gradual.

The inclusion of the subleading Reggeons has a more
appreciable impact at this energy. The effect overall is a
lessening of the shadowing correction especially at large A.
This results in a greater shadowing ratio compared with the
result of the triple-pomeron approximation. Unlike at both
W = 12.8 and W = 15.2 GeV, the result of the pomeron+
Reggeons at η = −1 is clearly different from that of the
pomeron alone. A gap similar to that encountered at the
FNAL energies exists, with a gap size similar to that at W =
15.2 GeV. Because of the difference between the pomeron
only and the pomeron+Reggeons results, the inclusion of
subleading Reggeons is already becoming important at this
energy.

C. Shadowing around HERA energies

Although there are no shadowing data at the HERA
energies, it is interesting to see the trend of the shadowing ratio
and also the effects of the Reggeons’ contributions at these
energies. In Fig. 5 we display the results of our calculations

at W = 187 and 231 GeV. The shapes are identical to the
W = 25 GeV result: a rapid decrease at small A and a more
gradual one as A increases.

The contribution to shadowing from the Reggeons is
substantial. As in the previous subsection, the inclusion of
the reggeon contribution results in a greater shadowing ratio,
with the effect more pronounced at large A. Interestingly,
the gap between the pomeron+Reggeons (η = 1) and the
pomeron+Reggeons (η = −1) results is very small at both
energies because the results overlap considerably. Thus the
uncertainty from the subleading Reggeons is negligible and
the calculations show unambiguosly that a proper description
of nuclear shadowing around the HERA energies requires the
full expression Eq. (16).

D. Comparison with other related approaches

We compare our results to two previous calculations similar
in spirit to the present work. In Refs. [14] and [23], Eq. (3)
is utilized in an approximately geometrical manner. The real
part of the scattering amplitude is neglected and the coherence
length λ is taken as infinite. A constant slope parameter B

is then used in the expression for the diffractive dissociation
cross section. These approximations enable the integral over
the diffractive masses to be carried out explicitly yielding
the product of the slope parameter B and the nucleonic
diffractive cross section σ diff

γ ∗N . Thus Eq. (3) reduces to a
simpler form involving only the integrals over the nuclear
densities. Gaussian and square-well parametrizations are used
to describe these nuclear densities. The ratio σ diff

γ ∗N/σγ ∗N � 0.1
is used with B � 8 GeV−2. The calculated results are in good
agreement with experimental data from the NMC and E665
experiments and are comparable to the results presented in
this study. In contrast to our results at both W = 15.2 GeV
and W = 25 GeV, all the calculated results are below the
experimental data points.

The approach in Ref. [24] is slightly different from that
adopted in the present study. The basic equation is similar to
Eq. (3) but a model form is utilized to describe the diffractive
dissociation process. This model form is constructed to
describe the HERA data adequately well. As in Refs. [14]
and [23], the real part of the amplitude is neglected. The
same formalism is adopted in Ref. [25] where two models
(Schwimmer and eikonal) are used to account for higher
order rescattering effects. Our results are comparable to the
x = 10−4 ratios of structure functions at Q2 = 5.0 GeV2 in
Ref. [24] and the small-x Q2 = 0.5 GeV2 structure function
ratios in Ref. [25] for the considered nuclei.

E. Uncertainties

The uncertainties of our calculation are directly related to
the various uncertainties and approximations inherent in the
practical usage of Eq. (4) to determine nuclear shadowing
ratio. There are small but finite uncertainties in the nuclear
density distribution parameters as well as the neglect of short-
range correlations. The parametrizations of the diffractive
dissociation cross section in different M2

X regions are the
dominant sources of uncertainties. In the low-M2

X region
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FIG. 7. (Color online) Calculated uncertainties as discussed in
the text. From top: W = 231 GeV, W = 187 GeV, W = 25 GeV
(triple-pomeron), W = 25 GeV, W = 15.2 GeV (triple-pomeron),
and W = 15.2 GeV.

described by the VMD model, the largest contribution to
the uncertainties comes from the vector-meson-nucleon cross
sections. The δ function parametrization for the ω and φ

mesons seems adequate, and the width of the ρ meson has been
taken into account. Refinements of the spectral function (12)
and improvements of the treatment of the ρ ′ resonance region
are possible. In the continuum we have neglected interference
between the pomeron and the subleading Reggeons. Also the
fit parameters at W = 25 GeV are subject to greater errors
than the parameters from fits to actual experimental data.
Furthermore, the use of an effective scattering cross section to
account for multiple scattering is an approximation, as is using
real-photon information (Q2 = 0) at small, but non-vanishing
Q2.

Quantitatively, we estimate the overall uncertainty of
our calculations as follows: we place a 5% uncertainty on
the values of the vector-meson-nucleon cross sections used in
the VMD calculations. The uncertainties in the fit parameters
are as reported in Sec. IV. From Eq. (4) it can be seen that the
uncertainties in the fit parameters propagate into uncertainties

in the effective scattering cross section. We have therefore
not placed any explicit uncertainty on the effective scattering
cross section. We neglect the uncertainties in both αIP(0)
and αIR(0) as well as in the other potential sources listed
above. Because there are no experimental data in the interval
between the FNAL energy (15.2 GeV) and the HERA energy
(187 GeV), we place an additional 5% uncertainty on the
W = 25 GeV fit parameters to offset the lack of constraints
on the estimation of these parameters. We use Eq. (16) with
ηIR = 1 to estimate the uncertainties at W = 15.2, 25, 187, and
231 GeV. For both 187 and 231 GeV the resultant uncertainties
represent the total uncertainties because the gaps between
ηIR = 1 and ηIR = −1 are negligible. For 15.2 and 25 GeV,
the gaps are appreciable and the calculated uncertainties reflect
only the uncertainties at ηIR = 1. The ηIR = −1 results are very
similar. Since the triple-pomeron approximation is quite good
at these two energies, we also estimate the uncertainties using
the triple-pomeron approximation of Eq. (16). The percentage
uncertainties are diplayed in Fig. 7.

VI. CONCLUSION

Gribov theory, suitably generalized to include the real part
of the diffractive scattering amplitude, is employed to calculate
the shadowing ratio in nuclei at very small Bjorken-x. We have
examined nuclei within the mass range 3 < A < 239 and for
x � 10−4. The main input to our calculation, the photon
diffractive dissociation cross section, has been parameterized
as a function of the invariant mass of the diffractively produced
hadronic excitation in three mass intervals. For the low-mass
vector mesons and ρ ′ resonances, the vector meson dominance
model is used while the high-mass continuum is treated
within the framework of triple-Regge theory. Relevant model
parameters are taken from experiments and earlier studies. The
calculated shadowing ratio decreases with mass number first
rapidly and then more slowly, with stronger decrease with A as
the center-of-mass energy increases. The contribution from the
subleading Reggeons becomes more substantial as the energy
increases. In view of the reasonable agreement of calculated
results with experiments at applicable energies, the Gribov
theory offers a good description of nuclear shadowing.
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