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Limiting fragmentation in heavy-ion collisions and percolation of strings
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The observed limiting fragmentation of charged particle distributions in heavy ion collisions is difficult to
explain as it does not apply to the proton spectrum itself. On the other hand, string percolation provides a
mechanism to regenerate fast particles, eventually compensating the rapidity shift (energy loss) of the nucleons.
However a delicate energy-momentum compensation is required, and in our framework we see no reason for
limiting fragmentation to be exact. A prediction, based on percolation arguments, is given for the charged particle
density in the full rapidity interval at LHC energy (

√
s = 5500 GeV).
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I. INTRODUCTION

Recently, the phenomenon of limiting fragmentation, [1],
or of extended longitudinal scaling, was rediscovered in the
framework of high-energy heavy ion collisions [2]. In general
the inclusive particle distribution, dn/dy, is a function of
the central rapidity y and of the center of mass energy

√
s,

or of � ≡ y − yb and yb, where yb is the beam rapidity,
with

√
s = mbe

yb . Limiting fragmentation essentially means
that as � becomes larger than some yb dependent threshold
�0,� � �0(yb), dn/dy becomes a function only of �,

dn

dy
(�, yb) −→

�>�0(yb)
f (�), (1)

independent of yb. As �0(yb) decreases with yb the region in
� of limiting fragmentation increases with the energy.

It has been argued that limiting fragmentation reflects the
fast parton distribution in the beam [3]. However, as a sizable
fraction of the fast particles building up the limiting frag-
mentation behavior are nucleons (protons) [4], one requires
specific parton correlations to generate the observed nucleons.
This is done, for instance, in the dual parton model, [5], by
introducing valence diquarks which, directly or indirectly, [6],
produce baryons, thus preserving the flow of baryon number.

It is important to remark that the proton spectrum at high
rapidity does not scale in the sense of limiting fragmentation,
[4], presenting a shift 〈�〉B ≡ 〈y〉B − yb increasing in absolute
value with energy, at least for intermediate energies [7].
Theoretically, in QCD evolution models, a transfer of energy
and momentum from fast partons to the sea is also expected,
[8].

In such circumstances how is it possible to obtain overall
limiting fragmentation? A possible solution is given by
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string percolation models as percolation implies not only
a summation in color [9,10], but, as well, a summation in
momentum [11,12]. In a sense, percolation is a mechanism
for reacceleration of particles, with production of fast mesons
(pions) from sea strings [13].

II. STRING PERCOLATION MODELS

In string percolation models strings are produced along the
collision axis. In the impact parameter plane if the area of
interaction is πR2, the projected discs from the strings have
an area πr2 and there are N̄s strings, the transverse density
parameter η,

η ≡
( r

R

)2
N̄s, (2)

is the relevant parameter in percolation. If η � 1 the strings
are independent and do not overlap, if η > 1 the strings fuse
and percolate.

When strings overlap, due to random color summation,
the particle rapidity density dn/dy is not the sum of the
particle density n̄1 of each string, and the average transverse
momentum 〈pT 〉 is not the single string average transverse
momentum p̄1. In general we have

dn/dy = F (η)N̄s n̄1, (3)

and

〈pT 〉 = p̄1/
√

F (η), (4)

where F (η) is the color summation reduction factor:

F (η) ≡
√

1 − e−η

η
. (5)

Note that η → 0, F (η) → 1, and that as η → ∞,

F (η) → 1/η1/2. (6)
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Regarding the momentum summation, if we have a cluster
of N strings, each string made up of partons with Feynman x-
variable −x1 and +x1, respectively, such that y1 = yb + ln x1

[12], we have for the end (forward rapidity of the N -cluster
string)

yN = y1 + ln N. (7)

With percolation just one cluster is formed and N becomes the
number N̄s of strings:

yN̄s
= y1 + ln N̄s . (8)

A simple model can be imagined where, at relatively
low energy, there is a transfer of momentum from the
valence string (leading proton) with creation of identical sea
strings, followed, at very higher energy, by the mechanism
of percolation with regeneration of fast strings [12]. One
obtains a flat distribution in rapidity ending at y = yN̄s

[see
Eq. (7)].

The consequences of percolation become very clear: a
decrease of particle density at midrapidity, see Eq. (3), and an
extension of the length of the forward sea rapidity distribution
from ∼ y1 to ∼ ln N̄s , see Eq. (7).

If we impose in the model energy conservation in AA
collision when there are Npart participating nucleons,∫ yMAX

0
E(y)

dn

dy
dy = Npart

2

√
s

2
, (9)

where E(y) = 〈mT 〉 cosh y and
√

s = mbe
yb we obtain, as

yb → ∞, ∫ e�0

0

〈mT 〉
mb

2

Npart

dn

d�
d(e+�) = 1, (10)

where � ≡ y − yb and

�0 = ln N̄s − yb. (11)

If we write for the asymptotic behavior of the number of
strings

N̄s ∼ sλ ∼ e2λyb . (12)

we obtain

�0 = −αyb, (13)

with

α = 1 − 2λ. (14)

One should notice that 1 + λ is, in this approach, the intercept
of the bare Pomeron [12]. As const. � N̄s �

√
s one also sees

that 0 � α � 1.
In order to make practical use of Eq. (9), we need to estimate

the asymptotical behavior of the ratio 〈mT 〉/mb. We take
two simple models: Model I—One assumes that the relation
(4) for 〈pT 〉 applies as well to 〈mT 〉 [12]. This means that
large pT physics is dominating everywhere. Model II—One
assumes that the ratio 〈mT 〉/mb is energy independent. Such
approximation is probably more realistic, as one is mostly
considering the forward rapidity contributions where the pT

behavior is expected to be almost energy independent [14].
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FIG. 1. (a) The integrand of Eq. (9) as a function of e�. (b) The
normalized dn/d� distribution as a function of �. In both cases
�0 = −αyb.

Note that in 〈mT 〉 it is also implicit an averaging over
rapidity. For a discussion of this problem, see [16].

We can now estimate the asymptotic behavior of the
integrand of Eq. (9),

〈mT 〉
mb

F (η)N̄s n̄1 −→
yb→∞e−�̃0 , (15)

where �̃0 = −α̃yb with, for central collisions, i.e., F (η) →
1/η1/2,

α̃ = 3/2λ (Model I), (16)

and

α̃ = λ (Model II). (17)

It is clear, see Fig. 1(a), that conservation of energy requires

− �̃0 + �0 = 0 (18)

or α̃ = α. One further obtains

λ = 2/7 (Model I), (19)

λ = 1/3 (Model II). (20)

In order to arrive at the asymptotic behavior of dn/dy we
simply have to divide the integrand of Eq. (9) by 〈mT 〉/mb

(see Fig. 1(b)) to obtain

dn/dy ∼ e−�′
0 ∼ eα′yb , (21)

with, because of Eqs. (6) and (11),

α′ = λ = 2/7 (Model I), (22)

and

α′ = λ = 1/3 (Model II). (23)

The model (with two variations) that we have consid-
ered corresponds to a step function distribution: dn/d� ≡
e−�′

0 ,� � �0; dn/d� = 0,� > �0 (see Fig. 1(b)). It trivially
satisfies limiting fragmentation, Eq. (1), with f (�) ≡ 0.

III. GENERALIZING THE MODEL: THE FERMI
DISTRIBUTION

We shall now generalize the model by introducing the Fermi
distribution as a smoothing function:

2/Npartdn/d� = e−�′
0

e
�−�0

δ + 1
, (24)
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TABLE I. The parameters λ, α, and δ of Eq. (23), in the case of
Models I and II, and as obtained from PHOBOS data [2].

λ α δ

Model I 2/7 3/7 0
Model II 1/3 1/3 0

RHIC data [2]√
s = 19.6 GeV 0.26 ± 0.002 0.27 ± 0.03 0.65 ± 0.05√
s = 62.4 GeV 0.230 ± 0.008 0.23 ± 0.02 0.62 ± 0.07√
s = 130 GeV 0.249 ± 0.006 0.28 ± 0.02 0.67 ± 0.07√
s = 200 GeV 0.251 ± 0.005 0.29 ± 0.01 0.70 ± 0.06

Overall fit to
RHIC data

0.247 ± 0.003 0.269 ± 0.007 0.67 ± 0.03

with �′
0 = −λyb,�0 = −αyb and δ being a parameter. In

the limit δ → 0 we, of course, recover the step function. A
more physical argument for the Fermi distribution is based
on an evolution equation for the fast valence string in the
fragmentation region, with emissions of sea strings in the
midrapidity region [15].

In what follows we shall not distinguish between pseudo-
rapidity and rapidity. This ambiguity produces a difference in
midrapidity plots. However, as the mass of produced particles
is small (mostly pions) and as 〈pT 〉 in nuclear central collisions
is large, the error introduced is small.

In Table I we present the values of λ, α, and δ in the case
of Model I and Model II. We show as well the results for λ, α

and δ when fitting RHIC data for 2
Npart

dn/dy, with Eq. (23).
Our results are very similar to the fits of [17]. We note that the
experimental values for λ and α are not very different, as in
Model II. This means that the energy dependence of 〈mT 〉/mb

is weak.
In the table we have also included the values of λ, α,

and δ resulting from an overall fit to RHIC/PHOBOS data.
Note that our fit is reasonable. However, we have a flat
behavior as our curves approach midrapidity, while data
show a tendency to decrease, as typical of pseudorapidity
distributions.

In Fig. 2 we show our curves from the overall fit,
in comparison with data, and our prediction for LHC,
5500 GeV data. At midrapidity we expect dn/dy to be about
1500.

IV. THE QUESTION OF LIMITING FRAGMENTATION
AND CONCLUSIONS

We now come back to the question of limiting fragmenta-
tion. It is clear, from Fig. 2, that we do not have strict limiting
fragmentation in the �>∼ 0 region.

From Eq. (23) one sees that, for � 
 �0, limiting frag-
mentation simply means

2

Npart

dn

d�
∼ e−�/δ, (25)

FIG. 2. Overall fits to PHOBOS/RHIC central (0–6%) data using
Eq. (23)—see the table. The dotted-dashed line is a prediction for
LHC,

√
s = 5500 GeV, with error bars estimated from the errors of

the overall fit to the RHIC data.

which requires, for δ > 0, the limiting fragmentation condition
[see Eq. (23)]

− �′
0 + �0

δ
= 0, (26)

or

δ = �0/�
′
0 = α/λ. (27)

The fact that we do not have limiting fragmentation is
not our choice. The RHIC/PHOBOS data, fitted with the
parametrization (23), clearly shows that relation (26) is not
obeyed: α/λ>∼1 and δ � 2/3 < 1 (see the table). In these
circumstances, the limiting fragmentation behavior, as the
energy increases, tends to disappear (as seen in Fig. 2) and
the overall curve approaches the step function of Models I
and II.

In our estimates, we have assumed that at present energies
and for large number of participating nucleons, F (η) →
1/η1/2, Eq. (6), η being large enough and increasing with
energy and Npart, [10]. So we do expect changes in our
parameters in Eq. (23) when moving from central (Au-
Au, 0–6%) to peripherical (Au-Au, 35–45%) collisions.
Our parametrization for peripherical collisions gives λ =
0.228 ± 0.002, α = 0.235 ± 0.008, and δ = 0.90 ± 0.03, to
be compared with the values in the table, for central collisions.
At much higher energy we expect λ, α, and δ to approach
the central collision values and to become the same for all
centralities, as well as for pp collisions.

The parameter �0 = −αyb plays, in our model, the impor-
tant role of controlling the separation (sharply in Models I and
II) of the midrapidity dense central region—where percolation
dominates—from the fragmentation region where, in general,
the participating nucleons retain their individuality. The central
rapidity region �central = −αyb − (−yb) = (1 − α)yb grows
with the energy. But the fragmentation region, �f ragm. =
0 − (−αyb) = αyb also increases with the energy. This is not
the case of an extended plateau (Feynmann-Wilson plateau),
followed by a fixed rapidity length fragmentation region.
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We finally note that the experimental value found for λ, not
very different from the values of Model I and Model II, 0.25, is
consistent with values found for the intercept of the Pomeron
in color glass saturation models extended to AA scattering via
geometrical scaling [18].
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