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Rapidity-dependent spectra from a single-freeze-out model of relativistic heavy-ion collisions
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AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

Wojciech Broniowski†
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An extension of the single-freeze-out model with thermal and geometric parameters dependent on the spatial
rapidity, α‖, is used to describe the rapidity and transverse-momentum spectra of pions, kaons, protons, and
antiprotons measured at the Relativistic Heavy Ion Collider at

√
sNN = 200 GeV by the BRAHMS Collaboration.

THERMINATOR is used to perform the necessary simulation, which includes all resonance decays. The result of
the fit to the rapidity spectra in the range of the BRAHMS data is the expected growth of the baryon and strange
chemical potentials with the magnitude of α‖, whereas the freeze-out temperature is kept fixed. The value of
the baryon chemical potential at α‖ ∼ 3, which is the relevant region for particles detected at the BRAHMS
forward rapidity y ∼ 3, is about 200 GeV, i.e., lies in the range of the values obtained for the highest SPS energy.
The chosen geometry of the fireball has a decreasing transverse size as the magnitude of α‖ is increased, which
also corresponds to decreasing transverse flow. This feature is verified by reproducing the transverse momentum
spectra of pions and kaons at various rapidities. The strange chemical potential obtained from the fit to the
K+/K− ratio is such that the local strangeness density in the fireball is compatible with zero. The resulting
rapidity spectra of net protons are described qualitatively in the model. As a result of the study, the knowledge
of the “topography” of the fireball is achieved, making other calculations possible. As an example, we give
predictions for the rapidity spectra of hyperons.
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I. INTRODUCTION

The study of particle abundances has been a major source
of information concerning heavy-ion collisions. In fact, the
agreement of the particle ratios with simple predictions of
statistical models is a key argument for thermalization of the
formed system [1–4]. Up to now the numerous studies of the
particle ratios [5–23] were falling into two basic categories:
the so-called 4π studies at low energies (SIS, AGS) and
the studies at midrapidity for approximately boost-invariant
systems at highest energies (Relativistic Heavy Ion Collider
(RHIC)). The 4π studies involve three-momentum integrals
of the statistical distribution functions, with the multiplicity of
species i given by Ni = V

∫
d3pfi(

√
m2

i + p2 ), thus providing
information on volume-averaged thermal parameters of the
system in a very simple way. The inclusion of resonance
decays [24–26], crucial for the success of the approach, is also
straightforward, because the detection of the products with
full angular coverage is insensitive to the decay kinematics or
flow effects; once the resonance has decayed, its products are
registered. The other simple situation arises when the system
is nearly boost invariant. To a sufficiently good accuracy this
is the case at midrapidity for the RHIC energies, where the
particle yields dN/dy change only by a few percentages in
the rapidity window |y| < 1. The assumption of the boost
invariance of the fireball leads again to very simple formulas.
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Although the particles detected at midrapidity are collected
from various parts of the fireball, not only from the very central
region, their ratios are the same as in the 4π calculation. This is
because for dNi/dy = ∫

d2p⊥d3Ni/(d2p⊥dy) we have from
the boost invariance [27]

dNi/dy

dNj/dy
=

∫
dy dNi/dy∫
dy dNj/dy

= Ni

Nj

. (1)

This obvious general formula finds an explicit manifestation
in specific boost-invariant models. The result also holds when
resonance decays are included; see Ref. [28] for a derivation
in the framework of the Cooper-Frye [29] formalism.

When the system is not boost invariant [30,31] the above
simplifications no longer hold. The situation is illustrated
in Fig. 1. Particles detected at a given pseudorapidity η

(parallel lines in the figure) originate from different pieces
of the fireball (gray blobs). Thermal conditions (temperature,
chemical potentials, flow) change from piece to piece, which
must be properly included. In addition, the effects of the
longitudinal flow (indicated by arrows) must be incorporated,
and the kinematics of resonance decays (dashed lines) becomes
relevant. Although the resulting formalism for particle spectra
remains conceptually simple and is based on the standard
Cooper-Frye treatment, the calculation is no longer semian-
alytic and a full-fledged simulation is necessary to accomplish
the goal.

In the analysis of this article we use THERMINATOR—the
THERMal heavy IoN generATOR [32]—to generate the
Monte Carlo events in a suitably modified single-freeze-out
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FIG. 1. (Color online) Emission of particles from a boost-
noninvariant fireball. The horizontal (vertical) axis indicates longitu-
dinal coordinate z (transverse coordinate ρ). Particles emitted with
the same value of pseudorapidity η originate from different regions
of the fireball indicated by the gray blobs (they also are emitted
at different times). The thermal conditions and flow (indicated by
arrows) in these regions are different. The solid lines indicate tracks
of primordial particles, whereas the dashed lines show products of
resonance decays. The dashed ellipse indicates the relevant region for
a give η, which spans about two units of the spatial rapidity α‖.

model of Ref. [27]. The extension to the boost-noninvariant
case consists of two basic elements. The first one (geometric)
is the choice of the shape of the freeze-out hypersurface �

and collective expansion. The other one incorporates the de-
pendence of the thermal parameters on the position within the
hypersurface �. Specifically, in our treatment the transverse
size and the chemical potentials depend on the spatial rapidity
α‖ = arctanh(z/t), where z and t are the longitudinal and
time coordinates on the freeze-out hypersurface. Although
the boost-noninvariant model has quite a few parameters, as
listed at the end of Sec. II, they can be fitted independently
to various combinations of the data, leaving little freedom.
For instance, the α‖ dependence of the baryon and strange
chemical potentials is fixed with the ratios of protons to
antiprotons and K+ to K−. The result in the range of the
BRAHMS data is the expected growth of the baryon and
strange chemical potentials with |α‖|. The value of the baryon
chemical potential µB at α‖ ∼ 3, which is the relevant region
for particles detected at the BRAHMS forward rapidity, y ∼ 3,
is about 200 GeV. This value is in the range of the values
of the thermal fits for the highest SPS energy, thus we
confirm the recent findings by Roehrich [33] that the thermal
conditions at RHIC at forward rapidities, y ∼ 3, correspond
to the SPS conditions at midrapidity. Details of our procedure
of determining the dependence of thermal parameters on α‖
are explained in Sec. III. Our strategy, as usual, is to fix
the features of the fireball with the well-measured spectra of
particles: pions, kaons, protons, and antiprotons. The strange
chemical potential obtained from the fit to the K+/K− ratio
is such that the local strangeness density on the freeze-out
hypersurface � is compatible with zero. The experimental
[34] rapidity spectra of net protons, p − p̄, are reproduced

qualitatively in the model, displaying the correct shape but
overshooting the data at larger rapidities by about 50%. The
chosen geometry of the fireball incorporates a decreasing
transverse size as |α‖| is increased, which simultaneously
results in a decreasing transverse flow. This choice is verified
in Sec. III by reproducing the spectra d2N/(2πpT dpT dy) at
a fixed y of pions and kaons at

√
sNN = 200 GeV from the

BRAHMS Collaboration [35]. These transverse-momentum
spectra exhibit slopes that become steeper with rapidity.

As a result of our study, we obtain the “topography” of
the fireball, which can be the ground for other more detailed
studies, discussed under Conclusion.

II. THE SINGLE FREEZE-OUT MODEL

The single-freeze-out model is described in detail in
Refs. [27,28,36]. Here we review the main assumptions and
the formalism of describing the expansion and particle decays.

(i) At a certain stage of evolution of the fireball the thermal
equilibrium between hadrons is reached. Most proba-
bly, hadrons are “born” already in such an equilibrated
state. The local particle phase-space densities have the
form of the Fermi-Dirac or Bose-Einstein statistical
distributions. The particles generated at freeze-out are
termed primordial. For simplicity of the model we do
not include the γ nonequilibrium factors of Ref. [37]
used in several recent analyses [18,20,21].

(ii) The thermodynamic parameters are the freeze-out
temperature T and three chemical potentials: baryon,
µB , strange, µS , and µI3 , related to the third component
of isospin. In a boost-noninvariant model the values
of these parameters depend on the position within the
freeze-out hypersurface �.

(iii) In the boost-noninvariant model the shape of the fireball
is nontrivial in the longitudinal direction. In this article
we retain the azimuthal symmetry.

(iv) The velocity field of the collective expansion is chosen
in the form of the Hubble flow [38], providing the
longitudinal and transverse flow to the system. Again, in
the boost-noninvariant model the functional form of the
velocity field may depend on the longitudinal position.

(v) The evolution after freeze-out consists solely of free
streaming and the decays of resonances, which may
proceed in cascades. All resonances from the Particle
Data Tables [39] are incorporated.

(vi) Elastic rescattering among particles after the chemical
freeze-out is ignored and the model may be viewed as
an approximation to a more detailed evolution, taking
into account different time scales for various hadronic
processes [40–45].

The single freeze-out concept complies to the explosive sce-
nario at RHIC [14]. Moreover, the approach reproduces very
efficiently the particle abundances, the transverse-momentum
spectra, including particles with strangeness [36], produces
very reasonable results for the resonance production [46],
the charge balance functions in rapidity [47], the elliptic
flow [48], the HBT radii [49], and the transverse energy
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[50–52]. Recently, with the help of RQMD [53], Nonaka
and Bass have found (cf. Figs. 16 and 17 of Ref. [54]) that
the elastic rescattering effects are not very significant for the
midrapidity pT spectra of pions and kaons, where the changes
are at the level of 10–20% (contrary, according to Ref. [54]
hadronic rescattering is important for protons and multistrange
baryons). One can argue in favor of the single-freeze-out sce-
nario as follows: resonance decays “cool” the spectra [27]. As
the result, the original ∼165-MeV spectra from the chemical
freeze-out look, after feeding from resonances, approximately
as ∼130-MeV spectra, which would be obtained at the lower
temperature of the thermal freeze-out. Thus elastic rescattering
becomes innocuous. Certainly, more studies are desirable here,
in particular an “afterburner” performing elastic rescattering
could be run on top of our simulation. It would help to achieve
a more accurate collision picture, with the elastic rescattering
processes taken fully into account.

Popular choices of the freeze-out hypersurface and the
collective velocity field are discussed in detail in Ref. [55]. In
this work we modify in a very simple way the original boost-
invariant single-freeze-out model of Ref. [27,28,36] by making
the transverse size of the fireball dependent on the spatial
rapidity. We use the freeze-out hypersurface parametrized as

xµ =




t

x

y

z


 =




τcosh α⊥cosh α‖
τ sinh α⊥ cos φ

τ sinh α⊥ sin φ

τcosh α⊥sinh α‖


 . (2)

The parameter α‖ is the spatial rapidity, whereas α⊥ is related
to the transverse radius as

ρ =
√

x2 + y2 = τ sinh α⊥. (3)

The four-velocity field is chosen to follow the Hubble law

uµ = xµ/τ. (4)

We note that the longitudinal flow is vz = tanh α‖ = z/t (as
in the one-dimensional Bjorken model [56]), whereas the
transverse flow (at z = 0) has the form vρ = tanh α⊥.

The new element of the parametrization of this article,
which implements the departure from boost invariance, is the
selection of boundaries for the fireball. In the boost invariant
model ρ was limited by the space-independent parameter ρmax,
or 0 � α⊥ � αmax

⊥ . Now we take

0 � α⊥ � αmax
⊥ (α‖) ≡ αmax

⊥ (0) exp

(
− α2

‖
2	2

)
. (5)

The interpretation of this formula is clear: as we depart from
the center by increasing |α‖|, we simultaneously reduce α⊥,
or ρmax. The rate of this reduction is controlled by a new
model parameter, 	. Because in our model the flow is linked
to the position via Eq. (4), we also have less transverse flow
as we increase |α‖|. This feature will show in the pT spectra
presented in Sec. III. We may also use more conveniently the
parameter

ρ(0)
max = sinh αmax

⊥ (0). (6)

Thus the geometry and expansion of the fireball is described
by three parameters: τ, ρ(0)

max, and 	.

With the standard parametrization of the particle four-
momentum in terms of rapidity y and the transverse mass
m⊥,

pµ = (m⊥coshy, p⊥ cos ϕ, p⊥ sin ϕ,m⊥sinhy) , (7)

we find with Eqs. (2) and (4)

p · u= m⊥cosh(α⊥)cosh(α‖ − y) − p⊥sinh(α⊥) cos(φ − ϕ),

(8)

and

d3� · p = dα‖dφρdρ × [m⊥
√

τ 2 + ρ2cosh (α‖ − y)

−p⊥ρ cos(φ − ϕ)]

= τ 3dα‖dφ sinh α⊥ dα⊥p · u, (9)

where d3�µ is the volume element of the hypersurface.
With the assumed azimuthal symmetry the Cooper-Frye
[29] formalism then yields the following expression for the
momentum density of a given species of primordial particles:

d2N

2πpT dpT dy
= τ 3

∫ ∞

−∞
dα‖

∫ αmax
⊥ (α‖)

0
dα⊥

∫ 2π

0
dφ

×p · uf (βp · u − βµ(α‖)), (10)

f (z) = 1

(2π )3

1

exp z ± 1
,

where p · u from Eq. (8) is taken at ϕ = 0, f (z) is the statistical
distribution function (with + for fermions and − for bosons),
β = 1/T , and

µ(α‖) = BµB(α‖) + SµS(α‖) + I3µI3 (α‖), (11)

with B, S, and I3 denoting the baryon number, strangeness, and
the third component of isospin of the particle. Thus we admit
the dependence of chemical potentials on the spatial rapidity.
This is of course necessary if we wish to describe in the
framework of a statistical model the increasing density of net
protons as we move from midrapidity toward the fragmentation
region.

The temperature T also in general depends on α‖. The best
model-building strategy here would be to use the universal
Cleymans-Redlich chemical freeze-out curve [12] in the µB-T
space (for a recent status see Ref. [18,57]). That way the
functional dependence of µB on α‖ induces unambiguously
the dependence of T on α‖. In this work, however, we
apply the model for not too large values of the rapidity,
|y| � 3.3, and it will turn out that the obtained values for µB

are less than ∼250 MeV. From µB = 0 to µB = 250 MeV the
universal freeze-out curve gives a practically constant value
of T . For instance, at SPS (Pb + Pb,

√
sNN = 17GeV) one

has [16]T = 164 MeV, µB = 229 MeV, µS = 54 MeV, and
µI3 = −7 MeV, with the value of T equal within errors to the
RHIC value of 165 MeV. For this reason in the present analysis
we fix the freeze-out temperature at a constant (independent
of the spatial rapidity) value,

T = 165 MeV. (12)

If modeling were made for larger values of the rapidity and/or
lower collision energies, the dependence of T on α‖ should
be incorporated according to the prescription based on the
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universal freeze-out curve. Eventually, we expect that when
the fragmentation region is approached, T becomes very small
and µB reaches the value of the order of 1 GeV.

Another qualitative argument for the approximate con-
stancy of T at moderate values of |α‖| may be inferred directly
from the BRAHMS data. From the measured rapidity spectra
(cf. Fig. 5), obviously, the yields of pions and kaons decrease
with y. Thus, one needs to decrease the size of the emitting
source, decrease the freeze-out temperature, or both. The
decrease of temperature affects more strongly the particles
with larger masses, because the thermal factor is approximately
exp(−

√
m2 + �p2

/T ). Therefore, if we introduced variation of
the temperature with the spatial rapidity, it would result in
a faster drop with y of the pion yields compared to the
kaons. Certainly the data excludes this situation, because the
ratio of dNπ/dy to dNK/dy is, within a few percentages,
independent of y in the BRAHMS rapidity coverage. Therefore
we must keep T constant (within a few percentages), and
the remaining possibility is the decrease of the source size
with |α‖|. Resonance decays complicate the above qualitative
argument, but with the help of a numerical simulation we
confirm it. Another way of providing the drop of yields with
rapidity is to incorporate the γ nonequilibrium factors [37]
dependent on α‖, which may dilute the system as |α‖| increases.
We do not explore this possibility here.

For convenience, we parametrize functionally the depen-
dence of the chemical potentials at low values of |α‖| as
follows:

µi(α‖) = µi(0)[1 + Aiα
2.4
‖ ], i = B, S, I3. (13)

The chosen power of 2.4 works somewhat better than 2. Of
course, any convenient and sufficiently rich parametric form is
admissible here, as it is fitted to the data (see Sec. III) and the
introduced parameters effectively are not free. By “low” |α‖|
we mean the values relevant to the BRAHMS data, covering
|y| � 3.3.

Formula (10) provides the spectra of the primordial par-
ticles. The following evolution of the system consists of
free streaming, with resonances decaying into the daughter
particles. We use THERMINATOR to perform the simulation. The
code incorporates all the ∗∗∗∗ and ∗∗∗ resonances. Following
the scheme of SHARE [58] it excludes all ∗ resonances, and
practically all ∗∗ resonances listed in the Particle Data Tables
[39]. Each resonance decays at the time controlled by its
lifetime, 1/�. In the resonance’s rest frame the decay at time t

occurs with the probability density � exp(−�t). The two-body
or three-body decay channels are incorporated and the values
of the branching ratios are taken from the Particle Data Tables.
Heavy resonances may of course decay in cascades.

Let us summarize the model parameters. We have the
universal freeze-out-temperature T , three chemical potentials
at midrapidity, µB(0), µS(0), µI3 (0), three parameters AB,AS ,
and AI3 of Eq. (13) describing the dependence of the
chemical potentials on the spatial rapidity, and three geom-
etry/expansion parameters: the proper time τ , the transverse
size at midrapidity, ρ(0)

max, and the parameter 	 controlling the
spatial rapidity dependence of the transverse size. Except for
T taken to have the value (12) obtained in earlier thermal

analyses of particle ratios [27], the remaining parameters are
fitted to the BRAHMS data [34,35] for the double differential
spectra d2N/(2πpT dpT dy).

III. RESULTS

We first describe our fitting strategy, which with many
parameters present must be done with care. We wish to have a
good starting point for the parameters describing the chemical
potentials. Practice shows that to a very good approximation
the statistical distributions are very well approximated by the
Boltzmann factors. Then the integrand of Eq. (10) contains the
factor exp[−βm⊥cosh(α⊥)sinh(α‖ − y) + βµ(α‖)]. Because
of this the relevant integration range in α‖ is sharply peaked
around α‖ 	 y (the half-width is about one unit of α‖)
and the chemical potentials entering the formula are taken
approximately at µi(α‖) 	 µi(y). Thus the factors exp[βµ(y)]
can be taken in front of the integration. If it were not for the
resonance decays which modify the result (and are included in
the full simulation) we would have to a good approximation
the following relations:

p

p̄
	 exp(2βµB ),

K+

K− 	 exp(2βµS), (approximate formulas) (14)

π+

π− 	 exp(2βµI3 ).

The symbols on the left-hand side denote the ratios of yields
of the specified particles at a fixed y and integrated over pT .
These are known form the data, thus we can invert

µB(y) = 1
2T log(p/p̄), (approximate formula) (15)

and so on. With the help of this form we set the starting values
of the parameters µi(0) and Ai , which are then iterated. The
iteration proceeds as follows: for a given set of parameters we
run the full THERMINATOR simulation, which generates events.
We first optimize the baryon-number parameters µB(0) and
AB with the help of the ratio of the p and p̄ rapidity spectra,
then the strangeness parameters µS(0) and AS using the K+
to K− ratio, then we go back again to the baryon parameters,
etc., and loop until a fixed is reached. The isospin parameters
µI3 (0) and AI3 are consistent with zero and thus irrelevant. The
	 parameter is fixed with the pion rapidity spectra dNπ±/dy.
The optimum value is

	 = 3.33. (16)

The result of our optimization for the chemical potentials
is shown in Fig. 2. The optimum parameters are

µB(0) = 19 MeV, µS(0) = 4.8 MeV,
(17)

µI3 (0) = −1 MeV, AB = 0.65, AS = 0.70, AI3 = 0.

We observe the expected behavior for the baryon chemical
potential, which increases with |α‖|. The value at the origin is
19 MeV, somewhat lower than the earlier midrapidity fits made
in boost-invariant models in Refs. [15,27], yielding 26 MeV.
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The lower value in our case is well understood. The previous
midrapidity fits include the data in the range |y| � 1. This
range collects the particles emitted from the fireball at |α‖| � 2,
hence the value of µB in the previous midrapidity fits is an
average of our µB(α‖) over the range, approximately, |α‖| � 2,
with some weight proportional to the particle abundance. This
qualitatively explains the effect of a lower value of our µB(0)
than in the boost-invariant models. A similar effect occurs for
µS . We do not incorporate corrections for the feed-down from
weak decays (em i.e., all decays are included), because this is
the policy of Ref. [34] for the treatment of p and p̄.

We note that at α‖ = 3 the value of µB is 200 MeV,
more than 10 times larger than at the origin. This value is
comparable to the highest-energy SPS fit (

√
sNN = 17 GeV),

where µB 	 230 MeV. The behavior of the strange chemical
potential is qualitatively similar. It also increases with |α‖|,
growing form 5 MeV at the origin to 50 MeV at α‖ = 3. The
ratio µB(α‖)/µS(α‖) is very close to a constant, 	 4–3.5, as
can be seen in the bottom panel of Fig. 2.

The points in the top panel of Fig. 2 show the result of the
naive calculation of Eqs. (14) amd (15). We note that these
points are very close (in particular for the strangeness case)
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FIG. 2. (Color online) (Top) The model baryon and strange
chemical potentials plotted as functions of the spatial rapidity.
Parameters of Eq. (13) are obtained from the fit to the BRAHMS data
[34,35]. The points represent a naive calculation based of Eq. (15).
(Bottom) The ratio of the baryon to strange chemical potentials,
µB/µS .

FIG. 3. (Color online) Comparison of the strange chemical
potential obtained from the fit to the data (solid line) and from the
condition of zero local strangeness density, ρS = 0 (dashed line).

to the result of the full-fledged fit of our model. This is of
practical significance, because the application of Eqs. (14)
and (15) involves no effort, whereas the model calculation
incorporating resonance decays, flow, etc., is costly.

There is another important point. In thermal models one
may obtain the local value of the strange chemical potential,
µS , at a given µB with the condition of the vanishing
strangeness density, ρS = 0. The result is shown in Fig. 3,
where we compare the strange chemical potential obtained
from the fit to the data (solid line) and from the condition
of zero local strangeness density at a given µB(α‖). The two
curves turn out to be virtually the same. This shows that the
net strangeness density in our fireball is, within uncertainties
of parameters, compatible with 0. This is not obvious from
the outset, as the condition of zero strangeness density is
not assumed in our fitting procedure. Although this feature
is natural in particle production mechanisms, in principle only
the total strangeness, integrated over the whole fireball, must
be initially zero. Variation of the strangeness density with α‖
is admissible, but turns out not to occur.

Figure 4 shows the quality of our fit for the parameters of
chemical potentials, Eq. (17). We show the measured ratios of
p/p̄,K+/K−, and π+/π− as a function of rapidity y [34,35]
and the results of fit made with help of the simulation with
THERMINATOR. We note a very reasonable agreement. The
error bars on the model points are statistical errors due to the
finite size of the sample (we use 2500 simulated events in this
plot). The flat character of the π+/π− ratio indicates that the
value of the isospin chemical potential is consistent with zero
at all spatial rapidity values.

In Fig. 5 we show the comparison of obtained rapidity
spectra of π+,K+, and K− to the experimental data. The
experimental yields for the pions are corrected for the feed-
down from the weak decays as described in Ref. [35]. For
that reason for the case of π+ we give the model predictions
with the full feeding from the weak decays (solid line) and
with no feeding from the weak decays at all (dashed line). We
note a quite good quantitative agreement, with the data falling
between the two extreme cases. We recall that the behavior on
rapidity of dN/dy is controlled by the 	 parameter of Eq. (5).
The spectra of π− are not shown, since they are practically
equal to the case of π+. The spectra of K+ and K− are also
quite well reproduced.

Figure 6 displays the rapidity spectra of protons and
antiprotons, as well as their difference p − p̄, i.e. the net
protons. Because the p and p̄ data carry no feed-down
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FIG. 4. (Color online) Dependence of particle ratios on rapidity:
(top) – p/p̄; (middle) – K+/K−; (bottom) – π+/π−. The open
triangles are the Brahms data [34,35], whereas the filled circles show
the result of the model simulation with THERMINATOR. The model
parameters are given in Eq. (17). The data for p and p̄ are not corrected
for the feed-down from weak decays [34].

corrections for weak decays [34], one should compare the
solid lines to the data. The shape of the p and p̄ spectra
is properly reproduced, but the model overshoots the data
by about 50%. This feature occurs at all rapidities, also at
midrapidity. The mismatch could be improved by decreasing
T by a few percentages and redoing the whole analysis, but we
do not take the effort here, holding to the value (12) obtained
from global fits to all RHIC data for the particle yields at
midrapidity. We provide, however, the results of the model
calculation with no feeding from the hyperon decays, since
it provides some measure of the systematic uncertainties in
determining the proton and antiproton yields.

We see from the bottom panel of Fig. 6 that the qualitative
growing of the net-proton spectrum with y is obtained. Note
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FIG. 5. (Color online) Rapidity spectra of π+,K+, and K−. The
data points come from the BRAHMS Collaboration [34,35] (circles-
π+, squares-K+, triangles-K−), whereas the histogram lines show the
result of the model simulation with THERMINATOR. For π+ the solid
(dashed) line corresponds to the full feeding (no feeding) from the
weak hyperon decays. The model parameters are from Eq. (17). The
experimental pion yields are corrected for weak decays as described
in Ref. [35].
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FIG. 6. (Color online) (Top) The rapidity spectra of p and p̄.
(Bottom) Spectrum of net protons, p − p̄. The data points come
from the BRAHMS Collaboration [34,35], whereas the solid (dashed)
histogram lines show the result of the model simulation with
THERMINATOR with full feeding (no feeding) from the weak hyperon
decays. Data points should be compared to the model with full feeding
(solid lines). The model parameters are from Eq. (17).
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FIG. 7. (Color online) The pT spectra of
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The data points come from Ref. [35], whereas
the histogram lines show the result of the model
simulation with THERMINATOR.

that predictive power is left for this observable, as only the
ratio p̄/p is used to fit µB at each value of y. Another
combination, such as, e.g., p − p̄, is left as a prediction. The
growth has a simple explanation on the ground of our statistical

model, because approximately p − p̄ ∼ sinh(µB(y)/T ) times
the y-dependent source function, see Eq. (10). The observed
increase with y is driven by the growth of µB(y) which
overcomes the decrease caused by the reduceded size of the
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FIG. 8. (Color online) The proton, antipro-
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source function. Thus at RHIC the proton and antiproton
spectra may be qualitatively, but not quantitavely, explained on
the ground of our statistical approach. It is not clear what the
origin of the discrepancy is. We recall that also at midrapidity
the single-freeze-out model has not reproduced the p and p̄ pT

spectra very accurately [59], only within 30–50% at low pT

(note, however, that the differences in the measurements for
protons and antiprotons by various RHIC Collaborations are at
the same level, as compared in the compilation of Ref. [60]).
Rescattering of p and p̄, found important in Ref. [54] and
absent in our approach, is an obvious suspect. However, at
the same time the single-freeze-out model reproduces very
accurately the hyperon pT spectra [36], indicating no need
for rescattering in this case. More investigations to clarify
the issue can be carried out with the help of abundant
rapidity-dependence data for various particles from the NA49
Collaboration at SPS.

Figure 7 shows the pT spectra at subsequent rapidity bins
of the BRAHMS experiment. From top to bottom we have
for pions y ∈ [-0.1,0.0], [0.0,0.1],[0.4,0.6], [0.6,0.8], [0.8,1.0],
[1.0,1.2], [1.2,1.4], [2.1,2.3], [2.4,2.6], [3.0,3.1], [3.1,3.2],
[3.2,3.3], [3.3,3.4], [3.4,3.66], and for kaons y ∈ [−0.1,0.0],
[0.0,0.1] ,[0.4,0.6], [0.6,0.8], [0.8,1.0], [1.0,1.2], [2.0,2.2],
[2.3,2.5] , [2.9,3.0], [3.0,3.1], [3.1,3.2], and [3.2, 3.4]. Each
lower curve is subsequently divided by the factor of 2 to avoid
overlapping. The solid lines show the model calculation with
optimum parameters (17). We note that the basic features of
the experiment are reproduced, with the slope increasing with
y. This can be explained with a lower transverse flow at larger
y, as enforced by the parametrization (5). The quality of the
agreement is similar in all rapidity bins. In Fig. 8 we give the
similar study for the protons and antiprotons. The data points
come from the BRAHMS Collaboration [34] and contain
no weak-decay corrections, hence the solid lines should be
compared to the data. Nevertheless, as in Fig. 6, we also present
the calculation with feed-down from the weak decays switched
off, as it provides a measure of systematic uncertainties. It
should also be kept in mind that these uncertainties are quite
large for the pT spectra of p and p̄, as can be inferred from the
comparison of results of various experimental Collaborations
at RHIC (cf. for instance Fig. 12 of Ref. [60]).

At this point we have accomplished the goal of fixing the
“fireball topography”: we have the geometry/flow as well as
thermal parameters dependent on the variable α‖. Next, we

may proceed as in the case of the boost-invariant model used
at midrapidity, and compute many observables in addition to
those already used up to fix the model parameters. These
observables include one-body observables, such as spectra
of various particles, including hyperons, mesonic resonances,
etc., as well as two-body observables related to correlations:
HBT radii, balance functions in rapidity, or event-by-event
fluctuations. Here we only present a sample prediction for
rapidity spectra of hyperons, shown in Fig. 9. An interesting
feature is the very small splitting of � and �̄, which results
from the fact that µB − 3µS 	 0, cf. Fig. 2.

IV. CONCLUSION

The article contains results of the single-freeze-out-thermal
model for rapidity-dependent spectra in relativistic heavy-ion
collisions. We have used THERMINATOR to run the simula-
tions and the BRAHMS data for

√
sNN = 200 GeV Au+Au

collisions to fix the model parameters. Such a simulation is
necessary when the system is not boost invariant. It allows
for an exact incorporation of the space-time dependence of
thermal parameters, precise inclusion of resonance decays, as
well as incorporation of experimental cuts. The extension of
the original boost-invariant single-freeze-out model includes a
modification of the shape of the fireball, which here becomes
narrower as the magnitude of the spatial rapidity α‖ increases,
as well as admits the dependence of the thermal parameters
on α‖. As a result of a fit to the BRAHMS data we have
obtained the dependence of the freeze-out chemical potentials
on α‖. The freeze-out temperature is taken constant in the
considered range of rapidities. With this extension we are able
to properly describe the double d2N/(2πpT dpT dy) spectra
from the experiment. We also make predictions for other
particles, in particular for hyperons.

A code incorporating the elastic collisions neglected in the
single-freeze-out approach could be used as an “afterburner”
starting from our freeze-out condition. That way a more
accurate collision picture could be achieved. As we have
already mentioned, a recent study of Ref. [54] revealed that
for the midrapidity pT spectra the elastic rescattering is not
very important.

Certainly, the scheme of this article can be used for other
collisions where departures from the boost invariance are
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significant, in particular for the rich SPS data. As we have
said, the modeling involves the choice of the parametrization
for the shape of the fireball and the velocity field of flow, where
in fact we have quite a lot of freedom, as well as the dependence
of the thermal parameters at freeze-out on the space-time
position. Accurate data for numerous observables as functions
of the rapidity, not only abundances and spectra but also the
correlation data (HBT radii, balance functions), would greatly
help to constrain the freedom and acquire insight into the
space-time evolution picture of boost-noninvariant systems
formed in relativistic heavy-ion collisions. Most importantly,
the knowledge of the dependence of Rside on y would put
constraints on the shape of the fireball.

Here are the main results of the article:

(i) Naive extraction of the baryon and strange chemical
potentials from ratios of p/p̄ and K+/K− works
surprisingly well, as shown in the comparison to the
full calculation in Fig. 2.

(ii) The baryon and strange chemical potentials grow with
α⊥, reaching at y ∼ 3 values close to those of the
highest SPS energies of

√
sNN = 17 GeV. This agrees

with the recent conclusions of Roehrich [33].
(iii) At midrapidity the values of the chemical potentials

are even lower than derived from the previous thermal
fits to the data for |y| � 1, with our values taking
µB(0) = 19 MeV and µS(0) = 5 MeV. The reason for
this effect is that the particle with |y| � 1 originate from
a region |α‖| � 2, and on the average the effective values
of chemical potentials are larger compared to the values
at the very origin (cf. Fig. 2).

(iv) The local strangeness density of the fireball is compat-
ible with zero at all values of α‖. Although this feature
is natural in particle production mechanisms, here it

has been obtained independently just from fitting the
chemical potentials to data.

(v) The ratio of the baryon to strange chemical potentials
varies very weakly with rapidity, ranging from ∼4 at
midrapidity to ∼3.5 at larger rapidities.

(vi) The d2N/(2πp⊥dp⊥dy) spectra of pions and kaons
are well reproduced, supporting our hypothesis for the
shape of the fireball in the longitudinal direction.

(vii) The rapidity shape of the spectra of protons and
antiprotons measured by BRAHMS [34] is described
properly, while the model predicts a too large normal-
ization, overproducing these particles by about 50%.
This suggests a lower value of T by a few percent, or
presence of nonequilibrium factors, not considered in
this study. The effects of particle rescattering should
also be considered, as inferred from Ref. [54]. We
also note that the feature of an increasing yield
of the net protons with rapidity is obtained natu-
rally, explaining qualitatively but not quantitavely the
shape of the rapidity dependence on purely statistical
grounds.

More studies along the lines shown in this article, in
particular at the lower SPS energies where abundant data are
available for the rapidity and pt spectra of various particles,
will help to place bounds on the accuracy of the single-freeze-
out approximation.
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