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Pygmy and giant dipole resonances in Ni isotopes
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The isovector giant and pygmy dipole resonances in even-even Ni isotopes are studied within the framework
of a fully consistent relativistic random-phase approximation built on the relativistic mean field ground state. An
additional isoscalar-isovector nonlinear coupling term is adopted in the standard effective mean field Lagrangian,
which could modify the density dependence of the symmetry energy and soften the symmetry energy at the
saturation density without changing the agreement with experimentally existing data of ground state properties.
We found that the centroid energy of the isovector giant dipole resonance is tightly correlated to the neutron
skin thickness. In contrast, the centroid energy of the isovector pygmy resonance is insensitive to the density
dependence of the symmetry energy by tuning the isoscalar-isovector nonlinear coupling.
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I. INTRODUCTION

Since the isovector electric (non-spin-flip) giant dipole
resonance (GDR) was investigated first by Bandwin and
Klailer [1] at the end of 1940s, the experimental and theoretical
investigation of various modes of nuclear collective excitations
has become a major research field in nuclear structure
physics. Especially, much experimental data on GDR have
been obtained [2–4]. In recent years, the investigation of
the new low-energy collective isovector dipole mode, i.e.,
isovector pygmy dipole resonance (PDR), has attracted much
experimental and theoretical attention. The onset of low-lying
E1 strength has been observed not only in exotic nuclei with
a large neutron excess but also in stable nuclei [5–8]. PDR is
a result of excess neutrons oscillating out of phase with a core
composed of an equal number of protons and neutrons, which
is different from GDR, which represents a coherent oscillation
of all protons against all neutrons and is the quintessential
nuclear mode; a large fraction of the energy-weighted sum
rule is exhausted by this one resonance. Although the strength
of PDR is small compared to the total dipole strength, it is a
very important mode of nuclear excitation. The occurrence of
PDR significantly enhances the radiative neutron capture cross
section on neutron-rich nuclei [9,10], which has significance
in astrophysics. On the other hand, many theoretical works
have been carried out to understand the nature of both GDR
and PDR [11–16].

According to macroscopic hydrodynamic models, the
restoring force of isovector GDR is proportional to the
symmetry energy of nuclear matter. The symmetry energy
plays an important role in understanding the mechanisms of
many exotic phenomena in nuclear physics and astrophysics.
It affects directly the properties of exotic nuclei, dynamics
of heavy ion collisions, structure of neutron stars, simulation
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of supernova core collapse, and so on. Unfortunately, our
knowledge of symmetry energy is rather poor, especially
regarding its density dependence. Correlations between the
basic properties of the mean field models and symmetry
energy parameters with the size of the neutron skin have
been studied in Ref. [17]. There is no sufficient resolution
in the binding energy systematics of finite nuclei to fix the
symmetry energy. Additional isovector observables, such as
binding energies of more asymmetric nuclei, and observables
from collective excitations will be needed [17]. A systematic
investigation of GDR and PDR and correlations between
GDR, PDR, and the symmetry energy may provide valuable
information on the density dependence of the symmetry
energy.

In this work, a fully consistent relativistic random-phase
approximation (RRPA) built on the relativistic mean field
(RMF) ground state [18–20] is applied in studying GDR and
PDR in Ni isotopes. An additional isoscalar-isovector nonlin-
ear coupling is introduced in the RMF effective Lagrangian,
which could soften the symmetry energy and keep the ground
state properties in good agreement with the experimental data.
Varying the strengths of the isoscalar-isovector nonlinear cou-
pling modifies the density dependence of the symmetry energy
as well as the neutron skin. Alternatively, one could explicitly
include density-dependent meson-nucleon coupling constants
to soften the density dependence of the symmetry energy [21].
We will include the isoscalar-isovector nonlinear coupling
term in the RMF + RRPA calculations and systematically
investigate the correlation of GDR, PDR, density dependence
of symmetry energy, and neutron skin thickness in Ni isotopes.

The manuscript has been organized as follows. In Sec. II,
the ground state properties of Ni isotopes are studied in the
RMF theory with an additional nonlinear coupling of isoscalar
and isovector mesons. A fully consistent RRPA built on the
RMF ground state is briefly presented in Sec. III. In Sec. IV,
GDR and PDR in even-even Ni isotopes are discussed. Finally,
a brief summary is given in Sec. V.
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II. GROUND STATE PROPERTIES OF Ni ISOTOPES IN
THE RELATIVISTIC MEAN FIELD THEORY

We start with an effective Lagrangian of the form

L = ψ̄
[
γ µ(i∂µ − gωωµ − gρfτ · bµ − 1

2e(1 + τ3)Aµ)

− (M + gσσ )
]
ψ + 1

2∂µσ∂µσ − 1
2m2

σ σ 2 − 1
4ωµνωµν

+ 1
2m2

ωωµωµ − 1
4 Bµν · Bµν + 1

2m2
ρbµ · bµ

− 1
4FµνFµν − Ueff(σ, ωµ, bµ), (1)

where M,mσ ,mω,mρ are the nucleon, σ, ω, and ρ masses,
respectively, while gσ , gω, gρ, and e2/4π = 1/137 are the
corresponding coupling constants for mesons and the photon.
Various field tensors have been defined as

ωµν = ∂µων − ∂νωµ, (2)

Bµν = ∂µbν − ∂νbµ, (3)

Fµν = ∂µAν − ∂νAµ, (4)

Ueff(σ, ωµ) = 1
3g2σ

3 + 1
4g3σ

4 − 1
4c3(ωµωµ)2, (5)

where g2, g3, and c3 are the nonlinear coupling parameters for
self-interactions of the scalar and vector fields. In addition, a
mixed nonlinear isoscalar-isovector coupling with a strength

v is introduced, that is,

Ueff(ω
µ, bµ) = −4
vg

2
ρbµ · bµg2

ωωµωµ, (6)

which could soften the density dependence of the symmetry
energy. This softening occurs by tuning the nonlinear coupling
strength 
v . With increasing 
v , the symmetry energy
becomes weaker at the saturation density and stronger at lower
densities (see Fig. 1 and Table I).

Although the symmetry energy at saturation density is
not well constrained experimentally, some average of that
energy and of the surface energy may be constrained by
binding energies [17,24]. As a simple approximation, we
keep the symmetry energy fixed at the average density ρ =
0.1 fm−3, which is at the nuclear surface. This simple pre-
scription produces a nearly constant proton radius and binding
energy, only the neutron radius and neutron skin thickness
S, which is a quantity defined as the difference between
the root-mean-square (rms) radii of neutrons and protons,√〈r2

n〉 −
√

〈r2
p〉, are changed. The ground state properties of

Ni isotopes (A = 64–78) are calculated in the RMF with
the parameter sets NL3 [22] and TM1 [23]. The neutron
skin thickness S is reduced with the additional mixed non-
linear isoscalar-isovector coupling, while the binding energy
per nucleon and the proton radius remain unchanged (see
Figs. 2 and 3).

TABLE I. Saturation density and symmetry energy at saturation
density.

Model 
v asat
sym (MeV) ρsat (fm−3)

NL3 0.0 37.4 0.148
0.025 32.4

TM1 0.0 36.9 0.145
0.030 32.1

FIG. 1. Density dependence of symmetry energy in nuclear
matter for NL3 [22] and TM1 [23] parameter sets.

FIG. 2. Calculated (a) neutron skin thickness S, (b) proton radius,
and (c) binding energy per nucleon for even-even Ni isotopes; all
calculations were performed with parameter set NL3 . Experimental
data, when available, are from Refs. [25,26].

FIG. 3. Same as Fig. 2, but for parameter set TM1.
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FIG. 4. Neutron and proton density distributions in Ni isotopes
in the RMF with NL3 for two different values of the nonlinear ω-ρ
coupling. Cases 
v = 0 and 
v = 0.025 are denoted by solid and
dash curves, respectively. Lower and upper curves in each panel are
proton and neutron density distributions, respectively.

The proton and neutron density distributions of isotopes
64Ni, 66Ni, 68Ni, and 78Ni are plotted in Fig. 4. They are
calculated with and without the mixed nonlinear isoscalar-
isovector coupling in the RMF with NL3. In the calculation,
both paring correlations and the coupling to more complex
configurations are neglected.

The solid and dashed curves correspond to the results for

v = 0 and 
v = 0.025, respectively. Clearly, the neutron
central neutron densities with the softening of the symmetry
energy, while the proton densities essentially remain un-
changed. Therefore, the neutron skin S becomes smaller as

v increases. And the larger the neutron number N , the more
prominent is the increase of the neutron central density. This
suggests that the bigger the neutron number N , the larger the
change of the neutron skin thickness S, which is shown in
Figs. 2 and 3.

III. FULLY CONSISTENT RELATIVISTIC
RANDOM-PHASE APPROXIMATION

The fully consistent RRPA is built on the RMF ground
state. Details of the RRPA method used in the present study
are described in Refs. [18–20]. The linear response of a system
to an external field is given by the imaginary part of the retarded
polarization operator

R(Q,Q; k, k′, E) = 1

π
Im�(Q,Q; k, k′; E), (7)

where Q is a one-body operator represented by a 4 × 4
matrix. Q = γ 0rY10τ for dipole resonance, which excites an
(L = 1)-type electric (non-spin-flop)(�T = 1 and �S = 0)
giant resonance with spin and parity Jπ = 1−. The retarded
polarization operator � can be obtained by solving the

Bethe-Salpeter equation [27]

�(Q,Q; k, k′, E) = �0(Q,Q; k, k′, E)

−
∑

i

g2
i

∫
d3k1d

3k2�0(Q,
i ;

× k, k1, E)Di(k1 − k2, E)�

× (
i,Q; k2, k′, E), (8)

where �0 is the unperturbed (Hartree) polarization operator.
The residual particle-hole interactions are generated by the
meson exchanges, described by corresponding propagators Di .
In this equation, the index i runs over σ, ω, and ρ mesons
with gi being the corresponding coupling constants. Because
of the nonlinear couplings, the effective meson propagators
Di(k1 − k2, E) cannot be obtained analytically. In field theory,
equations of motion for fermion and boson fields are obtained
by variations of the action with respect to the corresponding
fields. The first-order variation of the action with respect to
a given meson field φ gives the field equation (Klein-Gordon
equation) satisfied by this field. The second-order variation of
the action at the classical value φ0 of the meson field φ will
lead to the equation of the meson propagator [28](

∂µ∂µ + ∂2Ueff(φ)

∂φ2

∣∣∣∣
φ0

)
Dφ(x, y) = −δ4(x, y). (9)

In practice, it is more convenient to calculate Dφ(x, y) by
solving the above equation in the momentum space [19].
Taking the Fourier transform of Eq. (9), we obtain the
expression of the meson propagator in the momentum space

(E2 − k2)Dφ(k, k′, E) − 1

2π3

×
∫

Sφ(k − k1)Dφ(k,k′,E)d3k1 = (2π )3δ(k − k′), (10)

where Sφ(k − k1) is the Fourier transform of ∂2Uφ (φ)
∂φ2 |φ0 ,

Sφ(k − k1) =
∫

e−i(k−k1)·rVφ d3r. (11)

Therefore, the function Vφ for σ, ω, and ρ mesons can be
expressed, respectively, as

Vσ = m2
σ + 2g2σ (r) + 3g3σ

2(r), (12)

Vω = m2
ω + 3c3ω

2
0(r) + 8
vg

2
ρg

2
ωb2

0(r), (13)

Vρ = m2
ρ + 8
vg

2
ρg

2
ωω2

0(r). (14)

σ (r), ω0(r), and b0(r) are the classical values of σ, ω, and
ρ fields. They can be obtained by a self-consistent calculation
in the RMF [28].

IV. GIANT AND PYGMY DIPOLE RESONANCES

The giant dipole resonances in the Ni isotopes are calculated
with parameter sets NL3 and TM1. A spherical symmetry is
adopted to simplify the RRPA calculations, where the density
distributions for nucleons in an open shell are averaged (filling
approximation) [14]. To obtain the centroid energies of dipole
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FIG. 5. Isovector dipole response functions in Ni isotopes, for
parameter set NL3 with two different values of the nonlinear ω-ρ
coupling. Cases with 
v = 0 and 
v = 0.025 are denoted by solid
and dash curves, respectively.

resonance strengths, we first calculate various moments of the
response function in a given interval, that is,

mk =
∫ Emax

0
RL(E)Ek dE. (15)

Emax is the maximum excitation energy, which is carried out to
60 MeV in the present calculations. To study PDR, the centroid
energies are calculated separately in two energy regions: 0–10
and 10–60 MeV. From those moments, we can obtain the
centroid energies of PDR and GDR, E = m1/m0.

We display the distribution of isovector dipole strength for
the even-even Ni isotopes in Figs. 5 and 6 with the parameter
sets NL3 and TM1, respectively. In Fig. 5, the GDR peak is
around 17 MeV and that of PDR is around 9 MeV. The PDR
strengths increase as the neutron number increases. The results
with parameter set TM1 are very similar.

To show the correlation between the symmetry energy,
neutron skin, and evolution of GDR and PDR in Ni iso-
topes, we plot the centroid energies of GDR and PDR as
functions of nuclear mass and neutron skin in Figs. 7–10. In
Figs. 7 and 9 we compare the centroid energies of GDR for
Ni isotopes with (solid circles) and without (solid squares)
the isoscalar-isovector coupling, where the parameter sets
NL3 and TM1 are used. It is found in Figs. 7 and 9 that
with increasing 
v and decreasing neutron skin thickness,
the centroid energy of GDR increases for all Ni isotopes.
It is well known that the restoring force of the isovector

FIG. 6. Same as Fig. 5, but for parameter set TM1.

FIG. 7. Centroid energy of GDR as functions of (a) neutron skin
thickness S and (b) mass number of the Ni isotopes, for parameter
set NL3.

(a)

(b)

FIG. 8. Same as Fig. 7, but for PDR.

FIG. 9. Same as Fig. 7, but for parameter set TM1.
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(a)

(b)

FIG. 10. Same as Fig. 8, but for parameter set TM1.

GDR is proportional to the volume symmetry energy. It has
been mentioned above that with increasing 
v , the symmetry
energy becomes soft. Although the symmetry energy decreases
at saturation density, the symmetry energy becomes stronger
at lower densities below ρ = 0.1 fm−3 (see Fig. 1). Due to
the surface vibration modes of the collective excitations, the
centroid energies of GDR are pushed to higher energies with
stronger symmetry energy at low density. And as the number
of neutrons increases, the isospin effect becomes stronger. For
each isotope, the neutron skin is reduced with softening of the
symmetry energy. Because we plotted the centroid energy of
GDR as a function of neutron skin, a tight correlation is clearly
shown between the centroid energy of the GDR state and the
neutron skin thickness in the Ni isotopes [Figs. 7(a) and 9(a)].

In contrast, it is interesting to find in Figs. 8 and 10 that
the centroid energies of the PDR are insensitive to any change
in the density dependence of the symmetry energy caused
by tuning 
v . Similar results have been observed in studies
of nuclei130Sn and 132Sn [13]. These results show that the
isoscalar-isovector nonlinear coupling has no effect on the
PDR centroids. The reason is because the PDR originates
mainly from the vibrations of a few valence neutrons against
the nuclear core. Those valence neutrons are located at the
density, where the symmetry energy is not changed. Actually,
in Fig. 4 one can observe that the neutron density distributions
in both cases for the isoscalar-isovector coupling constants
are basically the same in the exterior region which is relevant
to the dynamics of PDR. The main difference is observed
in the interior region, which has very little influence on the
subtle properties of PDR. To achieve variations in the neutron
skin which are relevant to PDR, one needs to obtain modified
neutron density distributions at larger radii, and exactly this is
achieved in Ni isotopes by increasing the number of neutrons,
which is shown in Figs. 8(a) and 10(a).

We close the discussion by displaying in Fig. 11 the
calculated fraction of the energy-weighted sum rule contained
in PDR relative to that in GDR with parameter set TM1 as a
function of the mass number A for Ni isotopes. Obviously, a
strong linear correlation between m1(PDR)/m1(GDR) and A

is displayed for A � 68. With increasing mass number A, the
neutron skin increases, which support the point of view that

FIG. 11. Fraction of energy-weighted sum rule contained in PDR
relative to that in GDR as a function of the mass number A for Ni
isotopes, for parameter set TM1.

the PDR is considered to be an oscillation of the neutron skin
against the isospin symmetric core. The mild anticorrelation
in the evolution from 68Ni to 78Ni can be attributed to the
neutron orbital 1g9/2. This high-angular-momentum orbital
plays a passive role in driving the low-energy transition of low
multipolarity [13]. In addition, there is a noticeable decrease in
the fraction of the energy-weighted sum rule contained in PDR
relative to that in GDR with increasing 
v , i.e., decreasing
neutron skin. This result is consistent with that obtained in
130Sn and 132Sn [13].

V. SUMMARY

In summary, the isovector giant dipole and pygmy res-
onances in even-even Ni isotopes are studied within the
framework of a fully consistent relativistic random-phase
approximation built on effective mean field ground state.
The effective Lagrangians with additional isoscalar-isovector
nonlinear coupling term is introduced. The isoscalar-isovector
nonlinear coupling term could soften the symmetry energy in
nuclear matter and, therefore, the neutron skin thickness in
finite nuclei. The effects of the isoscalar-isovector nonlinear
coupling term on the isovector dipole response including the
centroid energies of GDR and PDR and the relative transition
strength of PDR with respect to GDR in Ni isotopes were
investigated. We found that the centroid energy of the isovector
giant dipole resonance is tightly correlative to the neutron skin
thickness. In contrast, the centroid energy of the isovector
pygmy resonance is insensitive to the changing of the density
dependence of the symmetry energy by tuning 
v .
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