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Center-of-mass correction in a relativistic Hartree approximation
including meson degrees of freedom
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We use the Peierls-Yoccoz projection method to study the motion of a relativistic system of nucleons interacting
with sigma and omega mesons, generalizing a method developed for the alpha particle. The nuclear system is
described in a mean-field Hartree approach, including explicitly the meson contribution. The formalism is applied
to 4He,16 O, and 40Ca. The center-of-mass correction makes the system too much bounded. It turns out that a
new set of model parameters is needed when the center-of-mass motion is consistently treated with respect to the
traditional approaches. An appropriate refitting of the model brings the radii and binding energies to reasonable
values for the oxygen and calcium.
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I. INTRODUCTION

Relativistic models for finite nuclei, with nucleons and
mesons are usually treated in the Hartree or Hartree-Fock ap-
proximations. In these approximations the total linear momen-
tum is no longer a conserved quantity and the spurious center
of mass (c.m.) motion gives rise to unphysical contributions
in the calculated nuclear observables. As already discussed
for nonrelativistic nuclear models, using the same kind of
mean-field approximation, the correct treatment for the c.m.
motion introduces a modest modification in the total binding
energy for intermediate mass nuclei, but relatively large
contributions in other observables, e.g., charge distributions
and spectral functions [1,2]. In relativistic treatments, the c.m.
correction is up to now limited to the harmonic approximation

for the energy or to the subtraction of 〈 �̂P 2
A〉

2AM
from the total

energy, where �̂PA is the total nucleus momentum operator, M

is the nucleon mass and the mean-value is taken using the
Hartree self-consistent state for A nucleons.

More recently [3], the c.m. energy correction was estimated
within the σ -ω model, using the Peierls-Yoccoz projection
procedure [4], for N = Z spherical nuclei within the Hartree
approximation. Although the correction obtained in this way is
of the same order of magnitude of the harmonic approximation,
only the nucleonic degrees of freedom were taken into account
in that calculation. In Ref. [5], a formalism has been developed
to include the mesonic degrees of freedom in the c.m.
projection within σ -ω models and an application was then
made to the 4He nucleus. In the present paper we generalize
the results obtained in [5] in order to extend the calculations to
heavier spherical nuclei, allowing us to draw more systematic
conclusions. In Sec. II, we review the main results from
Ref. [5]. Then, in Sec. III, the linear momentum projection
within the model is presented and the total energy functional
is worked out. Since most of the model parametrizations within
σ -ω models are based on fits to the experimental data of both
binding energy and charge radius, we take the same point
of view. The nuclear charge mean square radius is discussed
in Sec. IV. The numerical results for 4He,16 O, and 40Ca are

shown and discussed in Sec. V. Finally the conclusions and
perspectives are summarized in Sec. VI.

II. THE MEAN-FIELD HAMILTONIAN WITH MESONS AS
COHERENT STATES

In this section we summarize the main aspects of the
relativistic nucleon-meson models of nuclei. The model used
in this work is restricted to σ and ω mesons, without self-
interactions (the inclusion of such interactions is straightfor-
ward using the method presented in this paper).

The Lagrangian density for a system of nucleons interacting
with sigma and omega mesons reads [6]

L = Lfree
N + Lfree

σ + Lfree
ω + Lint

NNσ + Lint
NNω, (1)

where N denotes the nucleon and σ, ω the mesons. The
Lagrangians for the free fields are

Lfree
N = ψ(x)(iγ µ∂µ + M)ψ(x), (2)

Lfree
σ = − 1

2

[
m2

σ σ 2(x) − ∂µσ (x)∂µσ (x)
]
, (3)

Lfree
ω = − 1

4Fµν(x)Fµν(x) + 1
2m2

ωων(x)ων(x), (4)

where

Fµν ≡ ∂µων(x) − ∂νωµ(x),

M is the rest mass of the nucleon, and mσ and mω are
the meson masses. The sigma and omega fields are denoted
respectively by σ (x) and ων(x), and the nucleon field by ψ(x).
The interaction parts of the Lagrangian are

Lint
NNσ = gσψ(x)σ (x)ψ(x), (5)

Lint
NNω = −gωψ(x)ων(x)γνψ(x). (6)

From the above Lagrangian density one derives the follow-
ing Hamiltonian density:

H = HN + Hω + Hσ , (7)
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where the fermionic term is

HN = ψ†(x)

{
− i�α · �∇ + β[M − gσσ (x)] − gω �α · �ω(x)

+ gω

m2
ω

�∇ · �Pω

}
ψ(x) + g2

ω

2m2
ω

[ψ†(x)ψ(x)]2, (8)

and the free meson terms are

Hω = 1

2

[
�Pω · �Pω + ( �∇ · �Pω)2

m2
ω

+ ( �∇ × �ω)2 + m2
ω �ω2

]
,

(9)

Hσ = 1
2

[
P 2

σ + �∇σ · �∇σ + m2
σ σ 2]. (10)

Note that we have used the definitions P i
ω = F 0i with i =

1, 2, 3 and Pσ = ∂0σ . The quantization of the model follows
the usual procedure described, for instance, in [7]. The most
important steps of the quantization are described in [5], but the
procedure can be outlined here by saying that, for the canonical
quantization of massive vector fields, one cannot use the field
ω0, because its canonical conjugate field is identically zero.
For conserved four-vector sources (as it is the case of the
nucleon vector current) the four-divergence of ωµ is zero, and
therefore one can use the full Klein-Gordon equation for ω0

to write this field in terms of the divergence of the conjugate
field of the spatial components ωi and of the zeroth component
of the vector current, gωψ†ψ (see eq. (12) in Ref. [5]). The
Hamiltonian is then built in the usual way by using only the
spatial components, ωi , and their respective conjugate fields,
P i

ω. The two-body contact term in Eq. (8) arises from the
quadratic term in ω0 in the Lagrangian.

The nucleon field operators can be expanded as

ψ̂(x) =
∑

α

uα(�r)e−iEαtbα +
∑

α

vα(�r)eiEαtd†
α, (11)

ψ̂
†
(x) =

∑
α

u†
α(�r)eiEαtb†α +

∑
α

v†
α(�r)e−iEαtdα, (12)

where uα(�r) and vα(�r) form a complete set of Dirac spinors
in the coordinate space, and bα and b†α are the creation and
annihilation operators of a nucleon in the state α. By dα and
d†

α we denote the creation and the annihilation operators for
the antinucleons in the state α. Similarly, the σ meson field
may also be expanded in the following form:

σ̂ = 1

(2π )3/2

∫
d3k√

2ωσ (k)
[c(�k)ei�k·�r + c†(�k)e−i�k·�r ]. (13)

The omega field expansion, considering longitudinal and
transverse waves relative to the wave vector �k, reads

�̂ω = 1

(2π )63/2

∫
d3k√

2ωω(k)

{ [
ωω

mω

�k al(�k)

+
∑
t=1,2

êt (�k)at (�k)

]
ei�k·�r + h.c

}
. (14)

All creation and annihilation operators (c, c†), (al, a
†
l ) and

(at , a
†
t ) obey canonical boson commutation relations, and we

have introduced the frequencies ωσ = √
m2

σ + k2 and ωω =

√
m2

ω + k2. Using the above expansions, the free meson field
Hamiltonians can be cast in the form

Hσ =
∫

d3rHσ =
∫

d3k ωσ (k)c†(�k)c(�k), (15)

and

Hω =
∫

d3k ωω(k)

[
a
†
l (�k)al(�k) +

∑
t=1,2

a
†
t (�k)at (�k)

]
. (16)

The nucleus state is assumed to be described by |ψ〉 =
|A〉|σ 〉|ω〉, with |A〉 representing an A fermion Slater determi-
nant with the lowest energy states occupied (valence or no-sea
approximation), i.e.,

|A〉 = b†α1
b†α2

. . . b†αA
|0〉, (17)

where α1, . . . , αA are sets of single-particle quantum numbers
and |0〉 is the bare vacuum. As it is usual in σ -ω models,
we work in the valence approximation, which means that the
polarization of the negative energy single particle states is
neglected. This is also a common approximation in quark-
meson chiral soliton models, such as the linear sigma model
or the chromodielectric model [8]. The approximation is even
more justifiable here since the binding energy per nucleon is
small compared with the rest mass of the nucleon. However,
this might not be the case in other approximations (see, for
instance, Ref. [9]).

In the above product state, |σ 〉 represents a coherent state
describing the σ mesons and |ω〉 a coherent state describing
the ω mesons. For instance, for the σ meson cloud:

|σ 〉 = Nσ exp

[∫
d3k η(�k)c†(�k)

]
|0〉, (18)

with c(�k)|σ 〉 = η(�k)|σ 〉 and, from the normalization of the
state

Nσ = exp

[
−1

2

∫
d3k |η(�k)|2

]
. (19)

We now enforce the mean value of the σ field operator in
the coherent state to be equal to the potential obtained in the
mean-field Hartree approximation, i.e., we demand

〈σ |σ̂ |σ 〉 = φ0(r), (20)

for a spherical symmetric potential. This condition allows us
to determine, in an unique way, the function η(�k) in Eq. (18).
Exploiting the spherical symmetry of the scalar potential, one
finds

η(k) =
√

ωσ (k)

π

∫
dr r2 j0(kr)φ0(r), (21)

where j0 is the spherical Bessel function of zeroth order. A
similar procedure can be carried out for the ω meson field. In
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this case,

|ω〉 = Nω exp

[∫
d3k [�l(�k)a†

l (�k) +
∑
t=1,2

�t (�k)a†
t (�k)

]
|0〉,

(22)

and, using again the normalization and the properties of
the vector potential in the Hartree approximation, such as

〈ω| �̂ω|ω〉 = 0, 〈ω|ω̂0|ω〉 = ω0(r) and 〈ω| �̂Pω|ω〉 = r̂
dω0(r)

dr
,

one finds

�l(k) = 1

mω

√
ωω(k)

π

∫
dr r2j1(kr)

dω0(r)

dr
, (23)

and �t (�k) = 0. If we now take the states defined in Eqs. (17),
(18), and (22) and calculate the mean value of the Hamiltonian
obtained from Eq. (7), we exactly recover the nucleus energy
obtained in the usual Hartree approximation.

Let us stress that the coherent state is a multiparticle
state and the description of meson clouds by coherent states
introduces many-body correlations.

III. THE CENTER-OF-MASS APPROXIMATE
PROJECTION

Next, we want to obtain the center-of-mass (c.m.) correction
to the energy using the model described in Sec. II. It is well
known, from the nuclear many-body theory, that mean-field
approximations break translational invariance (see Ref. [4])
and that the broken symmetry can be recovered by applying
the Peierls-Yoccoz projection to the symmetry-breaking state.
The projection operator

P �p =
∫

exp
[
i( �̂P − �p) · �a]

d3�a, (24)

exhibits the property

P�pP�p′ = δ(�p − �p′)P�p. (25)

In Eq. (24), �̂P = �̂PA + �̂Pσ + �̂Pω is the total linear momentum
operator and �p the corresponding eigenvalue. Our approach
consists in assuming that the model state representing the
physical nucleus is obtained by projecting the product mean-
field Hartree state onto a zero momentum (�p = �0) state (the
procedure is known as projection after variation). Since the
Hamiltonian H = ∫

d3rH, withH given by Eq. (7), commutes
with the projection operator, we may write the total energy,
already corrected for the c.m. spurious motion, as

E�p=0 = 〈ψ |HP�p=�0|ψ〉
〈ψ |P�p=�0|ψ〉 . (26)

We emphasize that, in the valence approximation, the projec-
tion operator acts on the mesons and on the positive energy
fermions. The vacuum single-particle states are unperturbed
and the vacuum is invariant under translations, so that the
shifted states have the same energy as the unshifted ones in

the so-called variation before projection method [10] that we
are using here.

In order to compute the projected energy let us first consider
the norm overlap:

〈ψ | P �p=�0 |ψ〉 =
∫

d�a〈σ |ei �̂Pσ ·�a|σ 〉

× 〈ω|ei �̂Pω ·�a|ω〉〈A|ei �̂PA·�a|A〉, (27)

and begin with the σ field contribution. Its norm overlap reads:

Nσ (a) = 〈σ |ei �P σ ·�a|σ 〉
= exp

{
4π

∫
dkk2|η(k)|2[j0(ka) − 1]

}
, (28)

where η(k) is defined by Eq. (21). We then find

Nσ (a)

= exp

{
4π

∫
dkk2

(
m2

σ + k2
)1/2

2
φ̃

2
0(k)[j0(ka) − 1]

}
,

(29)

where

φ̃0(k) =
∫

drr2j0(kr)φ0(r). (30)

Similarly, for the ω meson norm overlap

Nω(a)

= exp

{
4π

mω

∫
dk k2

(
m2

ω + k2
)1/2

2
ω̃

2
0(k)[j0(ka) − 1]

}
,

(31)

where

ω̃0(k) =
∫

drr2j0(kr)ω0(r). (32)

The calculation of the fermionic part of the norm overlap is
more involved, and we just quote here the main result in a
compact form:

NA(a) = 〈A|ei �̂PA·�a|A〉 = det B, (33)

where the B matrix is defined by

Bαβ = 〈α|β(a)〉. (34)

Each label (α and β stands for the set of particle quantum
numbers (n, l, j,m) as well as for the isospin projection
quantum number necessary to classify the state. The ket |β(a)〉
means a single-particle (four-component) state for which the
spatial coordinate �r is changed to �r + �a.

Next, we move our attention to the energy kernel calcula-
tion. The total Hamiltonian is written in the form

H = HN + Hσ + Hω, (35)

where the first term contains the free fermion part as well as
their interaction with the σ − ω mesons. The second and third
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terms are given by Eqs. (15) and (16) and represent the free
mesonic terms. Let us consider the free σ field energy kernel.
Using Eqs. (18),(21) and the result

|σ (a)〉 = ei �̂Pσ ·�a|σ 〉 = Nσ exp

[∫
d�kη′(�k)b(�k)

]
|0〉, (36)

with η′(�k) = η(�k)ei�k·�a , we obtain

εσ (a) = 〈σ |Hσ |σ (a)〉
= 1

2

[∫
dk k2

(
m2

σ + k2
)
φ̃

2
0(k)j0(ka)

]
Nσ (a). (37)

For the free ω meson energy kernel, a similar analysis leads us
to the following result:

εω(a) = 〈ω|Hω|ω(a)〉
= 1

2m2
ω

[∫
dkk4

(
m2

ω + k2
)
ω̃

2
0(k)j0(ka)

]
Nω(a).

(38)

For the fermionic part of the energy kernel, it is more
convenient to rewrite the corresponding original Hamiltonian.
From Eq. (8), in the Hartree mean-field, we can read off the
fermionic Hamiltonian written in second quantized form:

HN = ĥ
(1) + ĥ

(1 2) =
∑
α,β

h
(1)
αβb†αbβ

+
∑
α,βγ δ

h
(1 2)
αβγ δ : b†αbγ b

†
βbδ:, (39)

with

h
(1)
αβ =

∫
d�ru†

α(�r)

{
− i�α · �∇ + β[M − gσσ (x)]

+ gω

m2
ω

�∇ · �Pω

}
uβ(�r), (40)

and

h
(1 2)
αβγ δ =

∫ ∫
d�rd�r ′

u†
α(�r)u†

β(�r ′)
g2

ω

m2
ω

δ(�r − �r ′)uγ (�r)uδ(�r ′).

(41)

In the above equations, uα,β represents the Dirac single-
particle spinor, which we choose to be the Hartree mean-field
solution. Observing now that, the ω0 field should obey the
Klein-Gordon equation:

∇2ω0(r) = −gωρB(r) + m2
ωω0(r), (42)

and that �∇ · �P ω = −∇2ω0(r), we may rewrite the one-body
part in Eq. (39) as

ĥ
(1) = hMFA − g2

ω

m2
ω

ρB(�r), (43)

with

hMFAuα = εαuα. (44)

We are now in position to perform the calculation of the
fermionic part of the energy kernel, which reads [5]

εN (a) = 〈A|HNei �P A·�a|A〉 =
∑

α

εαNA − 〈A|V (1)ei �P A·�a|A〉

+ 〈A|h(1 2)ei �P A·�a|A〉, (45)

where we have defined V (1) = g2
ω

m2
ω
ρB(�r). The second and third

terms in Eq. (45) can then be obtained with the help of the
well-known results (see, e.g., Ref. [11]):

〈A|V (1)ei �P A·�a|A〉 = NA(a)
∑
αβ

〈α|V (1)|β(a)〉B−1
βα ,

(46)

and

〈A|h(1 2)ei �P A·�a|A〉 = 1

2
NA(a)

∑
αβγ δ

〈αβ|h(1 2)

× |γ (a)δ(a)〉B−1
γα B−1

δβ , (47)

where the exchange term has been neglected. Putting ev-
erything together, we finally obtain the total nucleus energy
corrected for the spurious c.m. motion

E�p=0 =
∫

d�a[εN (a)Nσ (a)Nω(a) + εσ (a)NA(a)Nω(a) + εω(a)NA(a)Nσ (a)]∫
d�a[〈ψ |ψ(a)〉] . (48)

We stress that both the nucleons and the mesons were taken
into account in the evaluation of this projected energy.

IV. THE NUCLEAR CHARGE ROOT-MEAN-SQUARE
RADIUS

We now turn to the evaluation of the nuclear root-
mean-square (rms) radius in the formalism. Most of the

measurements refer to the proton charge rms radius so we
restrict ourselves to that case (measurements for the neutron
rms radius are under way and are receiving an increasing
interest [12]). On the other hand, since the mesons in the model
are all neutral we have to consider just the nucleon (proton)
contribution. Finally, in the discussion below, we consider
point-particle nucleons, though nucleon form factors can be
included without major difficulties.
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The (translationally invariant) nuclear radius operator is

R2
TI =

A∑
i=1

ei(�ri − �Rc.m.)
2, (49)

where �Rc.m. is the center of mass coordinate and ei is the
charge of the ith particle. The above operator can be rewritten,
for N = Z, as

R2
TI = (A − 1)

A

A∑
i=1

eir
2
i − 2

A

A∑
i<j

ei�ri · �rj . (50)

As for the energy calculation, the above radius operator
commutes with the total linear momentum, but our model
wave function |ψ〉 is not a total momentum eigenfunction, so
the mean radius is then given by

〈r2〉proj = 1

Ze

∫
d�a〈ψ |R2

TIexpi �P ·�a|ψ〉∫
d�a〈ψ |ψ(a)〉 . (51)

Noting that the radius operator contains an one-body and a
two-body term, the numerator of the above equation can be
worked out with the help of equations like Eqs. (46) and (47),
respectively.

V. NUMERICAL APPLICATIONS FOR N = Z CLOSED
SHELL NUCLEI

In order to perform applications to specific nuclei, we must
solve first the σ − ω model above described in the Hartree
approximation, disregarding the c.m. motion effects. This is
totally equivalent to solve the model treating the mesons as
classical fields [6]. We choose to follow the method described
in reference [13], where both the nucleon Dirac spinors
and the fields are expanded in three-dimensional harmonic
oscillator functions, Rkl(r), and treat the expansion coefficients
as variational parameters. As we are dealing here with closed
shell nuclei only, we have

gnlj(r) =
N∑

k=0

C
(nlj)
k Rkl(r), (52)

fnlj(r) =
N ′∑

k=0

C̃
(nlj)
k Rkl(r), (53)

with g and f being the upper and lower radial components for
the single-particle wave function. For the meson fields:

B(r) =
NB∑
k=0

CB
k Rk0(r), (54)

where B stands for φ0 or ω0 and Rkl for the radial harmonic
oscillator function. Those expansions can be introduced in
the Dirac and Klein-Gordon equations and solved self-
consistently for the expansions coefficients Ck, C̃k , and CB

k .
After that, it is straightforward to implement the calculation of
the energy and rms radius as presented in the above sections,

TABLE I. Ground-state energy without (E) and with (Eproj)
the c.m. correction for the three double-closed shell nuclei
considered in this work and the root-mean-square charge radius
without (〈r2〉) and with (〈r2〉1/2

proj) the same corrections.

Nucleus E[MeV] Eproj[MeV] 〈r2〉1/2[fm] 〈r2〉1/2
proj[fm]

4He −4.85 −68.95 2.06 1.84
16O −94.63 −190.67 2.59 2.51
40Ca −331.32 −420.17 3.33 3.28

including the c.m. motion correction due to the nucleons and
mesons.

In Table I we show our results for the energy and for the
root-mean-square charge radius without and with the c.m.
projection (the set of parameters for the nucleon and meson
masses and for the coupling constants are taken from Ref. [14],
but disregarding the ρ meson and the eletromagnetic field). In
Table II, we show the effect of the c.m. correction over the
total energy, without the meson contributions, i.e., only the
nucleonic degrees of freedom are taken in to account [3], to-
gether with the usual harmonic oscillator approximation [13],
and also including the correction computed from 〈P 2

A/2AM〉.
From Table II it is clear that the last two corrections are similar
and not very different from the Peierls-Yoccoz correction
without the meson degrees of freedom. Let us remember
that the Peierls-Yoccoz method gives us not only the energy
correction but also a translationally invariant wave function
for the system.

It is worthwhile to note that the inclusion of the mesonic
contribution makes the system too much bounded in com-
parison with the case where just the fermionic contribution
is explicitly taken in to account. However, with a slight
modification of model parameters, we are able to obtain
reasonable results for the energy and charge radius, as shown in
Table III, in which the experimental results are also displayed.
For comparison within our calculation, we have extracted the
proton form factor contribution from the experimental charge
radius using the prescription given in equation (6.2), Ref. [13].

We must stress that the results shown in Table III are not
obtained from a careful fitting of the model parameters, which
should be done only after the inclusion of other mesons, as
well as nonlinear terms in the original Lagrangian. Formally,
these terms can be readily included but then the calculations
become more involved.

TABLE II. Ground-state energy, E, without the c.m. correction
for the three double-closed shell nuclei considered in this work
and with the c.m. correction Eproj but not considering the meson
degrees of freedom. Also shown is the energy with the c.m. cor-
rection, Eharm, calculated in the harmonic oscillator approximation
and the energy corrected just by the subtraction of 〈P 2

A/2AM〉.

Nucleus E[MeV] Eproj[MeV] Eharm[MeV] EP 2
A

/2AM[MeV]

4He −4.85 −18.07 −24.22 −16.35
16O −94.63 −107.87 −106.83 −104.92
40Ca −331.32 −342.56 −340.31 −339.84
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TABLE III. Ground-state energy Eproj for the three double-
closed shell nuclei considered in this work and charge radius
〈r2〉1/2

proj with the c.m. corrections included, compared to the
experimental results. The figures were obtained using the values
gs = 10.45 , gv = 13.82, and ms = 522 MeV, as compared to the
values gs = 10.47, gv = 13.80, and ms = 520 MeV from [14].

Nucleus Eproj[MeV] Eexp[MeV] 〈r2〉1/2
proj[fm] 〈r2〉1/2

exp[fm]

4He −53.50 −28.30 2.01 1.57
16O −158.50 −127.68 2.60 2.61
40Ca −339.14 −338.00 3.36 3.39

VI. CONCLUSIONS

We have computed the center-of-mass correction in the
binding energy and charge radius for spherical N = Z

nuclei using the well known Peierls-Yoccoz projection method
applied to the Hartree solution of the Walecka σ -ω model.
Although no explicit reference has to be made to the mesonic
states in the Hartree approximation, we have chosen coherent
states to describe meson degrees of freedom. Those states
are then completely determined in this approximation and
this allows us to obtain the nucleonic as well as the mesonic
center-of-mass motion correction. The numerical results show
a very important contribution from the mesons to the final
binding energies and a modest but still noticeable contribution
to the charge radius, as compared to the case where only
the nucleonic c.m. correction is taken into account or to the
situation where no correction is done. It is known that the
Peierls-Yoccoz projection suffers from the so-called mass
parameter problem which can be circumvented by using
the Peierls-Thouless or the so-called variation-after-projection
method [10]. Both are technically difficult to implement but the
latter might be feasible in systems of nucleons and mesons, at
least approximately. However, it was shown in Ref. [15] that

some observables, calculated in �p = 0 states, do not suffer
from the Peierls-Yoccoz mass problem. We intend to perform
a partial variation-after-projection in a restricted meson space
but do not expect large discrepancies for oxygen and calcium,
whose number of particles is already large, so that quantum
fluctuations are expected to be smaller.

Another important feature of our result is the fact that
the c.m. correction, including the mesons, makes the system
too much bounded. This is expected as long as the model
parameters were chosen to reproduce some aspects of finite
nuclei without that correction. We have also shown that a few
percent change in the coupling constants can bring the total
energy and rms radius close to the experimental values, at
least for the 16O and 40Ca cases. For 4He the results are still
too far from the desirable using our proposed values, but this
is true even when no c.m. correction is included and using
the original parametrization for that nucleus. Furthermore, the
energy correction in the 4He case is relatively large irrespective
to the approximation used to extract the CM motion, so we
believe that for this light mass region the projection after
variation procedure may not be applicable.

In short, we may say that, if we want to take into account the
mesons in the center-of-mass correction applied to a relativistic
model for the nucleus, a new set of parameters must be found
in order to reproduce some basic nuclear properties as the
binding energy and radius. Once this is achieved, it would be
interesting to obtain other important nuclear properties as, e.g.,
the eletromagnetic form factors and spectroscopic factors. The
model and the techniques explored in this paper would provide
a good opportunity to obtain those observables. This work is
in progress.

ACKNOWLEDGMENTS

This work was partially supported by CNPq (Brazil) and
GRICES (Portugal).
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