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12C-12C elastic scattering at 1.016, 1.449, and 2.4 GeV and the NN amplitude
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Working within the framework of the Coulomb modified Glauber model, we analyze the elastic angular
distribution and reaction cross section for the 12C-12C system at 1.016, 1.449, and 2.4 GeV. The elastic S matrix
is evaluated using the effective profile function approach, and a correlation expansion for the Glauber amplitude
is obtained. We emphasize the parametrization of the basic (input) NN amplitude, which may be used for a
wide range of angles. Retaining the first two terms of the correlation expansion and using the realistic densities
for the colliding nuclei, we find that (i) the consideration of higher momentum transfer components, and hence
the nondiffractive behavior, of the NN amplitude provides a more satisfactory account of the data than does
the conventional (one-term) Gaussian parametrization for the NN amplitude, (ii) the in-medium effects seem to
reduce the (free) NN total cross section and influence the other parameters of the NN amplitude as well, (iii) the
phase of the NN amplitude does not help in improving the theoretical situation, and (iv) the c.m. correlations
play an important role at the energies considered. We also discuss the suitability of the effective profile function
approach in the present context.
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I. INTRODUCTION

Over the past about three decades, the Glauber multiple
scattering theory (GMST) [1,2] has been the most successful
tool for providing microscopic description of hadron-nucleus
collisions at intermediate energies [3–6]. The results of this
description highlight the importance of the successive higher
order scatterings (correlations) at high momentum transfers
and provide useful information about the matter density
distributions.

Encouraged by this, several authors have extended GMST
to study nucleus-nucleus collisions [7–11] at intermediate
energies. But because the analytic evaluation of the full
Glauber amplitude for the realistic description of nuclei is
a computationally difficult task [12,13], most of the analyses
have been made by invoking the so-called optical-limit approx-
imation (OLA) [12,13], which considers only the leading term
in an expansion of the nucleus-nucleus phase shift function.
This leading term depends upon the one-body densities of the
colliding nuclei, while the neglected terms depend upon the
two-body and higher order densities. These analyses show that
the OLA works reasonably well provided that the conventional
Glauber amplitude is suitably modified to account for the
deviation of the projectile trajectory due to the Coulomb
field [10,11]. It is also observed that the predictions of the
OLA become less satisfactory especially at large momentum
transfers as the projectile energy increases [10,11]. This feature
of the OLA may be understood by noting that at lower energies,
the scattering is sensitive mainly to the surface regions of the
colliding nuclei in which the contribution of the neglected
higher order terms in the expansion of the nucleus-nucleus
phase shift function [13] may be negligibly small. However,
with an increase in projectile energy, the scattering now
becomes more sensitive to the interior regions of the nuclei
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where suppressing the higher order terms in the phase shift
function expansion may not be justified. Thus, one expects that
the inclusion of higher order terms in the OLA may improve
the theoretical situation at relatively higher energies.

In an attempt to improve the OLA results, El-Gogary et al.
[14] performed full Glauber series calculations employing the
techniques developed by Yin et al. [15] and Huang [16].
Using the double-Gaussian single-particle densities for the
colliding nuclei and the conventional (one-term) Gaussian
parametrization for the input NN amplitude (GNN), the authors
[14] calculated the elastic angular distribution for the 12C-12C
system at 1.016, 1.449, and 2.4 GeV. The center-of-mass
(c.m.) correlation is accounted for by applying the commonly
used global c.m. correlation correction factor for all orders of
scattering, which strictly holds for single Gaussian (harmonic
oscillator) densities. The results of this calculation, though
better than the OLA results, show noticeable disagreement
at 200 MeV/nucleon. In a study using a similar approach,
El-Gogary et al. [17] also reported a somewhat improved
calculation in which the c.m. correlation is treated in a
consistent manner. It is found that the consistent treatment
of the c.m. correlation does not significantly improve the
theoretical situation.

In another approach, Abu-Ibrahim and Suzuki [18] per-
formed a Glauber model analysis of 12C-12C and 12C-208Pb
elastic scattering data at 200 MeV/nucleon by considering
the nucleon-target (NT ) interaction as “elementary.” The
profile function �NT for the NT amplitude has either been
calculated in terms of the profile function for the NN scattering
amplitude or obtained by assuming a suitable parametrization
for the NT profile function. The application of NT formalism
shows substantial improvement over the earlier results at small
momentum transfers. However, in this case also, noticeable
disagreement between theory and experiment occurs at large
momentum transfers.

Later, Ahmad et al. [19] analyzed 12C-12C elastic scattering
data at 1.016, 1.449, and 2.4 GeV within the framework of
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the Coulomb modified Glauber model [10,11]. Retaining the
first two terms of the nuclear phase expansion series [13]
and using the realistic densities for the colliding nuclei,
a good description of the experimental data at 1.016 and
1.449 GeV was achieved by taking into account the phase
of the NN amplitude. At 2.4 GeV, the second-order phase term
provides some improvement over the OLA results; however,
the theoretical situation remains unsatisfactory.

Keeping in mind the unsatisfactory results of the Glauber
model analyses [14,17–19] of 12C-12C elastic scattering data at
200 MeV/nucleon, Ahmad et al. [20,21] proposed phenomeno-
logical methods for analyzing the heavy-ion elastic scattering
data within the framework of the Coulomb modified Glauber
model. In these methods, instead of using the GNN, the
authors evaluated it in terms of either the (i) phenomenological
effective NN potential or (ii) effective NN phase shift function,
the parameters of which are varied up to the extent of getting
the best possible fits to the experimental data. Application of
these methods to some 12C-nucleus and 16O-nucleus systems
shows that a very satisfactory description of the elastic
scattering data at several energies can be obtained in this
way. In particular, the 12C-12C elastic scattering data at 200
MeV/nucleon is nicely reproduced. Moreover, these results
show that the values of the effective NN total cross sections
σ eff

NN are smaller than the corresponding free values σ
f

NN [22].
This feature of σ eff

NN agrees qualitatively with the results of
the microscopic studies that show that in-medium NN total
cross sections are smaller than the corresponding free values
mainly because of Pauli blocking [23,24]. Furthermore, it
has been observed that for a given pair of colliding nuclei,
the deviation of σ eff

NN from the free value is quite large
(∼40%) at 200 MeV/nucleon; the enhanced transparency in
the nucleus-nucleus collisions due to much smaller values of
σ

f

NN at this energy makes the collision more sensitive to the
behavior of the NN interaction in the interior region where the
NN interaction may be reduced considerably due to medium
effects.

Coming to the phenomenological approach for heavy-ion
elastic scattering within the framework of OLA of the Glauber
model (PAGM) [20,21], it may be emphasized that the success
of PAGM seems to lie in the choice of the input NN amplitude,
as the results of the previous OLA calculations with the
GNN [10,19] are not found to be as satisfactory as the
phenomenological one. The reason why PAGM works so well
may be understood from the following argument.

As discussed in Ref. [20], the GNN may be well suited at
high energies where the small angle NN scattering is mostly
diffractive and peaked in the forward direction, but the same
may not be very appropriate for describing the NN scattering at
lower energies, as the scattering in this case is nondiffractive.
Therefore, one conjectures that the NN amplitude, as obtained
in Refs. [20,21], might be closer to the realistic description
of NN scattering at lower energies, and hence the success
of PAGM may be connected with the better choice of the NN
amplitude. Moreover, the above discussion gets further support
if we note that in the Glauber model calculations for nucleus-
nucleus collisions at intermediate energies [10,14,17,19], the
required NN scattering parameter values, except for σ

f

NN [22],

are found to be very different in different studies. Apart from
this, there are two more factors missing in the Glauber model
calculations with the GNN. One is the large q behavior of
the NN amplitude, which might be of some significance for
collisions between lighter nuclei whose form factors fall rather
smoothly, and the other factor concerns the nuclear medium
effects on NN scattering. To include the first factor, we, in
this work, parametrize the NN amplitude in the same form as
in Refs. [25,26], whereas the nuclear medium effects may be
incorporated, rather indirectly, through reasonable variation in
the parameters of the NN amplitude. One hopes that our study
may not only tell about the in-medium NN total cross section,
as reported in earlier studies [20,21,23,24], but also give some
information about the medium effects on other parameters.

In this work, we propose to analyze the elastic angular
distribution and reaction cross section for the 12C-12C system
at 1.016, 1.449, and 2.4 GeV. The analysis is based upon
the Coulomb modified [10,11] correlation expansion for the
Glauber amplitude [27], the first term of which corresponds
to the well-known optical-limit result, and the others depend
successively upon the two-, three-, and many-body densities
of the colliding nuclei. In the following, we content ourselves
with considering up to the two-body density term, which
may be considered as the leading correction term [19] to
the optical-limit result. Section II consists of a brief review
of the correlation expansion for the Glauber amplitude. The
numerical results are presented, discussed, and summarized in
Sec. III.

II. CORRELATION EXPANSION FOR THE GLAUBER
AMPLITUDE

According to the Glauber model, the scattering amplitude
describing the elastic scattering of a projectile nucleus with
ground state wave function ψB on a target nucleus with ground
state wave function ψA may be written as (see, for example,
Refs. [12,13])

F (�q) = iK

2π

∫
d2b exp(i �q · �b)[1 − Sel(�b)], (1)

Sel(�b) =

ψAψB

∣∣∣∣∣∣
A∏

i=1

B∏
j=1

[1 − �NN (�b − �si + �s ′
j )]

∣∣∣∣∣∣ψBψA


 ,

(2)

where A and B are the mass numbers of the target and projectile
nuclei, respectively, �si( �s ′

j ) are the projections of the target
(projectile) nucleon coordinates on the plane perpendicular to
the incident momentum �K , and the NN profile function �NN

is related to the NN amplitude fNN as

�NN (�b) = 1

2πik

∫
d2q exp(−i �q · �b)fNN (�q), (3)

where k is the incident nucleon momentum corresponding to
the projectile kinetic energy per nucleon.

Next, to obtain the required expansion for the elastic
scattering amplitude, we follow Ahmad [27] and write the
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Ŝ matrix element Sel in terms of an effective profile γij as

Sel(�b) =

ψAψB

∣∣∣∣∣∣
A∏

i=1

B∏
j=1

[(1 − �00) + γij ]

∣∣∣∣∣∣ψBψA


 , (4)

where

γij = �00 − �NN (�b − �si + �s ′
j ), (5)

and

�00 =
∫

ρA(�r)ρB(�r ′)�NN (�b − �s + �s ′) d�r d �r ′. (6)

In Eq. (6), ρA and ρB are the ground state densities of the target
and projectile, respectively.

Now it is easy to see that the double product in Eq. (4) may
be expanded as

Sel(�b) = S0(�b) +
AB∑
l=2

Sl(�b), (7)

where

S0(�b) = (1 − �00)AB, (8)

and

Sl(�b) = (ψAψB |Ŝl(�b)|ψBψA), (9)

with

Ŝl(�b) = 1

l!
(1 − �00)AB−l

′∑
i1,j1

′∑
i2,j2

. . .

′∑
il ,jl

γi1,j1γi2,j2 . . . γil ,jl
.

(10)
The primes on the summation signs indicate the restriction
that two pairs of indices cannot be equal at the same time
(for example, if i1 = i2 then j1 �= j2 and vice versa). The sum
in Eq. (7) starts from l = 2, since the l = 1 term does not
contribute to the elastic scattering.

Substituting the expansion (7) in Eq. (1), one obtains the
following (correlation) expansion for the elastic scattering
amplitude:

F (�q) = F0(�q) +
AB∑
l=2

Fl(�q), (11)

where

F0(�q) = iK

2π

∫
exp(i �q · �b)[1 − S0(�b)]d2b, (12)

and

Fl(�q) = − iK

2π

∫
exp(i �q · �b)(ψAψB |Ŝl|ψBψA)d2b. (13)

The first term F0 in Eq. (11), which depends upon the intrinsic
ground state densities of the colliding nuclei, corresponds
to the optical-limit result of Czyz and Maximon [12]. The
other terms Fl(l � 2) involve the lth-body density of both the
target and projectile nuclei and may be regarded as providing
corrections to the optical-limit calculation.

As mentioned in Sec. I, we restrict ourselves up to F2 in
the expression (11) for F (�q), because it is expected to provide

a leading correction to the optical-limit term F0 [19]. More
explicitly,

F2(�q) = − iK

2π

1

(2πik)2

AB

2

∫
d2bei �q.�b(1 − �00)AB−2

× [(A − 1)(B − 1)(G22 − G00) + (B − 1)

× (G21 − G00) + (A − 1)(G12 − G00)], (14)

where

G22(�b) =
∫

d2q1 d2q2e
−i(�q1+�q2)·�bF (2)

A (�q1, �q2)F (2)
B

× (−�q1,−�q2)fNN (�q1)fNN (�q2), (15)

G21(�b) =
∫

d2q1 d2q2e
−i(�q1+�q2)·�bFA(�q1 + �q2)F (2)

B

× (−�q1,−�q2)fNN (�q1)fNN (�q2), (16)

G12(�b) =
∫

d2q1 d2q2e
−i(�q1+�q2)·�bF (2)

A (�q1, �q2)FB

× (−�q1 − �q2)fNN (�q1)fNN (�q2), (17)

and

G00(�b) =
(∫

d2qe−i �q·�bFA(�q)FB(�q)fNN (�q)

)2

. (18)

The quantities FA(B)(�q) and F
(2)
A(B)(�q1, �q2) in the above expres-

sions are the one- and two-body (intrinsic) form factors of the
target (projectile) nucleus, respectively,

FA(B)(�q) =
∫

ρA(B)(�r)ei �q·�rd�r (19)

F
(2)
A(B)(�q1, �q2) =

∫
ρ

(2)
A(B)(�r1, �r2)ei(�q1·�r1+�q2·�r2) d�r1 d�r2, (20)

where ρ
(2)
A(B)(�r1, �r2) is the two-body (intrinsic) density of the

target (projectile) nucleus. For the intrinsic two-body form
factor, we use the following expression as obtained in Ref. [27]:

F (2)(�q1, �q2) = θ (�q1 + �q2)

[
F (�q1)F (�q2)

θ (�q1)θ (�q2)

− g̃c

( �q1 − �q2

2

)
DM (�q1 + �q2)

]
, (21)

where θ (�q) is the c.m. correlation correction factor [27], and
g̃c(q) and DM (q) are the same as defined in Ref. [27].

In the above discussion we did not consider the effects
due to Coulomb scattering. This consideration is important for
nucleus-nucleus collisions over a wide range of momentum
transfer [28]. In this case, though, we are concerned with
the extended charge Coulomb effects, but, as discussed in
Ref. [28], the same can be incorporated in the same way as for
the proton-nucleus collisions. Thus the expression (1), with
Coulomb effects, takes the form

F (�q) = fc(�q) + iK

2π

∫
d2b exp(i �q · �b)eiχpt (�b)

× [1 − eiχc(�b)Sel(�b)], (22)
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where fc, χpt and χc are, respectively, the point Coulomb
scattering amplitude, the point Coulomb phase shift, and
the Coulomb phase shift due to the charge distributions of
the colliding nuclei [28]. Expression (22) has been further
modified [10,11] to account for the deviation in the eikonal
trajectory because of the Coulomb field. This deviation can be
incorporated [11] by replacing b in Sel(b) by b′, which is the
distance of the closest approach in Rutherford orbits and is
given by

kb′ = η + (η2 + k2b2)1/2, (23)

where η = ZAZB e2/h̄v is the Sommerfeld parameter with
ZA(ZB) as the target (projectile) atomic number and v the
projectile velocity.

With these considerations, the elastic angular distribution
for the 12C-12C system is then calculated using the expression
for two identical bosons:

dσ

d

= |F (q ↔ θ ) + F (q ↔ π − θ )|2, (24)

where θ is the scattering angle, and the reaction cross section
is evaluated using the expression

σR =
∫

d2b[1 − |Sel(b)|2]. (25)

Finally, it is to be pointed out that the distinction between
protons and neutrons may be incorporated in F0 only, as it is
expected to be the leading term in the scattering amplitude.
The term F2, however, involves the average values of the NN
parameters. With this modification, Eq. (12) takes the form

F0(�q) = iK

2π

∫
ei �q·�b[1 − (

1 − �
pp

00

)ZAZB
(
1 − �

np

00

)NBZA

× (
1 − �

pn

00

)ZBNA
(
1 − �nn

00

)NANB
]
d2b, (26)

with

�mn
00 =

∫
ρA(�r)ρB(�r ′)�mn

NN (�b − �s + �s ′)d�r d �r ′ (27)

where NA(NB) is the number of neutrons in the target
(projectile) nucleus, and each of m and n stand for a proton
and a neutron.

III. RESULTS AND DISCUSSION

Following the approach outlined in Sec. II, we analyze
the 12C-12C elastic angular distribution and reaction cross
section at 1.016, 1.449, and 2.4 GeV. The inputs needed in
the calculation are the NN amplitude, the nuclear form factor,
and the oscillator constant [6].

Following Golovanova and Iskra [25], the NN amplitude
that may be used for a wide range of angles is parametrized as

fNN (�q) = ikσNN

4π

∞∑
n=0

An+1

(
σNN

4πβ2
NN

)n

× (1 − iρNN )n+1

(n + 1)
exp

[−β2
NNq2

2(n + 1)

]
, (28)

where

An+1 = A1

n(n+ 1)
+ A2

(n− 1)n
+ A3

(n− 2)(n− 1)
+ · · ·+ An

1.2
,

(29)

with A1 = 1.
The amplitude (28) has three adjustable parameters

σNN, ρNN , and β2
NN , the values of which are obtained by

providing the best possible description of elastic angular
distribution [19] and reaction cross section [29] for the 12C-12C
system at energies under consideration. In addition to this, we
impose two more conditions on the choice of σNN, ρNN, and
β2

NN . In the first, we vary them in such a way that the (free)
NN total cross section σ

f

NN [22] and ratio of the real to the
imaginary parts of the forward NN amplitude ρ

f

NN [30] are also
reproduced, while in the second case, we ignore such condition
and allow more freedom to the NN amplitude parameters in
order to see if something could be said about the behavior
of the NN amplitude inside the nuclear medium. Here it may
be noted that for n = 0, the above form of fNN reduces to
the usually parametrized (one-term) Gaussian NN amplitude
(GNN) [31,32].

For computational simplicity, we parametrize the required
nuclear form factor as a sum of Gaussians, that is,

F (�q) =
∑

j

aj e
−bj q

2
, (30)

where aj and bj are parameters whose values are taken from
Ref. [27]. These values were determined by fitting the proton
form factor as obtained from the charge density [33] after
correcting for the finite size of the proton. The value of the
oscillator constant for 12C is from Bassel and Wilkin [34].

The results of the calculations for 12C-12C elastic angular
distribution and reaction cross section at 1.016, 1.449, and 2.4
GeV are presented in Figs. 1–6. In Figs. 1, 2, 4, and 5, one-term,
two-terms, and three-terms correspond, respectively, to n = 0,
1, and 2 in the NN amplitude (28), and the theoretical values
of the reaction cross sections are given for each form of the
NN amplitude.

Figure 1 depicts the results reflecting our search for values
of σNN, ρNN , and β2

NN that would provide a simultaneous
description of elastic angular distribution and reaction cross
section for the 12C-12C system and also reproduce the σ

f

NN [22]
and ρ

f

NN [30] at the energies under consideration. The values
of the parameters σNN, ρNN, and β2

NN obtained in this way
are reported in Table I. In the same table, σ t

NN and ρt
NN

give, respectively, our theoretical estimates for the (free) NN
total cross section and ratio of the real to the imaginary
parts of the forward NN amplitude, the values of which are
obtained from Eq. (28) using the above-mentioned values
of σNN, ρNN, and β2

NN . It is found that the consideration
of two terms in the NN amplitude (28) provides a more
satisfactory explanation of both the reaction cross section and
the elastic angular distribution throughout the available range
of momentum transfer than does the GNN. Furthermore, we
notice that the NN amplitude (28) with three terms does not
provide substantial improvement over the results with two
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TABLE I. Values of NN amplitude parameters (σNN, ρNN , and β2
NN ), which provide simultaneous description of elastic angular distribution

and reaction cross section for 12C-12C system, and also reproduce the (free) NN total cross section (σf

NN ) [22] and ratio of the real to the imaginary
parts of the forward NN amplitude (ρf

NN ) [30]. Quantities σ t
NN and ρt

NN represent, respectively, our theoretical estimates corresponding to σ
f

NN

and ρ
f

NN , and are obtained from Eq. (28) using the values of NN amplitude parameters as given in this table. γNN is the optimum phase of the
NN amplitude (see text).

Energy No. of terms in NN σNN ρNN β2
NN σ t

NN ρt
NN

a γNN

(GeV) NN amplitude (28) (fm2) (fm2) (fm2) (fm2)

one pp(nn) 3.30 1.600 0.741 – i0.000 3.30 1.60 1.317
pn(np) 8.81 1.200 0.168 – i0.000 8.81 1.20 −0.858

1.016 two pp(nn) 3.31 1.495 2.129 – i0.725 3.30 1.60 0.053
pn(np) 5.04 1.461 0.105 – i0.300 8.81 1.20 −0.043

three pp(nn) 3.36 1.457 1.996 – i0.515 3.30 1.60 0.004
pn(np) 5.31 1.403 0.264 – i0.532 8.81 1.20 0.003

one pp(nn) 2.52 1.100 0.662 – i0.000 2.52 1.10 0.827
pn(np) 6.04 0.700 0.316 – i0.000 6.04 0.70 −0.564

1.449 two pp(nn) 2.48 1.048 1.424 – i0.392 2.52 1.10 0.275
pn(np) 5.47 0.721 1.021 – i1.025 6.04 0.70 −0.164

three pp(nn) 2.51 1.019 1.266 – i0.191 2.52 1.10 −0.062
pn(np) 5.49 0.725 1.236 – i1.293 6.04 0.70 0.035

one pp(nn) 2.16 1.000 0.750 + i0.000 2.16 1.00 0.821
pn(np) 4.05 0.300 0.534 + i0.000 4.05 0.30 −1.135

2.4 two pp(nn) 2.34 0.881 0.318 + i0.876 2.16 1.00 0.037
pn(np) 3.66 0.345 0.534 – i0.538 4.05 0.30 −0.045

three pp(nn) 2.35 0.877 0.391 + i0.776 2.16 1.00 0.016
pn(np) 3.61 0.360 0.548 – i0.576 4.05 0.30 −0.019

aValues of ρt
NN in this column lie within the uncertainties reported in Ref. [30].

terms. This indicates that, in the present context, the NN
amplitude (28) with two terms may not only cover the relatively
large scattering angles but also describe the nondiffractive
behavior of NN scattering at relatively lower energies.

Figure 2 shows the effects of the phase of the NN amplitude,
which has been taken into account [35] by multiplying Eq. (28)
by the phase factor e−iγNN q2/2 and treating the phase of the
NN amplitude γNN as a free parameter. Keeping the values
of the parameters σNN, ρNN, and β2

NN the same, as given in
Table I, we find that the phase of the NN amplitude, γNN,

does not help in improving the results with two or three terms
in the NN amplitude, obtained in Fig. 1, in which γNN was
fixed to be zero for all incident energies. Regarding this, it is
worth mentioning that our results agree with those obtained
by Ahmad et al. [19] at 1.449 and 2.4 GeV. However, at
1.016 GeV, the present calculation totally disagrees with
the findings of Ahmad et al. [19], where it was shown that
consideration of γNN is important for providing a satisfactory
description of the data. The values of the optimum γNN

obtained in our case are reported in the last column of Table I.
As mentioned in Sec. I, the complexity in the analytic

evaluation of the Glauber model S matrix for nucleus-nucleus
collisions, in terms of realistic description of nuclei, has
led many authors to adopt various approximate schemes
for studying such collisions at intermediate energies. These
studies involve the GNN as their basic input. It was noted
that except for σNN , whose values were calculated using
the parametrization for σpp and σnp [22] which fits the
experimental NN total cross section data [36] nicely over a
wide energy range (∼10 MeV to 1 GeV), different authors

[10,14,17,19] have explored different values of ρNN and β2
NN

at a given incident energy, in order to provide a satisfactory
explanation of nucleus-nucleus scattering data at intermediate
energies within the frameworks of their approaches. At first,
this seems to be quite a concern, as it may lead to different
descriptions of NN scattering at a given incident energy.
However, if we rely on the values of ρpp and ρnp obtained from
the phase shifts and Coulomb interference measurements [30],
we find that the values of ρNN used in Refs. [10,14,17,19] lie
well within the uncertainties in the average values of ρpp and
ρpn. Thus, the only parameter that has been fixed according
to the need of nucleus-nucleus scattering data, in the energy
range under consideration, is the slope parameter β2

NN of
the NN amplitude. Unfortunately, the values of β2

NN used
in the literature [10,14,17,19] are quite different at a given
energy. Because of this, the parameter β2

NN is not a very
well-defined quantity, and hence the conventional Glauber
model analyses of nucleus-nucleus collisions are not found
to be completely parameter free at intermediate energies.
However, we are still of the opinion that whatever approach is
taken for the microscopic calculation of the Glauber model S

matrix, the values of the NN scattering parameters should be
consistent within reasonable variations. Otherwise, it will lead
to inconsistency in the results of various approaches, and it will
be difficult to assess the suitability of a particular approach to
performing Glauber model calculations for similar systems.

It is in this spirit that we also performed calculations for the
12C-12C elastic angular distribution and reaction cross section
using the approach of Franco and Varma [13], according to
which the Glauber model S matrix has been related to the
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TABLE II. Values of NN amplitude parameters (σNN, ρNN , and β2
NN ), which provide simultaneous descriptions of elastic angular distribution

and reaction cross section for 12C-12C system, without imposing any condition of reproducing the (free) NN total cross section (σf

NN ) [22] and
ratio of the real to the imaginary parts of the forward NN amplitude (ρf

NN ) [30]. Quantities σ eff
NN and ρeff

NN represent, respectively, the (effective)
or (in-medium) values of the NN total cross section and ratio of the real to the imaginary parts of the forward NN amplitude (see text), which
are obtained from Eq. (28) using the values of NN amplitude parameters given in this table. γNN is the optimum phase of the NN amplitude
(see text).

Energy No. of terms in NN σNN ρNN β2
NN σ eff

NN ρeff
NN γNN

(GeV) NN amplitude (28) (fm2) (fm2) (fm2) (fm2)

one pp(nn) 2.72 1.042 0.668 – i0.000 2.72 1.042 0.0254
pn(np) 6.31 1.951 0.341 – i0.000 6.31 1.951 −0.0073

1.016 two pp(nn) 3.11 1.616 1.488 – i0.383 3.02 1.813 0.0008
pn(np) 5.36 1.408 0.308 – i0.204 6.49 1.849 0.0005

three pp(nn) 2.96 1.592 1.713 – i0.100 2.77 1.823 0.0006
pn(np) 5.44 1.238 0.608 – i0.625 6.74 1.307 −0.0004

one pp(nn) 2.41 1.055 0.558 – i0.000 2.41 1.055 −1.206
pn(np) 3.05 1.454 1.264 – i0.000 3.05 1.454 0.721

1.449 two pp(nn) 2.52 1.245 1.706 – i0.125 2.49 1.333 −0.009
pn(np) 5.19 0.662 0.883 – i1.237 5.69 0.623 0.007

three pp(nn) 2.52 1.242 1.737 – i0.145 2.48 1.339 −0.007
pn(np) 5.20 0.662 0.848 – i1.223 5.80 0.608 0.006

one pp(nn) 1.45 0.738 1.343 – i0.000 1.45 0.738 −0.009
pn(np) 3.87 0.020 0.691 – i0.000 3.87 0.020 0.151

2.4 two pp(nn) 1.62 0.889 0.122 + i0.927 1.52 0.962 −0.042
pn(np) 3.63 0.023 0.963 – i0.863 3.78 −0.012 0.188

three pp(nn) 1.57 0.973 0.122 + i0.684 1.44 1.065 0.001
pn(np) 3.60 0.021 0.993 – i0.519 3.83 −0.012 −0.010

nucleus-nucleus phase shift function χ (�b) through the relation

Sel(�b) = eiχ(�b), (31)

with

χ (�b) =
∞∑
i=1

χi(�b), (32)

where the various orders of the phase shifts (χ1, χ2, . . .) have
the same expressions as obtained in Refs. [13,19].

Retaining the terms up to second order in the phase
expansion series (32) and taking two terms in the NN amplitude
(28) with its parameters (σNN, ρNN, and β2

NN ) the same as
reported in Table I, we present in Fig. 3 our results for 12C-12C
elastic angular distribution and reaction cross section at 1.016,
1.449, and 2.4 GeV. For the sake of comparison, Fig. 3 also
contains our results obtained (in Fig. 1) using the effective
profile function approach as discussed in Sec. II. It is found
that the effective profile function approach gives relatively
better results than the phase expansion approach, when one
uses the same form, with the same values of the parameters, of
the NN amplitude. In this context, however, it has been checked
that we do not find any other set of values for the parameters
of NN amplitude that can improve the results obtained within
the framework of the phase expansion approach. Thus, the
findings of the present work suggest that the NN amplitude
(28) involving two terms, with the parameter values as reported
in Table I, is a possible choice for describing the behavior of
the (free) NN scattering at the energies under consideration.

To exercise the possibility of exploring the nuclear medium
effects on the parameters of the NN scattering amplitude
(28), we vary σNN, ρNN, and β2

NN in such a way that it
now includes only the simultaneous description of the elastic
angular distribution and reaction cross section for 12C-12C
system at energies under consideration. The results of these
calculations are presented in Fig. 4. If we concentrate on the
two terms in the NN amplitude (28), we find that the said
variation in the NN amplitude parameters pushes theory closer
to the experiment. However, the effects of such variations
are found to be more prominent at 2.4 GeV. The values of
σNN, ρNN , and β2

NN obtained in this way are reported in Table
II. Because in this case we have not imposed any condition
of reproducing σ

f

NN [22] and ρ
f

NN [30], we may refer to
these values as the effective values of the parameters of NN
amplitude in the nuclear medium. Moreover, the corresponding
(effective) values of the NN total cross section σ eff

NN and the
ratio of the real to the imaginary parts of the forward NN
amplitude ρeff

NN , which are obtained from Eq. (28) using the
so-called effective values of σNN, ρNN, and β2

NN , are also
reported in Table II. It is seen that σ eff

NN is less than (free) σ
f

NN

in all the cases. Since σ eff
NN is essentially an average over the

nuclear volume involved during collision, our results, like the
ones obtained by Ahmad et al. [20], provide only qualitative
support to the results of the microscopic studies [23,24] in
which the in-medium NN total cross sections are found to be
less than the free ones. Further, if we compare the average
values of σ eff

pp(nn) and σ eff
pn(np) as obtained in this work with

the phenomenological ones [20], we find that the difference
between the (free) σ

f

NN and our σ eff
NN is not as large as reported
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FIG. 1. Elastic angular distribution for 12C-12C at 1.016, 1.449,
and 2.4 GeV using the parameters of the NN amplitude as reported
in Table I. Curves correspond to one, two, and three terms in the
NN amplitude (28). Theoretical values of reaction cross sections are
given for each form of the NN amplitude. γNN is zero for all incident
energies. Experimental data are from Ref. [19].

in Ref. [20]. This might be because in phenomenological
studies [20], the authors focused on reproducing the 12C-12C
elastic angular distribution only; whereas in the present work,
we also included the reaction cross section, which is one of the
most fundamental quantities characterizing nuclear reactions.
Moreover, if we compare the parameters (σNN, ρNN and β2

NN )
of the NN amplitude in Tables I and II, it is interesting to note
that the so-called effective values are found to be different from
their corresponding free ones. Thus, the results of the present
analysis provide a qualitative description of the in-medium
effects on the parameters of the (free) NN amplitude.

Figure 5 shows the effects of the phase of the NN amplitude
γNN , which has been taken into account in the same way as in
Fig. 2, but with the NN parameter values as given in Table II.
Here also, we find that γNN does not provide any significant
improvement over the results obtained in Fig. 4 in which γNN

was fixed to be zero for all incident energies. The values of
the optimum γNN obtained in this case are reported in the last
column of Table II.

Finally in Fig. 6, we present a study of the effects of
the c.m. correlations on the 12C-12C elastic scattering. As
mentioned in Sec. II, the c.m. correlation effect appears in
the two-body form factors of the colliding nuclei through
the c.m. correlation correction factor θ (�q). Thus, to study the
effect of ignoring the c.m. correlation in the projectile and the

FIG. 2. Same as in Fig. 1, but with the optimum γNN for each
incident energy (Table I).

target we simply take θ (�q) = 1. Here, note that we calculated
the 12C-12C elastic angular distribution by involving only two
terms in the NN amplitude (28) and by taking its parameters
to be the same as reported in Table I.

The dashed curve in Fig. 6 is the result of neglecting the c.m.
correlations in both the projectile and the target. The dotted
curve ignores the c.m. correlation in the target only, and it is
obvious that due to the symmetrical nature of colliding nuclei,
the effect of ignoring the c.m. correlation in the projectile only
would be the same as observed in the dotted curve. The solid
curve is obtained when the c.m. correlations are present in
both the projectile and the target. It is found that, except for
θc.m. � 3◦, the c.m. correlation correction has an appreciable
effect on the 12C-12C elastic scattering throughout the range
of momentum transfer.

In summary, we have analyzed the 12C-12C elastic angular
distribution and reaction cross section at 1.016, 1.449, and
2.4 GeV using the Coulomb modified correlation expansion for
the Glauber amplitude based on the effective profile function
approach as developed by Ahmad [27]. We emphasized the
parametrization for the basic (input) NN amplitude that may
be used for a wide range of angles. The calculations were
performed in two steps. In the first step, we searched for the
values of the parameters of NN amplitude that may provide
the best possible description of the elastic angular distribution
and reaction cross section for the 12C-12C system with the
conditions that the σ

f

NN and ρ
f

NN be also reproduced at 85,
120, and 200 MeV/nucleon. Retaining up to the two-body
density term in the correlation expansion for the Glauber

054614-7



DEEKSHA CHAUHAN AND Z. A. KHAN PHYSICAL REVIEW C 75, 054614 (2007)

FIG. 3. Elastic angular distribution for 12C-12C at 1.016, 1.449,
and 2.4 GeV using the effective profile function and phase expansion
approaches. Theoretical values of the reaction cross sections are given
for each approach. These calculations involve only two terms in the
NN amplitude (28); parameter values are the same as in Table I; γNN

is zero for all incident energies. Experimental data are from Ref. [19].

FIG. 4. Same as in Fig. 1, but with the parameters of the NN
amplitude as reported in Table II.

FIG. 5. Same as in Fig. 4, but with the optimum γNN for each
incident energy (Table II).

FIG. 6. Effects of c.m. correlations on 12C-12C elastic angular
distribution at 1.016, 1.449, and 2.4 GeV. Dashed curve, without the
c.m. correlation in both projectile and target; dotted curve, including
the c.m. correlation in target only; solid curve, including the c.m.
correlation in both projectile and target. Experimental data are from
Ref. [19].
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amplitude and using the realistic densities for the colliding
nuclei, it is found that the consideration of the two terms in
the NN amplitude (28) provides a significant improvement
over the results obtained with the GNN, and we now have
a quite satisfactory explanation of the data throughout the
range of momentum transfer. This indicates the importance of
large q components and hence the nondiffractive behavior of
NN scattering at relatively lower energies. Furthermore, it has
also been shown that between the effective profile and phase
expansion approaches, the former one seems to be the better
choice for the microscopic description of 12C-12C scattering at
intermediate energies.

In the second step of our calculations, we attempted to see
the in-medium effects on the (free) NN scattering amplitude.
For this, we varied the paramaters of the NN amplitude (28) up
to the extent of getting simultaneous (good) descriptions of the
elastic angular distribution and reaction cross section without
imposing any condition of reproducing σ

f

NN and ρ
f

NN . The

results of such calculations support the microscopic findings
[23,24] that the in-medium NN total cross sections are less than
the free ones. However, the present study also sheds some light
on the possible in-medium effects on the other parameters of
the NN amplitude. As regards the effect of the phase of the
NN amplitude, we find that it does not help in improving the
results obtained by taking the phase of the NN amplitude to
be zero for all incident energies. Finally, our calculations also
highlight the importance of the c.m. correlations in nucleus-
nucleus collisions at intermediate energies.
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