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Nucleon direct-semidirect radiative capture with Skyrme-Hartree-Fock-BCS bound states
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The nucleon direct-semidirect (DSD) capture cross sections are obtained by calculating a transition amplitude
to the Hartree-Fock-BCS bound states. The radial matrix elements in the DSD amplitudes are calculated from
the radial part of the single-particle wave functions. For deformed nuclei the single-particle states are expanded
in the cylindrical harmonic-oscillator basis and then projected on the spherical harmonic-oscillator basis. The
pairing correlations are treated in the BCS approach and the calculated spectroscopic factors are in fairly good
agreement with experimental data in the even tin isotopes from 116Sn to 124Sn. The resulting DSD cross sections
for the neutron capture by 208Pb and 238U are found to be in good agreement with the available experimental data.
The calculations are also performed for the neutron capture on 122Sn and 132Sn isotopes that are important for the
r-process in astrophysics.
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I. INTRODUCTION

The nucleon radiative capture is one of the most important
processes for nucleosynthesis calculations in astrophysics. The
energy range of interest for the neutron capture process in
astrophysical applications depends on the temperature of the
Maxwell-Boltzmann velocity distribution [1]. Neutron capture
cross sections of up to several MeV may meet astrophysical
conditions in many cases. In this energy region, the statistical
Hauser-Feshbach model with width fluctuation correction is
known to be applicable [2] to calculate the astrophysical
nuclear reaction rates, and extensive studies have been made
(see Ref. [3], for example).

In compound nuclear reactions, the capture cross sections
become very small when neutron inelastic channels open,
because the neutron width �n becomes much larger than the
γ -ray width �γ . For incident nucleon energies above 5 MeV
or so, the capture process can be mainly described by the
direct-semidirect (DSD) mechanism [4–7]. In this mechanism,
the incident particle is captured directly in an unoccupied
bound state (direct), or it excites a collective (giant dipole
resonance) state and then is scattered into a bound state
(semidirect). Within the perturbation theory, the transition
probabilities of these processes involve radial wave functions
and spectroscopic factors of the final states. The radial part of
the wave function is often calculated with a single-particle
model assuming that the potential has a spherical Woods-
Saxon shape and the experimental spectroscopic factors S are
used if available.

For astrophysical calculations, the experimental informa-
tion on nuclear structure for unstable nuclei is often uncertain
or unavailable. Therefore we have to estimate model parame-
ters in a reasonable way to calculate the DSD cross section. For
example, Goriely [8] estimated an energy-independent average
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value for C2S (C being a coupling constant) from experimental
spectroscopic factors for many nuclei.

In the present study, we apply the Hartree-Fock-BCS
(HFBCS) model to determine the radial wave functions of the
single-particle bound states and their associated occupation
probabilities. We choose here the Skyrme interaction in the
mean-field channel in two different parametrizations and the
traditionally associated pairing interaction. Within the HFBCS
approximation the spectroscopic factors are connected with
the occupation probabilities for each single-particle orbit in
a simple way [9,10]. The main interest of considering the
HFBCS approach to nuclear structure here is that we can
describe the ground-state properties of spherical as well
as deformed nuclei (with axial symmetry assumed) in a
predictive manner. Here we restrict ourselves to even-even
targets. It is worth mentioning that one could also calculate
the single-particle wave functions and occupancies within a
microscopic-macroscopic approach where the single-particle
potential is prescribed for a given nuclear shape [11].

The present article is organized as follows. After a brief
description in Sec. II of the formalisms used to implement
the DSD mechanism and to calculate the relevant nuclear
structure properties in the HFBCS model, we present and
discuss the results for the bound-state properties and the
neutron capture cross sections for 208Pb, 238U, and 122,132Sn in
Sec. III. Finally we draw the main conclusions of this study in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Direct-semidirect cross section

The DSD model for nucleon capture initially proposed
by Brown [4] and Clement, Lane, and Rook [5] was later
on extended to deformed nuclei by Boisson and Jang [12].
The procedure outlined by Boisson-Jang was then followed
by several studies [13–15] to reproduce experimental capture
cross sections for deformed nuclei. We recall it below to
establish our notation.
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Let us consider an incident nucleon with wave number kn

and orbital and total angular momenta L and J , respectively.
We denote by RLJ(r) the radial part of its distorted wave
function calculated within the optical model. This nucleon
is captured by an even-even target initially in its ground state
(initial spin 0) and scattered into a bound state |k〉. With the
assumption of axial symmetry for the deformed target, the
single-particle |k〉 is an eigenstate of Jz, the projection on
the symmetry axis of the angular momentum operator J2.
The associated eigenvalue is denoted by K . The deformed
single-particle state |k〉 is a superposition of eigenstates of
the orbital and total angular momentum operators L2 and J2,
respectively:

|k〉 =
∑
l,j

C
(k)
lj |ljK〉, (1)

with

L2|ljK〉 = l(l + 1)h̄2|ljK〉, (2)

J2|ljK〉 = j (j + 1)h̄2|ljK〉, (3)

Jz|ljK〉 = Kh̄|ljK〉, (4)

and j = l ± 1
2 . In the notation |ljK〉 we omitted the additional

quantum numbers necessary to completely characterize the
ket |k〉. Finally we denote by R(k)

lj the radial part of the wave
function of |k〉 coming from its component (l, j ) (see next
subsection for its explicit expression).

The corresponding DSD cross section takes the form of a
sum of two coherent amplitudes [12,13]

σ (k)(lj ; LJ) = 8π

9

µ

h̄2

(
kγ

kn

)3

〈IiKi jKf |If Kf 〉2

×
∣∣∣T (k)

d (lj ; LJ) + T (k)
s (lj ; LJ)

∣∣∣2
, (5)

where T
(k)
d and T (k)

s denote the direct and semidirect ampli-
tudes, respectively, µ is the reduced mass of the projectile-
target system, and Ii is the angular momentum of the target
with projection Ki on its intrinsic symmetry axis z. The direct
contribution is given by

T
(k)
d (lj ; LJ) = e( − i)l+1Z

(
LJlj; 1

2 1
)√

S
(k)
lj

〈
R(k)

lj

∣∣∣ r |RLJ〉 ,

(6)

where e is the effective charge (e = Ne/A for proton and
e = −Ze/A for neutron), S

(k)
lj is the spectroscopic factor, and

Z(LJlj; 1
2 1) is the Z coefficient [16]. As for the semidirect-

capture amplitude, it is calculated as

T (k)
s (lj ; LJ)

= ± 3

2〈r2〉
N2Z2

A3
e
∑
l′j ′

[
( − i)l

′+1Z

(
LJl′j ′;

1

2
1

)

×
√

S
(k)
l′j ′

〈
R(k)

l′j ′

∣∣∣h(r)|RLJ〉
∑

ν

〈1,−ν, J, ν + K|j ′K〉

× 〈1,−ν, J, ν + K|jK〉 |〈ψ1ν |ρ ′
ν |ψ00〉|2

En − (Eν + εk) + i 1
2�ν

]
, (7)

where 〈r2〉 is the mean square radius, h(r) is the particle-
vibration coupling function, εk is the single-particle energy of
the considered bound state, Eν and �ν are the giant dipole
resonance energy and width, and the index ν stands for the
modes corresponding to major and minor axes. When h(r)
is a surface coupling function [12], the factor 3/〈r2〉 must
be omitted [17]. The transition matrix element between the
dipole and ground states 〈ψ1ν |ρ ′

ν |ψ00〉 can be related to a
photoabsorption cross section [12,13]. The GDR parameters
are taken from experimental data, or they are calculated with
a simple systematics [18] obtained from the experimental
database.

Upon summing over all the bound states and their (l, j )
components, we finally obtain the total DSD cross section

σ = 8π

9

µ

h̄2

∑
L,J

Nlev∑
k=1

[(
kγ

kn

)3 N(k)∑
i=1

〈IiKi jKf |If Kf 〉2

×
∣∣∣T (k)

d

(
l
(k)
i j

(k)
i ; LJ

) + T (k)
s

(
l
(k)
i j

(k)
i ; LJ

)∣∣∣2
]
. (8)

In this expression the sum over i represents the N (k) different
components (l(k)

i , j
(k)
i ) of |k〉, and Nlev is the number of bound-

state levels (taking into account the Kramers’ degeneracy due
to the time reversal symmetry in the considered even-even
targets). From energy conservation we have the following
relation between the neutron center-of-mass kinetic energy
En, the neutron separation energy of the final nucleus S(A+1)

n ,
the bound-state energy εk , and the energy of the emitted γ -ray
Eγ = h̄ckγ

En = (h̄kn)2

2µ
= εk − εGS + Eγ − S(A+1)

n , (9)

where εGS is the energy of the lowest unoccupied single-
particle state in the target nucleus. In the independent-particle
approximation, the neutron separation energy of the final
nucleus S(A+1)

n is simply the opposite of εGS, hence

Eγ = En − εk, (10)

that is

kγ

kn

=
√

En

2µc2

(
1 + |εk|

En

)
, (11)

because εk < 0 for bound states.
As we have seen the radial wave function of the scattering

state is needed to calculate the amplitudes in Eqs. (6) and (7).
Here it is calculated with the global optical potential of Koning
and Delaroche [19].

The semidirect capture cross section strongly depends
on the particle-vibration coupling function h(r) in Eq. (7).
Boisson and Jang [12] adopted h(r) in the form V1df (r)/dr ,
where f (r) is the Woods-Saxon form and V1 is the coupling
strength that is often approximated by the depth of isospin
term in the optical potential. In Ref. [12], V1 = 170 MeV
was employed, and this value is very close to the global
optical potential of Koning and Delaroche [19], which is
168 MeV. Kitazawa et al. [13] adopted a different form, namely

054618-2



NUCLEON DIRECT-SEMIDIRECT RADIATIVE CAPTURE . . . PHYSICAL REVIEW C 75, 054618 (2007)

V1rf (r) with V1 = 110 MeV. In contrast with these real
form factors, Potokar [20] proposed a complex function of the
form V1rf (r) − 4iW1ardf (r)/dr and found, by analyzing the
208 Pb (n, γ ) reaction, V1 = 75 and W1 = 140 MeV. Because
this complex function is supported by the work of Likar and
Vidmar [7], we employ it here with the same parameters V1

and W1 for all the considered nuclei, namely 208Pb, 122,132Sn,
and 238U.

B. Radial wave-function and spectroscopic factors within the
Hartree-Fock-BCS approach

We consider here two different parametrizations with the
traditionally corresponding pairing interactions. On the one
hand, with the SLy4 parametrization [21] of the Skyrme
interaction, adjusted to nuclear masses, charge radii, and
some properties of nuclear matter, we use the density-
dependent delta interaction (DDDI) of Duguet, Bonche, and
Heenen [22] as a pairing interaction, successful in reproducing
rotational bands in rare earths and actinide nuclei. On the
other hand, the seniority force (constant matrix elements
between paired of time reversed states) is chosen as a pairing
interaction while using the Skyrme SIII [23] parametrization
in the mean-field channel. The strengths of the seniority force
for neutrons and protons retained here are the same as those
used in the fission studies of Ref. [24] in the actinide region
and Ref. [25] in the A = 70 mass region.

Within the Hartree-Fock-BCS approach, the ground state
|	〉 of an even-even nucleus takes the form

|	〉 =
∏
k>0

(
uk + vka

†
ka

†
k

)|0〉, (12)

where |k〉 is the time-reversed conjugate of |k〉 and a
†
k is the

single-particle state creation operator. The BCS variational
parameters uk and vk are related through u2

k + v2
k = 1, v2

k

representing the occupation probability of |k〉, and this relation
ensures that |	〉 is normalized to unity. The single-particle
wave function φk(r, σ, τ ) associated with |k〉, where σ and τ

denote to spin and isospin degrees of freedom, respectively, is
solution to the Skyrme-Hartree-Fock equation [26,27][

−∇ · h̄2

2m∗
τ (r)

∇ + Uτ (r) − iWτ (r) · (∇ × σ )

]
φk(r, σ, τ )

= εkφk(r, σ, τ ), (13)

where m∗
τ (r) is the nucleon effective mass, Uτ (r) is the central

potential, and Wτ (r) is the spin-orbit coupling potential. These
three quantities depend on all single-particle wave functions,
which makes this approach self-consistent. Once the single-
particle eigenvalues of Eq. (13) are calculated, they are used to
solve the BCS gap equation from which the occupation factors
vk are determined, and the Hartree-Fock Hamiltonian (through
the three above quantities) is reconstructed and diagonalized
again. This procedure is repeated until the single-particle wave
functions φk converge.

In practice, owing to the axial symmetry assumed here,
Eq. (13) is solved by diagonalization of the Skyrme-Hartree-
Fock Hamiltonian in the cylindrical harmonic-oscillator basis

{|nzn⊥�〉
} with the notation of Ref. [27]

|k〉 =
∑
nz�0

∑
n⊥�0

∑

=±1/2

c
(k)
nzn⊥�k


|nzn⊥�k
〉. (14)

This infinite basis is truncated by using the prescription of
Ref. [28] in which all the basis states |nzn⊥�
〉 that satisfy
the following condition are retained

h̄ω⊥(n⊥ + 1) + h̄ωz

(
nz + 1

2

)
� h̄ω0(N0 + 2), (15)

with ω3
0 = ωzω

2
⊥. The basis, including the truncation

condition, has therefore three parameters ωz, ω⊥, and N0.
Introducing the deformation parameter q and the oscillator
parameter b defined by

q = ω⊥
ωz

(16)

and

b =
√

mω

h̄
, (17)

where m denotes the neutron and proton masses (assumed to
be equal), we can rewrite Eq. (15) with only two parameters

q
1
2 (n⊥ + 1) + q− 2

3
(
nz + 1

2

)
� N0 + 2. (18)

Given the variational character of the Hartree-Fock approxi-
mation, the best ground state |	〉 of Eq. (12) corresponds to
the set of single-particle state solutions of Eq. (13) that leads
to the lowest value of the expectation value of the Skyrme-
Hartree-Fock many-body Hamiltonian H . Consequently, for
a given number of major shells N0 (i.e., a given basis size),
we have to optimize the basis parameters q and b so as to
minimize the energy 〈	|H |	〉.

Then the cylindrical basis {|nzn⊥�
〉} is expanded in
the spherical harmonic-oscillator basis {|nljK〉} with usual
notation (n representing the number of nodes excluding the
origin and infinity), which yields

|k〉 =
∑
n�0

∑
l,j

s
(k)
nlj |nljK〉 (19)

with

s
(k)
nlj =

∑
nz,n⊥,


c
(k)
nzn⊥�k


〈nljK|nzn⊥�k
〉, (20)

where �k = K − 
. The overlaps 〈nljK|nzn⊥�k
〉 are
explicitly given in the Appendix. We can therefore express
the coefficients C

(k)
lj in Eq. (1) as

∣∣∣C(k)
lj

∣∣∣2
=

∑
n�0

∣∣∣s(k)
nlj

∣∣∣2
. (21)

Finally, if we call Rnl(r) the radial part of the spherical
harmonic-oscillator wave function (normalized to unity), then
we can define the radial part R(k)

lj of the (l, j ) component of
the wave function φk by

R(k)
lj (r) =

∑
n�0

s
(k)
nlj Rnl(r). (22)
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FIG. 1. Radial wave-function of the g9/2 state in 208Pb. The thin
curves are the decomposition in the spherical harmonic-oscillator
basis, and the thick solid curve is the sum of each component from
the Skyrme-Hartree-Fock-BCS calculation. The thick-dotted curve
corresponds to the radial wave function obtained with the Woods-
Saxon potential.

We use a definition of the spectroscopic factor S
(k)
lj that

incorporates the expansion coefficients C
(k)
lj to be consistent

with Refs. [14,29]. We generalize the definition adopted by
Vergnes and Sheline [29] by including pairing correlations as
in Refs. [9,10] and write S

(k)
ij for a capture reaction on an

even-even target as

S
(k)
lj = 2u2

k

2j + 1

∣∣∣C(k)
lj

∣∣∣2
. (23)

Before closing this section, we illustrate in Fig. 1 the
expansion of the radial wave-function of the g9/2 neutron state
of 208Pb with the SIII interaction.

This single-particle state has four major contributions from
n = 0 to n = 3. These results are compared in Fig. 1
with those obtained by solving the Schrödinger equation
for the Woods-Saxon potential, which is often used for
the DSD capture calculations. As can be seen the HFBCS
and Woods-Saxon radial wave functions are in very close
agreement for a radius r up to about 8 fm, but beyond this
range the HFBCS wave function vanishes much faster. This
is a due to the choice of a harmonic-oscillator basis for
the diagonalization of the Hartree-Fock Hamiltonian, giving
a Gaussian-times-polynomial asymptotic behavior, whereas
the expected behavior is exponential as exhibited by the
Woods-Saxon solution. As a single-particle state becomes less

and less bound, the difference between the true and the HFBCS
asymptotic behaviors increases. It is likely that the radial
integrals contributing to the direct and semidirect amplitudes
involve a cancellation between internal and external capture.
However, it is not clear whether improving the tails of the
single-particle wave functions would significantly affect the
results, given that we sum over all the bound states. A
possible way of improving this asymptotic behavior would be
to use the transformed harmonic-oscillator basis proposed by
Stoitsov et al. [30].

III. RESULTS AND DISCUSSION

A. Bound-state properties

To avoid any confusion in the definition of the spectroscopic
factor, we compare the calculated occupation probabilities
v2

k for various bound states with the values extracted from
experimental data for five even isotopes of tin from 116Sn
to 124Sn. These nuclei being found spherical, there is no
ambiguity in the assignment of the quantum numbers l and
j to the single-particle states |k〉. The results obtained with the
SLy4 Skyrme interaction and the DDDI pairing interaction
are shown in Table I, and those obtained with the SIII
parametrization and the seniority pairing force in Table II.

The overall agreement is fair within the HFBCS model
using the SLy4 interaction in the mean-field channel
and the DDDI interaction in the pairing channel, noted
HF(SLy4)+BCS(DDDI), even very good for the g7/2 level,
and the HF(SIII)+BCS(G) results, obtained using the SIII
interaction in the mean-field channel and the seniority force
in the pairing channel, are in very good agreement with the
experimental values for the five isotopes, especially for the
122,124Sn nuclei. A more detailed comparison reveals a general
trend that can be connected with the pairing strength. Indeed,
let us assume that v2

k decreases as the state |k〉 gets less and
less bound at a rate varying in the opposite way of the pairing
strength. For the sake of argument we approximate v2

k by a
Fermi function

v2
k (ε) ≈

[
1 + exp

(
ε − εF

δ

)]−1

, (24)

where the diffuseness δ is an increasing function of the pairing
strength and εF denotes the energy of the Fermi level (last
occupied level in a pure Hartree-Fock picture). From Table I
the occupation probability of the states below the Fermi level

TABLE I. Occupation probabilities of five neutron single-particle levels in the N = 50 − 82 shell for even Sn isotopes within the
HF(SLy4)+BCS(DDDI) approach. Experimental data are taken from Ref. [10].

Level 116Sn 118Sn 120Sn 122Sn 124Sn

Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp.

h11/2 0.12 0.27 0.15 0.33 0.21 0.35 0.35 0.47 0.45 0.55
d3/2 0.36 0.25 0.50 0.33 0.66 0.55 0.74 0.59 0.83 0.68
s1/2 0.60 0.42 0.74 0.50 0.84 0.61 0.85 0.69 0.90 0.74
g7/2 0.79 0.78 0.87 0.86 0.92 0.89 0.92 0.92 0.95 0.95
d5/2 0.94 0.79 0.96 0.80 0.97 0.87 0.96 0.86 0.97 0.93
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TABLE II. Same as Table I within the HF(SIII)+BCS(G) model.

Level 116Sn 118Sn 120Sn 122Sn 124Sn

Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp.

h11/2 0.16 0.27 0.24 0.33 0.33 0.35 0.44 0.47 0.54 0.55
d3/2 0.23 0.25 0.33 0.33 0.44 0.55 0.54 0.59 0.65 0.68
s1/2 0.35 0.42 0.46 0.50 0.56 0.61 0.64 0.69 0.72 0.74
g7/2 0.90 0.78 0.93 0.86 0.95 0.89 0.96 0.92 0.97 0.95
d5/2 0.90 0.79 0.93 0.80 0.94 0.87 0.96 0.86 0.97 0.93

tends to be overestimated whereas the opposite is true for the
levels above εF . Consequently, leaning on Eq. (24), we deduce
that the strength of the pairing interaction DDDI retained here
is too low to account for the observed diffuseness. Even though
an adjustment of the pairing strength for each nucleus would
improve the agreement for the occupation probabilities, we
prefer to adopt here a more predictive approach by keeping
the same pairing strength for all the considered nuclei, namely
the one proposed by Duguet, Bonche, and Heenen [22].

Another bound-state property important in the DSD cross
section is the single-particle energy. Some data are available
only for two of the five nuclei considered, namely the doubly
magic nuclei 208Pb [31] and 132Sn [32]. For the latter we ac-
tually consider the low-lying states of 133Sn as single-neutron
states of 132Sn, which amounts to the independent-particle
approximation (residual interaction neglected). In particular,
according to the previously invoked approximation, we assume
that εf7/2 = −Sn(133Sn) = −2.42 MeV. Figures 2 and 3 show
calculated and experimental neutron single-particle energies
for 208Pb and 132Sn, respectively.

We recall that the pairing correlations are vanishing for
these magic nuclei, at least in the BCS approach, so the two
HFBCS models differ here only by the Skyrme interaction
used. Moreover, to make a quantitative comparison of the
calculated and experimental single-particle level schemes we
should include effects of coupling to more complicated config-
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FIG. 2. Neutron single-particle level scheme in 208Pb. The dotted
line separates the hole states (below) from the particle states (above).

urations (especially particle-vibration coupling [33]), which is
beyond the scope of the present work. However, we can note
that, apart from a couple inversions, the calculated ordering is
correct with both Skyrme interactions. More precisely, in the
208Pb case, the only inversion with the SLy4 interaction occurs
for the g7/2 and s1/2 levels, whereas two inversions occur with
the SIII interaction (f5/2 − p3/2 and s1/2 − g7/2). The relevant
bound states for the 208Pb(n, γ ) reaction cross section are
those above the p1/2 level (particle states) that have a negative
energy. Therefore the cross section is calculated with only
four levels for both interactions (g9/2, i11/2, j15/2 and d5/2),
as compared to seven contributing experimental bound states.
This may lead to an underestimate of the DSD capture cross
section depending on the degree of compensation owing to the
under-bound character of the above four single-particle levels.
As for 132Sn, the first unoccupied level is well reproduced, but
the three next ones are calculated to be unbound (between 0
and 1 MeV) in contrast to experiment.

B. Capture cross section for spherical targets

First we perform the DSD model calculation with HFBCS
bound states for the spherical, doubly magic target nucleus
208Pb. Because of the vanishing pairing correlations (at least
in the BCS approach), the only bound states accessible to
the incident neutron are those lying above the Fermi level,
for which the u2

k factor is maximum with u2
k = 1. The same

treatment was also made by Longo and Saporetti [17]. The
GDR parameters E0 = 13.6 MeV, �0 = 3.78 MeV, and σ0 =
541 mb are taken from Ref. [12].

In Fig. 4 we have represented the direct (dashed line,
σ ∝ ∑ |Td |2) and semidirect (dotted line, σ ∝ ∑ |Ts |2)
contributions obtained with the SLy4 bound states, together
with the total capture cross section (solid line, σ ∝ ∑ |Td +
Ts |2).
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FIG. 3. Same as Fig. 2 for 132Sn (states above the Fermi level only).
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FIG. 4. Direct-semidirect neutron capture cross section for 208Pb
with the Potokar particle-vibration coupling function and the
HF(SLy4)+BCS(DDDI) bound states. The direct and semidirect
components are displayed as dashed and dotted lines, respectively.

Whereas the direct component is rather small but fairly
constant over the considered energy range (1 to 20 MeV),
the semidirect one is peaked around Eν + εk . Moreover, as
already noticed by Boisson and Jang [12], the interference
term between the direct and the semidirect amplitudes is rather
large. This conclusion does not depend on the nuclear structure
model implemented to calculate the bound states.

The comparison of the DSD cross section calculated using
SLy4 (solid line) and SIII (dashed line) bound states with the
experimental data is shown in Fig. 5.

The calculated cross section has a shape consistent with
the experimental data [34–36], but the absolute cross section
is slightly lower. A better reproduction of the data might be
obtained with an appropriate adjustment of the V1 and W1

parameters of the Potokar particle-vibration coupling function.
Two other causes to the underestimate of the cross section are
the underbound character of the calculated bound states and
correlatively the missing experimental bound states calculated
to be quasi bound. If we correct the calculations by including
the latter states and shifting all the considered single-particle
states so as to reproduce the experimental g9/2 binding energy,
we obtain the solid and dashed lines of Fig. 6, corresponding
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FIG. 5. Direct-semidirect neutron capture cross section for 208Pb
with bound states calculated within two different HFBCS models.
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FIG. 6. Neutron capture cross section for 208Pb. The DSD cross
section is calculated with SLy4 (solid line) and SIII (dashed line)
bound states. All the experimental bound states above the Fermi level
are included and they are shifted so that the calculated g9/2 energy
equals the experimental one. The compound nucleus cross section is
indicated by the dotted line.

to the SLy4 and SIII results, respectively. The agreement with
the data becomes very good over the energy range spanned
by the data, with a slight underestimate below 10 MeV. It
is interesting to compare with Hauser-Feshbach-Moldauer
calculations (dotted line in Fig. 6) for which the model
parameters used are the optical potential of Koning and
Delaroche [19] together with the level density parameters of
Kawano, Chiba, and Koura [37]. The compound-nucleus (CN)
reaction mechanism dominates up to 5 MeV only, beyond
which the DSD mechanism takes over. The total cross section
being the sum of the CN and DSD contributions, we deduce
that the calculated total capture cross section below 10 MeV
is in excellent agreement with measurements.

We have also performed capture cross section calculations
for two tin isotopes, 122Sn and 132Sn (see Fig. 7).

The latter is of particular importance in the r process of
nucleosynthesis. Similar to the 208Pb case in Fig. 6, 132Sn has
a very small compound radiative-capture cross section due to
the doubly magic nature, and reaction rates for the 132Sn(n, γ )
and 133Sn(γ, n) reactions become comparable in the r process.
As a result, relatively large amount of 132Sn accumulates before
it β decays to 132Sb.

Given the doubly magic character of 132Sn, the pairing
correlations are vanishing for this nucleus, at least in the
BCS approach, in contrast with 122Sn for which we find
a significant depopulation of hole states due to pairing
correlations. In the case of 122Sn neutrons can thus be captured
by particle states (above the Fermi level) as well as hole states
(below the Fermi level). The compound-nucleus cross sections
are calculated with the Hauser-Feshbach-Moldauer theory.
Because the average radiative width �γ for these isotopes are
not reported, we estimated the �γ values in a simple way.
The �γ values for 119Sn and 120Sn are 0.1 and 0.036 eV,
respectively [38]. Because it is empirically known that �γ has
a weak mass-number dependence, we estimated �γ = 0.08 eV
for 120Sn, which roughly reproduces the experimental capture
cross sections in the upper panel of Fig. 7, although they are
scattered. The �γ value of 0.1 eV was estimated for 132Sn from
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FIG. 7. Same as Fig. 5 for two tin isotopes: 122Sn (upper panel)
and doubly magic 132Sn (lower panel). The curves labeled “all”
correspond to calculations that include all the calculated single-
particle states experimentally bound (determined in the Koopmans’
approximation from 133Sn experimental low-lying states).

a systematic study of the �γ values, which gives the compound
capture cross section shown by the solid curve in the lower
panel of Fig. 7. Note that the calculated compound capture
cross sections on 132Sn are very small, and the calculation
may have large uncertainties.

In the upper panel we have represented the DSD cross
sections with SLy4 and SIII as dashed and dash-dotted
lines, respectively, and the corresponding CN+DSD cross
sections as solid and dotted lines, respectively, for 122Sn.
The DSD contribution to this cross section below 10 MeV
is small, and the experimental data [39–43] below 4 MeV
are purely reproduced by the compound reaction mechanism.
Above 10 MeV the DSD mechanism becomes dominant. It
is interesting to note that both Skyrme interactions give very
similar DSD results for this isotope.

In the lower panel of Fig. 7 we have plotted the calculated
CN capture cross section (solid line) as well as the DSD cross
sections obtained with SLy4 (dashed line) and SIII (dotted line)
single-particles for the 132Sn target. All levels experimentally
bound have been included with their unshifted energies (i.e.,
the four levels represented in Fig. 3 for SLy4 and SIII). The
large peak near En = 4 MeV is because the neutron inelastic
channels are closed below 4 MeV. The DSD cross sections
become almost in the same magnitude in the MeV incident

energy region, and it may change the Maxwellian averaged
cross section (MACS) when the temperature of the r process is
very high. As mentioned, the compound capture cross section
on 132Sn is sensitive to the reaction model parameters used.
In the case we predict the CN cross section lower, the DSD
contribution to the MACS will be more important.

C. Capture cross section for the deformed target 238U

The Skyrme-HFBCS approach was applied to actinides to
investigate fission properties from the potential-energy surface
(see, e.g., Ref. [44]). Here we adopt the same model for 238U
to determine the single-particle states and their occupation
probabilities. Because 238U is a strongly deformed nucleus,
coupled-channels calculations for the scattering states are
expected to be more appropriate. However, we make the
approximation of a spherical optical model and use the Koning-
Delaroche potential [19] to generate the scattering waves.
The GDR parameters are taken from Caldwell et al. [45] and
the coupling strength was the same as the 208Pb calculation,
namely V1 = 75 and W1 = 140 MeV.

Figure 8 shows a comparison of the calculated DSD cross
section obtained using SLy4 (solid line) and SIII (dashed line)
deformed bound states with the experimental data [15,35].

The use of SLy4 bound states gives a slightly better agree-
ment with measurements. In their calculations McDaniels et al.
[15] adopted similar particle-vibration coupling parameters but
obtained systematically lower results, for example 0.7 mb at
12 MeV, which is 40 to 50% lower than in our calculations.
They attributed this underestimate to the direct part of the cross
section. The direct cross section of Boisson and Jang [12] is
0.46 mb at 14 MeV, and our value is 1.06 mb with SLy4 and
1.39 mb with SIII. McDaniels et al. [15] reported that their
value was similar to that of Boisson and Jang [12], and they
noted that this lower cross section was due to their spherical
approximation for the bound states. However our calculations
(dotted and dash-dotted lines in Fig. 8) indicate that the effect
of the target deformation is rather small. This can be explained
by the fact that the sets of bound states in the spherical and
deformed HFBCS solutions that contribute to the direct and
semidirect amplitudes do not differ significantly in proportion
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FIG. 9. Comparison of experimental and calculated (solid line)
γ -ray spectra at the neutron incident energy of 10.7 MeV for
238U. The theoretical spectrum is Gaussian-broadened with 500 keV
width.

to the number of contributing bound states. The differences
lie essentially in the nuclear single-particle level densities.
Therefore it seems to us that the better agreement of our DSD
cross section obtained using spherical bound states (dotted
and dash-dotted lines in Fig. 8 for SLy4 and SIII, respectively)
with experimental data from 10 to 14 MeV, regardless of the
Skyrme interaction used, is fortuitous. It is worth adding that
the rescaling of single-particle energies in the deformed case as
done in the previous subsection for 208Pb would have virtually
no effect for 238U given the high level density.

In Fig. 9 we compare our calculated γ -ray spectrum with
the experimental data [15] at En = 10.7 MeV. Because
experimental response function is not available, we broadened
the calculated γ -ray spectrum using Gaussian with 500 keV
half-width, and the calculated curve was renormalized arbi-
trarily to the experimental data. Our calculation reproduces
the gross structure of the experimental data, except for a
peak location. The peak near 15 MeV in the calculation
is from γ rays to the single-particle levels near the Fermi
energy and probably corresponds to the 14.5 MeV peak in
the experimental data. The energy difference between the
experimental data and calculation is due to uncertainty in
the calculated single-particle energies, which are sensitive to
the effective two-body interaction used.

Before concluding we would like to add that the extension
to odd targets could be done in the following approximate
way. First the target angular momentum Ii can be accounted
for by summing over all contributions obtained by considering
the initial single neutron as a spectator and applying the same
expression of σ (k)(lj ; LJ) as for an even target, namely Eq. (5).
Then we have to multiply the resulting cross section by the
usual spin statistical factor (2j + 1)/[2(2Ii + 1)] and sum
over the single-particle states k and (L, J ). In this case the
spectroscopic factor takes the form

S
(k)
lj = 2v2

k

(
C

(k)
lj

)2
. (25)

IV. CONCLUSION

We proposed a new technique to calculate the DSD
nucleon capture cross sections. The single-particle bound
states and their occupation probabilities are determined within
the HFBCS model, whereas the incident wave function is
calculated in the optical model. The transition amplitudes are
calculated for each single-particle state using the theory of
Boisson and Jang [12], which is an extension of the DSD theory
for deformed nuclei. The procedure adopted in this study does
not require experimental spectroscopic factors, which are often
inaccessible for nuclei of astrophysical interest. The calculated
occupation probabilities for even tin isotopes from 116Sn to
124Sn prove to be in fairly good agreement with experimental
data. The calculated neutron capture cross sections for 208Pb
and 238U reproduce very well the experimental data available
when the Potokar’s complex form factor for the vibration-
particle coupling was used. The coupling strengths, V1 and W1,
are the only adjustable parameters in our method. However, a
common set of V1 and W1 give a good fit to 208Pb and 238U
cross sections simultaneously. The method was also applied
to calculate neutron capture cross sections on 122Sn and 132Sn,
which are important for the r process. For the 122Sn case, the
compound reaction is still dominant at the few MeV neutron
incident energies. However, it is found that the DSD process
becomes of the same magnitude for 132Sn.

Because the incident wave function is calculated in a
spherical potential, a natural extension of this study would
be to perform calculations in the coupled-channel approach
for both continuum and bound states, analogous to calcula-
tions for stripping reactions using the coupled-channel Born
approximation (see, e.g., Refs. [46–48]).

ACKNOWLEDGMENTS

One of us (T. W.) acknowledges the Theoretical Division
at LANL for the excellent working conditions extending to
him during his visit. This work has been carried out under
the auspices of the National Nuclear Security Administration
of the U.S. Department of Energy at Los Alamos National
Laboratory under contract no. DE-AC52-06NA25396.

APPENDIX

The notations in use here for the cylindrical harmonic-
oscillator basis states |nzn⊥�
〉 and the spherical harmonic-
oscillator basis states |nlj�〉 are those introduced in Sec. II.

A. Transformation from cylindrical to spherical
harmonic-oscillator basis without spin

To expand the cylindrical state |nzn⊥�〉 on the basis formed
by the spherical states |nl�〉, we proceed in two steps. First
we expand the one-dimensional harmonic-oscillator state |nz〉
associated with the frequency ωz on the same states associated
with the frequency ω⊥. Then we can easily expand |nzn⊥�〉
on the spherical basis states |nl�〉 because they all correspond
to the same oscillator frequency ω⊥.
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1. Relation between one-dimensional harmonic-oscillator states
of different frequencies

The expansion of the one-dimensional harmonic oscillator
basis states |nz(ωz)〉 associated with the frequency ωz on the
same basis associated with the frequency ω′

z has been shown
by Talman [49] to take the following form :

|nz(ωz)〉 =
∑
n′
z�0

nz−n′
zeven

Anzn′
z
(q)|n′

z(ω
′
z)〉 (A1)

with the overlap function:

Ann′ (q) =
√

2n−n′
n!n′!

(
q − 1

q + 1

) n′−n
2

(
2
√

q

q + 1

)n+ 1
2

×
[ n

2 ]∑
ν=0

( − 1)ν

ν!
(
ν + n′−n

2

)
!(n − 2ν)!

(
q − 1

4
√

q

)2ν

, (A2)

where [x] denotes the integer part of x and q = ω′
z/ωz. In

practice, one truncates the infinite sum in Eq. (A1) when the

square of the norm of |nz(ωz〉

〈nz(ωz)|nz(ωz)〉 =
∑
n′
z�0

nz−n′
zeven

∣∣Anzn′
z
(q)

∣∣2
(A3)

is as close to 1 as desired.

2. Relation between cylindrical and spherical states with
the same frequency

If the oscillator frequencies in the z direction ωz and in
the plane perpendicular to the z-axis ω⊥ are equal, it becomes
easy to expand |nz(ωz)n⊥(ω⊥)�〉 on the basis states |n(ω⊥)l�〉
due to the spherical symmetry. According to Talman [49] we
have

|nzn⊥�〉 =
∑
n,l

δnz+n⊥,2n+lBnz,n⊥,�;n,l |nl�〉, (A4)

where the overlap Bnzn⊥�,nl has the following expression

Bnz,n⊥,�;n,l = ( − 1)β+n+�2n

√
α!

β!

nz!

2nz

(l − �)!

(l + �)!

(2l + 1)(n + l)!

n!(2n + 2l + 1)!

∑
λ

( − 1)λ
[2(l − λ)]!(λ + n)!

λ!(l − λ)![nz − 2(λ + n − β)]!(λ + n − β)!
(A5)

with the notations

α = n⊥ + �

2
(A6)

β = n⊥ − �

2
. (A7)

It is important to note that the sum over λ in Eq. (A5) is finite
because the factorials limit the range of possible values of λ.
However the sums over n and l in Eq. (A4) run from 0 to ∞ and
one has to truncate them. For the calculations of the present
study, we have checked that the maximal values nmax = 10
and lmax = 15 are sufficient.

B. Orbital angular momentum and spin coupling

If we add the spin degree of freedom, the eigenstates of the
spherical harmonic oscillator become:

|nl�
〉 = |nl�〉 ⊗ |s
〉 (A8)

where |s
〉 is an eigenstate of the spin operators S2 with
the eigenvalue 3

4h̄
2 and Sz with the eigenvalue 
h̄ (
 = ± 1

2 ).
The coupling of the two angular momenta L and S leads to the
total angular momentum J and the coupled basis states |nlj�〉
related to the uncoupled basis states |nl�
〉 through

|nl�
〉 =
∑

j

〈
l�

1

2



∣∣∣∣ j�

〉
|nlj�〉 (A9)

with � = � + 
. We therefore arrive at

〈n(ω⊥)lj�|nz(ωz)n⊥(ω⊥)�
〉

= δnz+n⊥−2n−l,evenAnz2n+l−n⊥ (q)B2n+l−n⊥,n⊥,�;n,l

× 〈
l� 1

2

∣∣ j�〉

(A10)

with the deformation parameter q = ω⊥/ωz.
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