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The quasiparticle time blocking approximation (QTBA) is presented as a model for the description of
natural-parity excitations in open-shell nuclei. Most attention is paid to the question of the damping of the giant
dipole resonance. Within the model pairing correlations, two-quasiparticle (2q), and 2q⊗phonon configurations
are included. Thus the QTBA is an extension of the quasiparticle random phase approximation to include
quasiparticle-phonon coupling. Calculational formulas are presented for the case of neutral natural-parity
excitations in spherical nuclei. The main equations are written in the coordinate representation that allows
to take into account single-particle continuum completely. The QTBA is applied to describe E1 photoabsorption
cross sections in nuclei 116,120,124Sn. It has been obtained that the 2q⊗phonon configurations provide noticeable
fragmentation of the giant dipole resonance resulting in the appearance of a significant spreading width. The
results are compared with available experimental data.
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I. INTRODUCTION

Theoretical description of giant multipole resonances
(GMRs) and resonance structures in magic and open-shell
nuclei has a long history and remains a problem of current
importance. The main tools in solving this problem within the
framework of microscopic approach are the random phase
approximation (RPA) and the quasiparticle RPA (QRPA)
which is a straightforward generalization of the RPA to include
pairing correlations. However, despite the fact that these
models, in principle, enable one to reproduce experimental
mean energies and total strengths of the GMRs, they fail to
describe the damping of the resonances and their fine structure
(see, e.g., Ref. [1]). One of the reasons is that RPA and QRPA
do not provide a mechanism producing spreading width �↓
which gives a considerable contribution in the total widths of
the GMRs.

The simplest mechanism of this type is the coupling of
the quasiparticles to phonons being superpositions of the
one-particle-one-hole (1p1h) or the two-quasiparticle (2q)
configurations. As applied to structure of the even-even nuclei,
the concept of the quasiparticle-phonon coupling (QPC) (see
Ref. [2]) enables one to take into account 1p1h⊗phonon and
2q⊗phonon configurations in addition to 1p1h and 2q ones
incorporated within the RPA and the QRPA. A series of models
has been developed to go beyond the RPA and the QRPA
by means of inclusion of this mechanism (see Refs. [1,3–6],
and references therein). Recently, a new model has been
formulated (see Ref. [7]) in which pairing correlations, 2q, and
2q⊗phonon configurations are included. This model is based
on the Green function (GF) formalism that mainly determines
its name: quasiparticle time blocking approximation (QTBA).
On one hand, the QTBA is an extension of the QRPA in
which 2q⊗phonon configurations are incorporated, while
more complicated intermediate states are blocked. On the other
hand, it is a generalization of the method of chronological

decoupling of diagrams (MCDD) developed in Ref. [4] to
include 1p1h⊗phonon configurations in the case of the even-
even nuclei without pairing.

The first aim of this paper is to present calculational
formulas obtained from the general ones of the model [7]
making use of certain approximations in the case of neutral
natural-parity excitations in the spherically symmetric system.
In particular, in the formulas presented zero-range forces
are adopted as an effective interaction and the Bardeen-
Cooper-Schrieffer (BCS) approximation is used to determine
quasiparticle energies and wave functions. The equations
obtained are a system of coupled equations corresponding to
the excitations in particle-hole, particle-particle, and hole-hole
channels. The basic equations are written in the coordinate
representation that allows us to take into account the single-
particle continuum completely. Notice that inclusion of the
continuum together with the QPC mechanism is of particular
importance to describe correctly the damping of the GMRs.

Our second aim is to test the QTBA in calculations of
electric dipole excitations in the nuclei with pairing. With
that end in view we have chosen tin isotopes 116,120,124Sn.
We present E1 photoabsorption cross sections calculated
within QRPA and QTBA. Calculated integral characteristics
of the giant dipole resonance (GDR) are compared with the
experimental data.

The paper is organized as follows. In Sec. II the general
scheme of the approach is presented. In Sec. III the basic
equations of the QTBA are transformed to channel form in
the coordinate space. Formulas for the correlated propagator
of the QTBA in this representation are obtained in Sec. IV.
In Sec. V we describe our calculational scheme and present
the results obtained for the photoabsorption cross sections in
three tin isotopes. Conclusions are drawn in the last section. In
Appendix A we present derivation of the QTBA equations in
terms of the partial components in the case of neutral natural-
parity excitations. In Appendix B formulas for the correlated
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FIG. 1. Equation for the response function R e determining correlated QTBA propagator. Here conventional notations are used: solid lines
with arrows denote generalized single-particle Green functions (including both the normal and the anomalous ones), wavy lines represent phonon
propagators, and small circles denote amplitudes of the quasiparticle-phonon interaction. The first term on the right-hand side corresponds to
the uncorrelated QRPA propagator.

QTBA propagator in terms of the reduced matrix elements are
drawn. In Appendix C the equations for the reduced matrix
elements of the amplitude of quasiparticle-phonon interaction
are obtained.

II. GENERAL FRAMEWORK

The basic quantity, which determines the physical observ-
ables in the QTBA, is the nuclear polarizability �(ω). More
precisely, it determines distribution of the transition strength
caused by an external field V 0. In the representation of the
single-quasiparticle basis functions, which will be specified
below, �(ω) is defined as

�(ω) = −1

2

∑
1234

(eV 0)∗21 Reff
12,34(ω)(eV 0)43, (1)

where e is the effective charge operator, ω is complex energy
variable, Reff(ω) is the effective response function. Reff(ω) is
a solution of the following Bethe-Salpeter equation:

Reff
12,34(ω) = A12,34(ω) −

∑
5678

A12,56(ω)F56,78R
eff
78,34(ω), (2)

where A(ω) is a correlated propagator, F is an amplitude of
the effective interaction. In particular, the strength function
S(E) which is frequently used for the description of nuclear
excitations is expressed in terms of the polarizability as

S(E) = − 1

π
Im�(E + i�), (3)

where � is a smearing parameter. Connection of this quantity
with energies ωn and probabilities Bn(V 0) = |〈n|V 0†|0〉|2 of
the excitations is determined by the relation

lim
�→+0

S(E) =
∑
n�=0

[Bn(V 0)δ(E − ωn) − Bn(V 0†)δ(E + ωn)].

(4)
Equation (2) for the effective response function is quite

general. In Ref. [7] it was shown that for the Fermi systems
with and without pairing correlations it has the same form if
we use generalized Green function formalism in which for
the systems with pairing the normal and the anomalous GFs
are treated in a unified way in terms of the components of
generalized GFs in a doubled space. Within the framework of
this approach the physical content of the model is determined
by the choice of the propagator A(ω). In particular, the QRPA
equation for the Reff(ω) has the same form Eq. (2) with

uncorrelated propagator taken instead of A(ω). The equations
defining A(ω) within the QTBA are given in Ref. [7]. In the
present paper we consider the version of QTBA in which
the correlated propagator includes contributions of the 2q

and 2q⊗phonon configurations. Within this model A(ω) is
determined by the response function R e which is a solution of
the equation shown in Fig. 1. Namely, A(ω) is the main term
of the formal decomposition R e(ω) = A(ω) + B, where B is
the remainder term which is absorbed in the renormalization
procedure (see [7] for details).

To obtain the calculational formulas corresponding general
equations of the above-mentioned model we have to determine,
as a first step, the single-quasiparticle basis functions ψ1(y)
which form the matrix representation of the theory. For the
Fermi systems with pairing these functions are defined in the
doubled space spanned by the coordinates y = {x, χ}, where
the symbol x = {r, σ, τ } includes the spatial coordinate r , the
spin σ , and the isospin τ variables, χ = ±1 is an additional
index introduced for denoting the different components of the
single-quasiparticle functions in the doubled coordinate space.
Index 1 = {λ1, η1} of the doubled configuration space includes
index λ1 of the usual single-particle configuration space
and the index η1 = ±1 which is the sign of the eigenvalue
corresponding to ψ1(y), i.e., Hψ1 = E1ψ1 where H is single-
quasiparticle Hamiltonian, E1 = η1 Eλ1

, Eλ1
= |E1|. In the

case of the spherically symmetric system, we are interested
in, the index λ can be represented by the following set:
λ = {(λ),m} where (λ) = {τλ, n, l, j},m is the projection of
the total angular momentum, and we have Eλ = E(λ).

We will use the approximation corresponding to so-called
canonical basis representation of the functions ψ1(y) (see
Ref. [8] for details). To determine functions ψ1(y) within
this approximation let us note that in the matrix form the
Hamiltonian H reads

H =
(

h − µ �

−�∗ µ − h∗

)
, (5)

where h = h(x, x ′) is the single-particle Hamiltonian, � =
�(x, x ′) is the operator of the pairing field, µ is the chemical
potential. Let {ϕλ(x)} be the complete set of orthonormal
eigenfunctions of the Hamiltonian h(x, x ′): hϕλ = ελϕλ. We
will assume that the operator �(x, x ′) has the canonical form in
the same basis {ϕλ(x)} that corresponds to the state-dependent
version of the BCS approximation (see, e.g., Ref. [9]), or to the
so-called approximation of the diagonal pairing. In this case
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for the spherically symmetric system we have

ψλ,+(x,+) = uλϕλ(x), ψλ,+(x,−) = (−1)l+j+mvλϕ
∗̄
λ
(x),

ψλ,−(x,−) = uλϕ
∗
λ(x), ψλ,−(x,+) = (−1)l+j+mvλϕλ̄

(x),

}
,

(6)

where λ̄ = {(λ),−m}, vλ and uλ are real numbers which
satisfy the following conditions: uλ =

√
1 − v2

λ � 0, v2
λ

=
v2

λ̄
� 1 [see Eqs. (A23)–(A26) in Appendix A for an explicit

definition of vλ and uλ within the BCS approximation]. The
choice of the phase factors is determined by the formulas

ϕλ(x) = δτλ,τR(λ)(r) φjlm(n, σ ), (7)

φjlm(n, σ ) =
∑

µ

(lµ 1
2σ |jm)Ylµ(n), (8)

ϕλ(x) = (−1)l+j+m+ 1
2 +σ ϕ∗̄

λ
(x̄), (9)

where n = r/r, x̄ = {r,−σ, τ }.
In applications of the theory it is convenient to use another

basis functions which differ from the functions (6) by a unitary
transformation. Let us introduce a matrix

O12 = Oλ1 η1 ,λ2 η2

= δη1 ,η2

[
δη1 ,+1 δλ1 ,λ2

+ (−1)l1 +j1 −m1 δη1 ,−1 δλ1 ,λ̄2

]
. (10)

This matrix is real and orthogonal, and consequently it is
unitary. So wave functions ψ̃1(y) defined through the single-
quasiparticle basis functions ψ1(y) by the formula

ψ̃1(y) =
∑

2

O12ψ2(y) (11)

also form a complete set of the orthonormal functions. We
will use just the set {ψ̃1(y)} as the set of basis functions.
This does not lead to an inconsistency since the single-
particle GF G̃(ε) = (ε − H)−1 is diagonal both in {ψ1(y)}
and in {ψ̃1(y)} representation, and hence the formulas for
the correlated propagator (see Ref. [7]) are the same in both
representations.

To describe dynamics of the system and to calculate the
polarizability and the strength function we start from the
equation for linear response matrix (LRM) �. Notice that in
the present work the term LRM is used instead of the frequently
used one “density matrix variation in an external field” because
it is more correct in our notations. The equation for � in the
coordinate representation is obtained by the convolution of the
equation for effective response function Reff with an operator
of the renormalized external field eV 0:

�(y1, y2; ω) = �0(y1, y2; ω)

−
∫

dy3 dy4 dy5 dy6 A(y1, y2; y3, y4; ω)

×F(y3, y4; y5, y6) �(y5, y6; ω), (12)

where

�(y1, y2; ω) = −
∑
1234

ψ̃∗
1 (y1)ψ̃2(y2)Reff

12,34(ω)(eV 0)43, (13)

�0(y1, y2; ω) = −
∫

dx3 dx4[A(y1, y2; x3+, x4+; ω)

−A(y1, y2; x4−, x3−; ω)]Ṽ 0(x4, x3). (14)

It is assumed that the correlated propagator of the model
A(ω) is initially calculated in configuration space and then
is transformed to coordinate space:

A(y1, y2; y3, y4; ω)

=
∑
1234

ψ̃∗
1 (y1)ψ̃2(y2) ψ̃3(y3) ψ̃∗

4 (y4) A12,34(ω). (15)

Components of the external field are

Ṽ 0(x1, x2) = Ṽ 0(x1+, x2+) = −Ṽ 0(x2−, x1−)

=
∑

12

ψ̃1(x1+)ψ̃∗
2 (x2+)(eV 0)12, (16)

and it is supposed that Ṽ 0(x1+, x2−) = Ṽ 0(x1−, x2+) = 0.
In terms of the LRM the Eq. (1) for the polarizability reads

�(ω) =
∫

dx1 dx2 Ṽ 0∗(x2, x1) �(x1+, x2+; ω). (17)

To determine the general form of the effective interaction
in our approach let us note that within a self-consistent
scheme the amplitude F in Eq. (12) can be defined as a
second order functional derivative of some energy density
functional E[R] with respect to the extended density matrix
R (see, e.g., Refs. [8,9]). If E[R] is usual functional of
the Hartree-Fock-Bogoliubov theory built up on the basis of
the Hamiltonian which includes only two-particle density-
independent interaction with the antisymmetrized amplitude
w(2), we have

F(y1, y2; y3, y4) = 1
2δχ1 ,χ2

δχ3 ,χ4

×(
δχ1 ,χ3

[
δχ1 ,+1F+(x1, x2; x3, x4)

+ δχ1 ,−1F+(x2, x1; x4, x3)
]

− δχ1 ,−χ3

[
δχ1 ,+1F+(x1, x2; x4, x3)

+ δχ1 ,−1F+(x2, x1; x3, x4)
])

+ δχ1 ,−χ2
δχ3 ,−χ4

δχ1 ,χ3

× [
δχ2 ,+1F−(x1, x2; x3, x4)

+ δχ2 ,−1F−(x3, x4; x1, x2)
]
, (18)

where

F+(x1, x2; x3, x4) = w(2)(x2, x3; x1, x4),
(19)

F−(x1, x2; x3, x4) = 1
2 w(2)(x1, x2; x3, x4).

In what follows we assume that Eq. (18) is fulfilled for the in-
teraction F , however Eqs. (19) are not supposed to be fulfilled.
In other words, the amplitudes F+ and F− will be considered
to be independent, and it will be supposed that no other
independent components are contained in the amplitude F .
These assumptions correspond to the approximation adopted
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in the Theory of Finite Fermi Systems with pairing correlations
(TFFSPC) [10].

III. TRANSFORMATION OF THE EQUATION FOR
LINEAR RESPONSE MATRIX TO CHANNEL FORM

The LRM defined by Eq. (13) contains information about
excitations of the initial system in three different channels
corresponding to the transitions to the states of the final
systems with different numbers of particles. Suppose that the
number of particles in the ground state of the initial system
is conserved and is equal to N0. Let N be the number of
particles in the final system. Then, in accordance with the
standard terminology, we have (i) ph channel if N = N0 ; (ii)
pp channel if N = N0 + 2 ; (iii) hh channel if N = N0 − 2.
Notice that it is not necessary to introduce hp channel explicitly
because of symmetry of the LRM and other quantities.

Let us introduce the channel index c ∈ {ph, pp, hh} and
define the projection operators �(c):

�(ph)(x1, x2; y3, y4) = δχ3 ,+1 δχ4 ,+1 δ(x1, x3)δ(x2, x4), (20)

�(pp)(x1,x2;y3,y4) = δχ3 ,+1δχ4 ,−1(−1)
1
2 +σ2 δ(x1,x3)δ(x̄2,x4),

(21)

�(hh)(x1,x2;y3, y4) = δχ3 ,−1δχ4 ,+1(−1)
1
2 +σ1 δ(x̄1,x3)δ(x2,x4).

(22)

The sense of these operators is obvious: acting on any
quasiparticle operator they cut out its components with fixed
χ values. Thus applying each of these projectors to LRM and
correlated propagator we obtain the following components:

�(c)(x1, x2; ω) =
∫

dy3 dy4�
(c)(x1, x2; y3, y4) �(y3, y4; ω),

(23)

�0 (c)(x1, x2; ω) =
∫

dy3 dy4�
(c)(x1, x2; y3, y4) �0(y3, y4; ω),

(24)

A(c,ph)(x1, x2; x3, x4; ω) =
∫

dy5 dy6�
(c)(x1, x2; y5, y6)

× [A(y5, y6; x3+, x4+; ω)

−A(y5, y6; x4−, x3−; ω)], (25)

A(c,pp)(x1, x2; x3, x4; ω) =
∫

dy5 dy6�
(c)(x1, x2; y5, y6)

×A(y5, y6; x3+, x̄4−; ω)(−1)
1
2 +σ4 ,

(26)

A(c,hh)(x1, x2; x3, x4; ω) =
∫

dy5 dy6�
(c)(x1, x2; y5, y6)

×A(y5,y6; x̄3−,x4+;ω)(−1)
1
2 +σ3 ,

(27)

where the second channel indices in the Eqs. (25)–(27) are
fixed by the χ -indices of the propagators on the right-hand
sides of these equations. Let us also denote

F (c,c′)(x1, x2; x3, x4) = δc,c′F̃ (c)(x1, x2; x3, x4)

+F rest (c,c′)(x1, x2; x3, x4), (28)

F̃ (ph)(x1, x2; x3, x4) = F+(x1, x2; x3, x4), (29)

F̃ (pp)(x1, x2; x3, x4) = (−1)
1
2 +σ2 + 1

2 +σ4F−(x3, x̄4; x1, x̄2),

(30)

F̃ (hh)(x1, x2; x3, x4) = (−1)
1
2 +σ1 + 1

2 +σ3F−(x̄1, x2; x̄3, x4).

(31)

The additional restoring amplitude F rest (c,c′) is introduced in
Eq. (28) for the purpose of “forced consistency” and will be
specified in the following (see Appendix A).

Making use of the definitions (18), (20)–(31) one can
rewrite Eq. (12) in the channel form

�(c)(x1, x2; ω) = �0 (c)(x1, x2; ω)

−
∑
c′c′′

∫
dx3 dx4 dx5 dx6

×A(c,c′)(x1, x2; x3, x4; ω)

×F (c′,c′′)(x3, x4; x5, x6) �(c′′)(x5, x6; ω),

(32)

where a summation is performed over all the channels.
In what follows we shall restrict our consideration to

the spherically symmetric systems with zero-range effective
interaction. The latter restriction does not allow to apply
some of the formulas presented here to the self-consistent
calculations in general case. However, in practice the exact
self-consistent residual interaction is often approximated in
such calculations by the Landau-Migdal ansatz (see, e.g.,
Ref. [11]). In this approximation all our formulas remain
valid. Within these limitations it is convenient to decompose
all the quantities in terms of spherical tensor operators. In
this case Eq. (32) for the neutral excitations with the total
angular momentum J and the parity (−1)L can be reduced
to the following equation for the partial components (see
Appendix A and Sec. IV for the notations and details):

�
(c)
JLSτ (r; ω) = �

0 (c)
JLSτ (r; ω) −

∑
L′S ′τ ′c′

∑
L′′S ′′τ ′′c′′

∫ ∞

0
dr ′ r ′2

×
∫ ∞

0
dr ′′ r ′′2AJ (c,c′)

LSτ,L′S ′τ ′(r, r ′; ω)

×FJ (c′,c′′)
L′S ′τ ′,L′′S ′′τ ′′(r ′, r ′′) �

(c′′)
JL′′S ′′τ ′′(r ′′; ω), (33)

where

�
0(c)
JLSτ (r;ω) = −

∑
L′S ′c′

∫ ∞

0
dr ′r ′2AJ (c,c′)

LSτ,L′S ′τ(r, r ′;ω)Ṽ 0(c′)
JL′S ′τ (r ′),

(34)

Ṽ
0 (c)
JLSτ (r) = δc,phṼ

0
JLSτ (r). (35)
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In terms of the partial components the Eq. (17) for the
polarizability takes the form

�J (ω) = (2J + 1)
∑
LSτc

∫ ∞

0
dr r2Ṽ

0(c)
JLSτ (r)�(c)

JLSτ (r; ω). (36)

IV. CORRELATED PROPAGATOR IN THE
COORDINATE SPACE

Formulas for the partial components of the effective
interaction FJ (c,c′)

LSτ,L′S ′τ ′(r, r ′) entering Eq. (33) in the case of
the Landau-Migdal zero-range force, which is used in our
calculations, are drawn in Appendix A. Let us obtain an explicit
formula for the partial components of the correlated propagator
A

J (c,c′)
LSτ,L′S ′τ ′(r, r ′; ω) in terms of the reduced matrix elements

AJ
[12,34](ω) which in the case of the spherically symmetric

system are determined by the formula

AJ
[12,34](ω) =

∑
m1m2m3m4

(2J + 1)A12,34(ω)(−1)j2 −m2

×
(

j1 j2 J

m1 −m2 M

)
(−1)j4 −m4

(
j3 j4 J

m3 −m4 M

)
,

(37)

where 1 = {[1],m1}, [1] = {(1), η1}, (1) = (λ1) = {τ1, n1, l1,

j1}. Notice that with these abbreviated notations we have
u(1) = uλ1

, v(1) = vλ1
, ε(1) = ελ1

, E(1) = Eλ1
. We will use

the antisymmetric form of equations for the correlated prop-
agator (see Ref. [7] for details) which allows to reduce the
dimensions of matrices entering these equations. In this case
the following relations are fulfilled:

AJ
[12,34](ω) = −η1η2(−1)J+l1 −l2 +j1 −j2 AJ

[2̄1̄,34](ω)

= −η3η4(−1)J+l3 −l4 +j3 −j4 AJ
[12,4̄3̄](ω), (38)

where [1̄] = {(1),−η1}.
It is easy to show that functions ψ̃1(y) defined by Eqs. (10)

and (11) obey the equalities

ψ̃1(x; +) = w1ϕλ1
(x), (−1)

1
2 +σ ψ̃1(x̄; −) = η1 w1̄ϕλ1

(x),

(39)

where

w1 = w[1 ] = δη1 ,+1u(1) + δη1 ,−1v(1). (40)

Making use of Eqs. (7), (8), (15), (20)–(22), (25)–(27), (38),
and (39), we obtain from Eq. (A10) the following ansatz:

A
J (c,c′)
LSτ,L′S ′τ ′(r, r ′; ω) = (1 + δc′,ph)δτ,τ ′

×
∑

[1234]

δτ1 ,τ δτ2 ,τ δτ3 ,τ ′ δτ4 ,τ ′ θ(21) θ(43)

×A
J (c,c′) LS,L′S ′
[12,34] (r, r ′; ω), (41)

where

A
J (c,c′) LS,L′S ′
[12,34] (r, r ′; ω)

= R(1)(r) R(2)(r)R(3)(r
′) R(4)(r

′)T (J ) LS,L′S ′
(12,34)

×(
αc

[12] − η1η2(−1)Sαc
[2̄1̄]

)
AJ

[12,34](ω)

×(
αc′

[34] − η3η4(−1)S
′
αc′

[4̄3̄]

)
, (42)

T
(J )LS,L′S ′

(12,34) = 1

2J + 1
〈j2l2‖TJLS‖j1l1〉〈j4l4‖TJL′S ′ ‖j3l3〉,

(43)

α
ph

[12] = w1 w2 , α
pp

[12] = η2 w1 w2̄, αhh
[12] = η1 w1̄ w2 .

(44)
The reduced matrix elements of the spherical tensor operators
entering Eq. (43) are defined in Eq. (A4). Equations (41)–(44)
have quite a general form. Explicit formulas for the reduced
matrix elements AJ

[12,34](ω) in the case of the QPC model are
drawn in Appendix B.

Theoretically, summation in Eq. (41) is supposed to be
over complete ordered set of the states forming the doubled
configuration space. This summation is facilitated due to the
symmetry defined by Eq. (38). The order-bounding factors
are defined as follows: θ(21) = 1 if the ordinal number of the

state (1) is less than the number of (2) [(1) < (2)], θ(21) = 1
2

if (1) = (2), θ(21) = 0 if (1) > (2).
However, in our calculational scheme, summation in

Eq. (41) is restricted by the discrete and quasidiscrete states
entering a valence zone near the Fermi level. It is supposed that
the remaining part of the sum can be approximated fairly well
by the RPA-like propagator Acont , which contains transitions
from the quasiparticle levels to the continuum. Thus, we
use the scheme which is analogous to the ones described in
Refs. [5,12]. According to this scheme the total correlated
propagator is represented as a sum of two terms:

A
J (c,c′)
LSτ,L′S ′τ ′(r, r ′; ω) = A

J (c,c′) disc
LSτ,L′S ′τ ′ (r, r ′; ω)

+A
J (c,c′) cont
LSτ,L′S ′τ ′ (r, r ′; ω), (45)

where

A
J (c,c′) disc
LSτ,L′S ′τ ′ (r, r ′; ω)

= δc,c′δc,phδτ,τ ′

disc∑
(12)

δτ1 ,τ δτ2 ,τ θ
b

(1)

[
1 − θ

b
(2)

]
T

(J ) LS,L′S ′
(12,12)

× R(1)(r) R(2)(r)R(1)(r
′) R(2)(r

′)
[
v2

(1)

(
1 − v2

(2)

)
+ (−1)S+S ′

v2
(2)

(
1 − v2

(1)

)]

×
[

1

ω + E(1) + E(2)

− (−1)S+S ′

ω − E(1) − E(2)

]

+ (1 + δc′,ph) δτ,τ ′

wind∑
[1234]

δτ1 ,τ δτ2 ,τ

× δτ3 ,τ ′ δτ4 ,τ ′ θ(21) θ(43)A
J (c,c′) LS,L′S ′
[12,34] (r, r ′; ω), (46)

A
J (c,c′) cont
LSτ,L′S ′τ ′ (r, r ′; ω)

= −δc,c′δc,phδτ,τ ′

{ ∑
j1l1

disc∑
(2)

δτ2 ,τ v2
(2)R(2)(r) R(2)(r

′)
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× T
(J ) LS,L′S ′

(12,12)

[
G̃nor

j
1
l
1
τ (r, r ′; µτ − E(2) + ω)

+ (−1)S+S ′
G̃nor

j
1
l
1
τ (r, r ′; µτ − E(2) − ω)

]

−
disc∑
(12)

δτ1 ,τ δτ2 ,τ θ(21)R(1)(r) R(2)(r)R(1)(r
′) R(2)(r

′)

× T
(J ) LS,L′S ′

(12,12)

[
v2

(2)

ω + µτ − E(2) − ε(1)

− v2
(1)

ω − µτ + E(1) + ε(2)

+ (−1)S+S ′

×
(

v2
(1)

ω + µτ − E(1) − ε(2)

− v2
(2)

ω − µτ + E(2) + ε(1)

)]}
.

(47)

In Eq. (47), G̃nor
j lτ (r, r ′; ε) is the partial component of the normal

single-particle GF without pairing. It is calculated via the
regular and irregular solutions of the Schrödinger equation
that allows to take into account continuum completely on the
RPA level (see, e.g., Ref. [13]).

In Eq. (46), θ b
(1) are the bounding factors defined as θ

b
(1) = 1

if (1) < (λb), θ b
(1) = 0 if (1) � (λb), where λb is the bottom

level of the valence zone which coincides in our calculations
with “pairing window”, i.e., with zone where the energy gap
is not equal to zero (see Sec. V for details). The superscript
“disc” in the

∑
symbols means summation over all discrete

and quasidiscrete states of the single-particle spectrum. The
superscript “wind” means summation over the discrete and
quasidiscrete states only inside the “pairing window”, i.e., the
same summation as in Eq. (A25).

V. CALCULATIONS: DETAILS AND DISCUSSION

As an application of our approach isovector electric dipole
excitations in the GDR region have been calculated in
semimagic isotopes 116,120,124Sn. Notice that the GDR in these
tin isotopes was calculated previously within the framework of
different microscopic models (see, e.g., Refs. [5,6,12,14,15]).
But only in Ref. [5] were the effects responsible for the
spreading width (quasiparticle-phonon coupling) taken into
account together with the single-particle continuum producing
the escape width. As was mentioned above, both of these
effects are important to describe the damping of the GDR.
However, effects of the quasiparticle-phonon coupling were
included in Ref. [5] within the framework of too restricted
model. The treatment of these effects within the QTBA is
more comprehensive.

In the present paper we use the non-self-consistent scheme
of the QTBA including the single-particle continuum as de-
scribed in Sec. IV. This calculational scheme is justified for the
stable isotopes under consideration since phenomenological
systematics of the mean field and of the residual interaction
is known for them rather well. In addition, for these isotopes
the experimental data on both single-particle and collective
excitations are available. In our calculations we started from

a description of the independent single-particle motion in the
standard phenomenological Woods-Saxon potential. Then the
gap equation (A25) was solved for neutron subsystem under
the usual condition that the number of particles in valence zone
is conserved on average. In our calculations for the tin isotopes
this zone (“pairing window”) consists of all discrete (ελ < 0)
and quasidiscrete states above the chemical potential µ and
of the discrete states below µ starting from 1f7/2 subshell for
neutrons and 1d5/2 subshell for protons. We emphasize that
the same valence zone restricts summations both in the gap
equation (A25) and in the equations of Appendix B for the
QTBA propagator.

As the quasidiscrete states we chose the discrete states with
ελ > 0 calculated with a box boundary condition and having
the last extremum of the radial wave function in the range of
nonvanishing values of the discrete spectrum (ελ < 0) wave
functions. According to this criterion the quasidiscrete states
are selected quite well if size of the box is not too large. Notice
that the partial components of the normal single-particle GF
G̃nor

j lτ (r, r ′; ε) entering Eq. (47) were calculated with outgoing
wave boundary condition except for the small number of
components for which j l-values coincide with j l-values of
the quasidiscrete states. For such partial components the box
boundary condition was used in order to avoid inconsistency
in the calculations.

The parameter cp in Eq. (A18) was chosen so as to obtain
the averaged solution of the gap equation �̄λ to be equal to the
averaged empirical value (see Ref. [16]): �̄ = 12 MeV/

√
A.

For 120Sn we have obtained �̄ ≈ 1.1 MeV with cp =
0.719 MeV. This parameter was used for the remaining two
nuclei. The quantity ξ in Eq. (A18) is determined as follows:
ξ = √

ξ1ξ2 where ξ1 = µ − min(ελ), ξ2 = max(ελ) − µ.
We assumed that the observable energies of single-particle

excitations in the neighboring odd nuclei have to be reproduced
in the framework of the mean field plus BCS model. These
observable energies (experimental energy differences) are
defined by the following equation: ε

exp
λ = ±[Eλ(A ± 1) −

Eg.s.(A)], where Eg.s. is the ground state energy of the even-even
nucleus (core) consisting of the A nucleons, Eλ is the energy of
the ground or the excited state of the neighboring odd nucleus
consisting of the A ± 1 nucleons. In order to get an agreement
with the experimental energies the well depth of central part
of the Woods-Saxon potential was slightly varied so as to
obtain ε

exp
λ = ελ for protons and ε

exp
λ = µτλ

± Eλ for neutrons
where Eλ is connected with ελ by Eq. (A24). Thus obtained
energies and wave functions form the above mentioned basis
set {ελ, ϕλ(x)}.

In the present calculations we included ground state correla-
tions (GSC) only in the QRPA part of the correlated propagator.
Another type of GSC caused by quasiparticle-phonon coupling
(GSC/QPC) and originated from backward-going terms in
time-ordered diagrams was not incorporated. This means that
(i) only the term �

J (res)
[12,34](ω) in Eq. (B13) is accounted for; (ii)

associated components of the propagator containing the func-
tions P

J (++)
[12,34] (ω), Q

J (+−)
[12,34](ω), and Q

J (−+)
[12,34](ω) [see Eqs. (B1)–

(B3), (B17)–(B19)] are excluded from the calculations.
Since our single-particle and single-quasiparticle energies

are fitted to the experiment as it was mentioned above,
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these energies and corresponding wave functions already
contain effectively the admixture of phonons. This phonon
contribution should be removed from the mean field, energy
gap, and the effective interaction to avoid double counting if
the quasiparticle-phonon coupling is included explicitly. To
solve this problem we use the method which corresponds to
the self-consistent scheme of the QTBA (see Ref. [7]) if the
GSC/QPC are not included. In this case the method consists
of the replacement of the amplitude �

J
[12,34](ω) in Eq. (B8) by

the difference amplitude �̄
J (res)
[12,34](ω) where

�̄
J (res)
[12,34](ω) = �

J (res)
[12,34](ω) − �

J (res)
[12,34](0). (48)

Making use of this subtraction procedure, statical contributions
of the quasiparticle-phonon coupling defined by the quantity
�

J (res)
[12,34](0) are removed from both the mass operator and the

effective interaction.
In the calculations of the GDR we neglected the con-

tribution of pp and hh channels that is justified for this
type of excitations (see Ref. [10] and discussion below). As
the effective interaction in the ph channel we adopted the
Landau-Migdal zero-range force [see Eqs. (A15) and (A17)]
with microscopically determined nuclear ground state density
ρ0:

ρ0(r) = 1

4π

∑
(λ)

v 2
λ (2jλ + 1) R 2

(λ)(r). (49)

The parameters of this interaction were taken in accordance
with the standard set which is usually employed in similar
calculations (see, e.g., Ref. [12]), except for parameters fex

and f ′
ex . The parameter f ′

ex = 2.62 used in our calculations
has been changed as compared to one from Ref. [12] in
order to reproduce the experimental mean energy of the GDR
in 120Sn within QTBA calculation. The parameter fex was
slightly varied from −2.187 to −1.957 in the computation
of the energies and amplitudes of low-lying collective 2+
and 3− phonons within QRPA in configuration space. This
allowed us to fit the energies of these phonons to experimental
values. Then the value of fex was averaged and used in the
calculations of the remaining phonons. In the calculations of
the GDR the averaged value fex = −2.05 was adopted for all
three tin isotopes.

It is well known that the question about spurious isoscalar
1− state arises in the calculations of E1 excitations if the
consistency between the mean field and the residual inter-
action is broken down or even if the consistency conditions
are fulfilled only approximately. In our non-self-consistent
calculations the spurious 1− state has been eliminated using the
“forced consistency” method presented in Appendix A. This
method was developed and successfully applied in calculations
of both the isoscalar and the isovector E1 excitations in
Refs. [12,17,18]. It turns out to be very efficient if it is
necessary to restore the broken consistency as it takes place in
our case.

The phonon characteristics were calculated within the
QRPA by making use of Eqs. (C1)–(C9). The configuration
space was restricted by the “pairing window” defined above. In
this calculation the matrix elements of the interaction F (c)S

(12,34)
with S = 1 were omitted since they do not give significant

contribution in the case of low-lying collective modes with
natural parity. In addition, we have neglected contribution
of pp and hh channels. Notice that the contribution of
these channels (so-called dynamical pairing) can be important
first of all for the states with positive parity (see, e.g.,
Refs. [19,20]). It should be taken into account in fully self-
consistent QRPA calculations (see Refs. [20,21]), in particular,
for proper handling spurious states. However, neglect of the
dynamical pairing in our calculations is compensated to some
extent by the fit of the phonon energies to the experimental
data (see below). In the case of the GDR, the dynamical pairing
contribution is effectively included into corrections introduced
by our “forced consistency” procedure.

These simplifications decrease dimension of the QRPA
matrix in the configuration space by a factor of two. For all
three chosen tin isotopes the collective modes with spin and
parity 2+, 3−, 4+, 5−, 6+, and with energies below the neutron
separation energy were included into the phonon space. A
mode is assumed to enter the phonon space if its reduced
transition probability is more than 10% of the maximal one for
fixed spin and parity. This value was taken as an approximate
criterion for phonons selection. The energies of the first 2+ and
3− phonons were fitted to the experimental values as described
above. The so determined phonon space includes 23 phonons
for 116Sn and 124Sn, and 22 phonons for 120Sn (see Ref. [22]
for more details).

The dipole photoabsorption cross section σE1(E) is the
basic observable computed in the present work. This value
is expressed via the strength function SE1(E) according to the
well known formula

σE1(E) = 16π3e2

9h̄c
ESE1(E). (50)

The strength function in turn is simply connected with the
polarizability �E1(ω) [see Eq. (3)]:

SE1(E) = − 1

π
Im�E1(E + i�). (51)

As follows from Eq. (36), to determine the value of func-
tion �E1(ω) at a given complex energy variable ω and,
consequently, to compute the values of SE1(E) and σE1(E)
one has to solve Eq. (33) for the LRM. This equation was
solved within the framework of two models: QTBA and
QRPA. Following calculational scheme which is usually used
in the response function formalism, in the present work we
introduced a smearing parameter � as an imaginary part of
the energy variable ω which imitates contribution of the more
complex configurations not incorporated in our approach. In
the calculations of GDR the value � = 250 keV was used.

Calculated photoabsorption cross sections for three above
indicated tin isotopes as well as experimental data are shown
in Figs. 2–4. The solid and the dashed curves represent the
QTBA and the QRPA correspondingly. Since the smearing
parameter taken is not large, our theoretical curves are not
so smooth as a single Lorentz line. Nevertheless, in order
to compare the calculated cross sections with experimental
data we approximated them by the standard Lorentz function
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FIG. 2. E1 photoabsorption cross section for 116Sn calculated
within QRPA (dashed line) and QTBA (solid line). The smearing
parameter � is equal to 250 keV. Experimental data from Ref. [24]
are shown by the black circles.

FIG. 3. Same as Fig. 2, but for 120Sn.

FIG. 4. Same as Fig. 2, but for 124Sn.

TABLE I. Lorentz function parameters of the GDR in
116,120,124Sn obtained within two microscopic approaches for 0–30
MeV energy interval. Values of the depletion of the EWSR are
presented as percentages with respect to the corresponding TRK
values (see text for more details).

116Sn 120Sn 124Sn

QRPA QTBA QRPA QTBA QRPA QTBA

E0 (MeV) 14.74 15.44 14.65 15.39 14.35 15.10
� (MeV) 2.4 4.0 2.7 4.4 2.6 4.4
σ0 (mb) 452 302 423 288 452 298
EWSR-L
(%)

100 112 103 114 104 116

EWSR-I
(%)

94 99 97 102 97 102

σL(E):

σL(E) = σ0
�2E2(

E2 − E2
0

)2 + �2E2
. (52)

The parameters E0, �, and σ0 in Eq. (52) were obtained by
making use of the following condition: the energy-weighted
moments m0,m−1, and m−2 of the functions (50) and (52)
should coincide. This method is analogous to the one devel-
oped in Ref. [23] but in contrast to Ref. [23] we calculated
the moments in the finite energy interval 0–30 MeV for which
experimental data are available. Parameters of the Lorentz
fit are compiled in the Table I. In this table values of the
depletion of the energy weighted sum rule (EWSR) are also
presented in two forms. Namely, the total areas under Lorentz
lines (EWSR-L) and the integrated cross sections in the finite
interval (EWSR-I) are given as percentages with respect to the
corresponding Thomas-Reiche-Kuhn (TRK) values, i.e.,

EWSR-L = 100
π

2
σ0�/ (59.74 NZ/A MeV mb), (53)

EWSR-I = 100
∫ 30MeV

0
σE1(E) dE/(59.74 NZ/A MeV mb).

(54)

In Table II experimental Lorentz function parameters of the
GDR are shown. Experimental mean energies demonstrate the
well known property to decrease against neutron excess. Our
QTBA results drawn in Table I reproduce quite well these mean
energies. The remaining parameters of the Lorentz function
calculated within QTBA, i.e., � and σ0 (and consequently
EWSR-L), are also in a reasonable agreement with experimen-
tal values. It is worth noting that the EWSR-L values obtained
in the QTBA are much more close to the experimental ones as
compared to the EWSR-I values which are close to the TRK
ones (see below). Obviously, the EWSR-L and the EWSR-I
values will coincide with each other only for infinite energy
interval.

Consider the results obtained within QTBA and QRPA
to analyze effect of the QPC on the integral characteristics
of resonances. As one can see from Table I, QTBA gives
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TABLE II. Experimental Lorentz function parameters of the GDR. The results are taken from
Refs. [24] and [25].

116Sn 120Sn 124Sn

[24] [25] [24] [25] [24] [25]

E0 (MeV) 15.67 ± 0.04 15.57 ± 0.1 15.40 ± 0.04 15.38 ± 0.1 15.18 ± 0.04 15.29 ± 0.1
� (MeV) 4.19 ± 0.06 5.21 ± 0.1 4.88 ± 0.06 5.25 ± 0.1 4.81 ± 0.06 4.96 ± 0.1
σ0 (mb) 266 ± 7 270 ± 5 280 ± 8 284 ± 5 283 ± 8 275 ± 5
EWSR-L
(%)

103 ± 3 130 ± 3 123 ± 4 134 ± 3 120 ± 4 120 ± 3

significant increase of the total width as compared to QRPA
(�QTBA

>∼ 1.6�QRPA) owing to contribution of the spreading

width �↓. Clearly this result could be expected from physical
point of view. Comparison of the calculated values of the
widths and the experimental data from Table II demonstrates
that inclusion of the QPC within the QTBA is sufficient to
describe the damping of the GDR in the considered tin isotopes
fairly well.

The EWSR-I values obtained within the QTBA for the
investigated energy interval 0–30 MeV are rather close to the
TRK ones but again there is a noticeable difference between
the QTBA and the QRPA values. However this difference has
another source which is the subtraction procedure described
above [see Eq. (48)]. It can be rigorously proved that for
the version of QTBA in which GSC/QPC are not taken
into account and the subtraction procedure is not applied the
equality EWSR-IQTBA = EWSR-IQRPA is fulfilled exactly for
the infinite energy interval. Notice that the analogous equality
is fulfilled between the values of EWSR defined within the
MCDD (Ref. [4]) and within the RPA. In our calculations just
the subtraction procedure determined by Eq. (48) gives rise to
increment of EWSR in the QTBA. Switching off this procedure
we have obtained that the values of EWSR-I calculated within
the QTBA in the “infinite” energy interval (0–200 MeV in our
calculations) are equal to the corresponding QRPA values with
sufficiently high accuracy. This result can be considered as a
test of our calculational scheme.

There is one more source which leads to the enhance-
ment of the EWSR in our approach. It is the fit of the
single-quasiparticle energies to the experimental values which
effectively introduces the nontrivial dependence on the angular
momentum operator into the mean field. The use of the fit
changes EWSR even in the continuum RPA with zero-range
forces and local single-particle potential.

The mean energy shift of about 0.7–0.8 MeV obtained in
QTBA with respect to QRPA arises also mainly due to the
subtraction procedure. Without this subtraction the QTBA
mean energies decrease as compared to the QRPA ones by
about of 0.2 MeV. Thus, the subtraction procedure results in
the significant change of the averaged characteristics of the
excited states calculated in the QTBA as compared to the
QRPA. On the other hand, as it was indicated above, it ensures
elimination of the statical QPC contributions from the mean
field and the residual interaction.

Finally, notice that although we have taken into account the
most important effects of the QPC, the neglected contributions
of the GSC/QPC and of the dynamical coupling to the pp and
hh channels may also affect the results. In the case of magic
nuclei, the role of the GSC/QPC in the description of nuclear
excitations was investigated in a series of papers (see, e.g.,
Ref. [1] and references therein). The study of these effects in
the nuclei with pairing is in progress.

VI. CONCLUSIONS

The quasiparticle time blocking approximation (QTBA) is
applied to describe E1 excitations in the even-even open-shell
spherical nuclei. The QTBA is an extension of the QRPA, in
which two-quasiparticle⊗phonon configurations, arising due
to the quasiparticle-phonon coupling, are included in addition
to pairing correlations and simple two-quasiparticle configura-
tions incorporated in the QRPA. To determine response of the
spherically symmetric system against an external field within
the QTBA the integral equation for the partial components of
the linear response matrix in the coordinate space is solved.
Configurations with a particle in the continuum are included
into the QRPA part of the response function. This enables us to
describe both spreading and escape widths of nuclear excited
states. Thus, all the main effects responsible for the damping
of the giant resonances in the open-shell nuclei are taken into
account in our calculations.

Using the method developed, the isovector E1 strength
distribution in nuclei 116,120,124Sn has been calculated. Since
our main purpose was to test new approach, these first
calculations have been performed assuming some additional
simplifications of the model: ground state correlations caused
by quasiparticle-phonon coupling and dynamical coupling
to pp and hh channels were ignored. Moreover, in our
calculations the non-self-consistent scheme of the QTBA
was used, so the additional procedure to eliminate spurious
dipole state has been implemented. Noticeably fragmented
giant dipole resonance in the photoabsorption cross section
has been obtained for all three investigated tin isotopes. The
total width, determining the damping of the resonance, and
other integral characteristics of the E1 strength distribution
have been calculated. The results obtained within the QTBA
are in a reasonable agreement with experimental data.
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APPENDIX A: EQUATION FOR PARTIAL COMPONENTS
OF THE LRM IN THE CASE OF NEUTRAL

NATURAL-PARITY EXCITATIONS

In the present paper we solve Eq. (32) for the LRM in the
case of natural-parity excitations in the neutral channel. To
separate the angular dependence in a spherically symmetric
system we use decompositions in terms of spherical tensor
operators TJLSM defined as

TJLSM (n)σ1 σ2
=

∑
mµ

(LmSµ|JM)YLm(n)(σSµ)σ1 σ2
, (A1)

where σSµ are the Pauli matrices in the tensor representation:

(σSµ)σ1 σ2
=

√
2 (2 S + 1) (−1)

1
2 −σ1

(
1
2

1
2 S

σ2 −σ1 µ

)
. (A2)

The reduced matrix elements of the operator TJLSM are defined
by the conventional relation

〈j1l1m1|TJLSM |j2l2m2〉
= (−1)j1 −m1

(
j1 j2 J

m1 −m2 −M

)
〈j1l1‖TJLS‖j2l2〉. (A3)

In the explicit form we have

〈 j1l1‖TJLS‖j2l2〉
= 1

2

[
1 + (−1)L+l1 +l2

]
(−1)S+j2 − 1

2

×
√

(2J + 1) (2L + 1) (2j1 + 1) (2j2 + 1)

4π

(
j1 j2 J
1
2 −1

2 0

)

×
{(

J L S

0 0 0

)
+

√
S (S + 1)

J (J + 1)

(
J L S

1 0 −1

)

×[
(l1 − j1) (2j1 + 1) + (−1)J+L+S (l2 − j2) (2j2 + 1)

]}
.

(A4)

It is assumed that the operator of the renormalized external
field in Eqs. (14), (16), (17) has the form

Ṽ 0(x1, x2) = Ṽ 0
JM (x1, x2) = δ(r1 − r2) δτ1 ,τ2

×
∑
LS

Ṽ 0
JLSτ1

(r1)TJLSM (n1)σ1 σ2
. (A5)

For the functions Ṽ 0
JLSτ (r) in the case of electric multipole

excitations we use the standard ansatz

Ṽ 0
JLSτ (r) = δJLδS 0 rLe(L)

τ , (A6)

where e(L)
τ is an effective charge in the center-of-mass ref-

erence frame: e(L)
n = Z (−A−1)L, e(L)

p = (1 − A−1)L + (Z −
1) (−A−1)L.

Let us denote in accordance with Eqs. (14), (24), (25), and
(A5)

�
0 (c)
JM (x1, x2; ω) = −

∫
dx3 dx4

×A(c,ph)(x1, x2; x3, x4; ω) Ṽ 0
JM (x4, x3).

(A7)

Let �
(c)
JM be the solution of Eq. (32) with �0 (c) = �

0 (c)
JM . In

this case the partial components of the LRM �
(c)
JM and of the

related quantities are defined as

�
(c)
JLSτ (r; ω) =

∫
dn dx1 dx2T

†
JLSM (n)σ1 σ2

× δ(x1, x2; r, τ ) �
(c)
JM (x1, x2; ω), (A8)

�
0 (c)
JLSτ (r; ω) =

∫
dn dx1 dx2T

†
JLSM (n)σ1 σ2

× δ(x1, x2; r, τ ) �
0 (c)
JM (x1, x2; ω), (A9)

A
J (c,c′)
LSτ,L′S ′τ ′(r, r ′; ω) = δτ,τ ′

∫
dn dn′ dx1 dx2 dx3 dx4

× δ(x1, x2; r, τ )δ(x3, x4; r ′, τ ′)

× T
†
JLSM (n)σ1 σ2

A(c,c′)(x1, x2; x3, x4; ω)

× TJL′S ′M (n′)σ4 σ3
, (A10)

where

T
†
JLSM (n)σ1 σ2

= (−1)J+L+S+MTJLS−M (n)σ1 σ2
, (A11)

δ(x1, x2; r, τ ) = δτ1 ,τ δτ2 ,τ δ(r1 − r)δ(r2 − r). (A12)

Further, we assume that the effective interaction is deter-
mined by the following decomposition:

F (c,c′)(x1,x2;x3,x4) = δ(r1 − r2)δ(r3 − r4) δτ1 ,τ2
δτ3 ,τ4

×
∑

LSL′S ′JM

TJLSM (n1)σ2 σ1
T

†
JL′S ′M (n3)σ3 σ4

× FJ (c,c′)
LSτ1 ,L′S ′τ3

(r1, r3), (A13)

where

FJ (c,c′)
LSτ,L′S ′τ ′(r, r ′) = δc,c′δLL′δSS ′

δ(r − r ′)
rr ′ F (c)

S,ττ ′(r)

+ δLL′δL1δJ1

2∑
k=1

κ k F
(c)
Sτ,k(r)F (c′)

S ′τ ′,k(r ′),

(A14)
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F (ph)
S,ττ ′ = C0(δS0[f + (2δτ,τ ′ − 1) f ′]

+ δS1[g + (2δτ,τ ′ − 1) g′]), (A15)

F (pp)
S,ττ ′ = F (hh)

S,ττ ′ = δS0δτ,τ ′ F ξ . (A16)

In Eq. (A14) the first term represents Landau-Migdal zero-
range interaction of the TFFSPC. In the standard parametriza-
tion, the quantities C0, g, and g′ in Eq. (A15) are constants.
The functions f (r) and f ′(r) are determined by the parameters
f ex, f in, f

′
ex, f

′
in, and by the nuclear density in the ground

state ρ0(r) by means of the ansatz

f (r) = fex + (fin − fex)ρ0(r)/ρ0(0), (A17)

and analogously for f ′(r). For the interaction in the pp and
hh channels we have

F ξ = C0/ ln(cp/ξ ), (A18)

where cp is a constant, ξ is an energy cutoff parameter.
The second term in Eq. (A14) is a correction corresponding

to the amplitude F rest (c,c′) in Eq. (28). The similar correction
arises in the calculational scheme with “forced consistency”
which was developed in Ref. [12] to eliminate the spurious
isoscalar 1− state in the non-self-consistent approach for the
case when only ph channel is taken into account. Here the
straightforward generalization of this scheme is presented in
which the pp and hh channels are also included. Making use
of the same arguments as in Ref. [12] one can show that setting

F
(c)
Sτ,1(r) = δc,phδS0

dUτ (r)

dr
,

(A19)
F

(c)
Sτ,2(r) =

∑
τ ′

F (c)
S,ττ ′(r)Q(c)

Sτ ′(r),

κ
−1
k = −

∑
cSτ

∫ ∞

0
dr r2 F

(c)
Sτ,k(r) Q

(c)
Sτ (r), (A20)

where

Q
(c)
Sτ (r) =

∑
c′S ′

∫ ∞

0
dr ′ r ′ 2A

1 (c,c′)
1Sτ,1S ′τ (r, r ′; ω0)F (c′)

S ′τ,1(r ′),

(A21)
ω0 → 0,

we obtain the spurious state exactly at zero energy. In Eqs.
(A19), Uτ (r) is an auxiliary potential, the well depth of which
is chosen to satisfy the condition∫ ∞

0
dr r3

[
Z Q

(ph)
0 n (r) − N Q

(ph)
0 p (r)

] = 0, (A22)

which ensures the spurious state excitation probability to be
equal to zero.

Making use of the above definitions we can reduce Eq. (32)
for the LRM in the case of the spherically symmetric system
to Eq. (33) for its partial components.

It is important to note that the amplitudes uλ and vλ,
which define the single-quasiparticle basis functions according
to Eq. (6), have to be determined from the solution of the

gap equation with the same interaction F ξ which enters
Eq. (33) for the LRM through Eqs. (A14) and (A16). Namely,
we have

uλ =
√√√√1

2

(
1 + ελ − µτ

λ

Eλ

)
,

(A23)

vλ = sgn(�λ)

√√√√1

2

(
1 − ελ − µτ

λ

Eλ

)
,

where ελ is the eigenvalue of the single-particle Hamiltonian
corresponding to the eigenfunction ϕλ(x), µτ is the chemical
potential,

Eλ =
√

(ελ − µτ
λ
)2 + �2

λ. (A24)

The values of the energy gap �λ are determined within the
BCS approximation from the equation:

�λ = −
∑
(λ′)

2jλ′ + 1

4π
F ξ

(λλ′)
�λ′

2Eλ′
, (A25)

where

F ξ

(λλ′) = δτλ,τλ′

∫ ∞

0
dr r2R 2

(λ)(r) R 2
(λ′)(r)F ξ (r). (A26)

APPENDIX B: CORRELATED PROPAGATOR OF THE
QTBA IN TERMS OF THE REDUCED MATRIX ELEMENTS

In this appendix we draw the formulas for the reduced
matrix elements of the correlated propagator A

J
[12,34](ω)

which correspond to the formulas of Sec. 3.2 of Ref. [7]
obtained within the QTBA in the case of the QPC model. In
what follows, the summation over single-quasiparticle indices
means summation over the discrete states inside the “pairing
window” (see Sec. V for details). The general formula for the
propagator of the QTBA satisfying Eq. (38) reads

A
J
[12,34](ω) =

∑
[5678]

[
δ[15]δ[26] + Q

J (+−) a

[12,56] (ω)
]
A

J (−−)
[56,78](ω)

× [
δ[73]δ[84] + Q

J (−+) a
[78,34] (ω)

] + 1
2

[
P

J (++)
[12,34] (ω)

− (−1)J+l1 −l2 +j1 −j2 P
J (++)
[2̄1̄,34] (ω)

]
, (B1)

where

Q
J (+−) a
[12,34] (ω) = θ(43)

[
Q

J (+−)
[12,34](ω)

+ (−1)J+l3 −l4 +j3 −j4 Q
J (+−)
[12,4̄3̄] (ω)

]
, (B2)

Q
J (−+) a
[12,34] (ω) = θ(21)

[
Q

J (−+)
[12,34](ω)

+ (−1)J+l1 −l2 +j1 −j2 Q
J (−+)
[2̄1̄,34](ω)

]
, (B3)

A
J (−−)
[12,34](ω) = δη1 ,−η2

δη3 ,−η4
A

J (−−)
(12)η1 ,(34)η3

(ω). (B4)
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The quantity A
J (−−)
(12)η,(34)η′ (ω) is a solution of the equation

A
J (−−)
(12)η,(34)η′ (ω) = Ã

J
(12)η,(34)η′ (ω)

+
∑
η

′′

∑
(56)

θ(65)KJ

(12)η,(56)η′′ (ω)AJ (−−)
(56)η′′

,(34)η′ (ω),

(B5)

where

Ã
J
(12)η,(34)η′ (ω)

= −ηδη,η′
[
δ(13) δ(24) + (−1)J+l1 −l2 +j1 −j2 δ(14) δ(23)

]
2
(
ω − η

[
E(1) + E(2)

]) ,

(B6)

KJ
(12)η,(34)η′ (ω)

= η
[
�

J
(12)η,(34)η′ (ω) + (−1)J+l1 −l2 +j1 −j2 �

J
(21)η,(34)η′ (ω)

]
ω − η

[
E(1) + E(2)

] ,

(B7)

�
J
(12)η,(34)η′ (ω) =

∑
η1 η2 η3 η4

δ
η1 ,η

δ
η2 ,−η

δη3 ,η′ δη4 ,−η′ �
J
[12,34](ω).

(B8)

It is easy to see that solution of the Eq. (B5) possesses the
following symmetry:

A
J (−−)
(12)η,(34)η′ (ω) = (−1)J+l1 −l2 +j1 −j2 A

J (−−)
(21)η,(34)η′ (ω)

= (−1)J+l3 −l4 +j3 −j4 A
J (−−)
(12)η,(43)η′ (ω). (B9)

It enables one to determine all the elements of the matrix
A

J (−−)
(12)η,(34)η′ (ω) by solving Eq. (B5) for the nonzero block of

the matrix θ(21)A
J (−−)
(12)η,(34)η′ (ω) θ(43). However, as follows from

Eqs. (42), (46), (B1)–(B4), to construct the propagator in the
coordinate space it is sufficient to determine the elements only
of this block.

In order to define the remaining quantities which enter
Eqs. (B1)–(B3), (B8) in the case of the quasiparticle-phonon
coupling model let us introduce notations

�12 q = E12 + η1ωq, E12 = η1

[
E(1) + E(2)

]
, (B10)

D
q

[12,34]η = δη,+1g
q

[13] g
q∗
[24] + δη,−1(−1)j1 +j2 +j3 +j4 g

q∗
[31] g

q

[42],

(B11)

X
J q

[12,34]η = (−1)J+Jq +j2 −j3

{
j1 j2 J

j4 j3 Jq

}
D

q

[12,34]η,

Y
q

[12,3] =
δj1 j2

δl1 l2

2j1 + 1
D

q

[12,33]η3
, (B12)

where the reduced matrix elements of the amplitude of
quasiparticle-phonon interaction g

q

[12] and the phonon energies

ωq are defined by the formulas of Appendix C. Making use of
Eqs. (37), (B10)–(B12) we obtain

�
J

[12,34](ω) = �
J (res)
[12,34](ω) + �

J (GSC)
[12,34] (ω) + �

(comp)
[12,34](ω), (B13)

�
J (res)
[12,34](ω) = η1 δη1 ,−η2

δη3 ,−η4

×
∑

q

[
δη1 ,η3

(
X

J q

[12,34]η1

ω − �32 q

+
X

J q

[12,34]η2

ω − �14 q

)

+ δ[24]

∑
[5]

δη5 ,η1
Y

q

[13,5]

ω − �52 q

+ δ[13]

∑
[6]

δη6 ,η2
Y

q

[42,6]

ω − �16 q

]
,

(B14)

�
J (GSC)
[12,34] (ω) = −η1 δη1 ,−η2

δη3 ,−η4

×
∑

q

[
δη1 ,−η3

(
X

J q

[12,34]η1

�42 q

+
X

J q

[12,34]η2

�13 q

)

+ δ[24]

∑
[5]

δη5 ,η2
Y

q

[13,5] (ω − E12 − �35 q)

�15 q�35 q

+ δ[13]

∑
[6]

δη6 ,η1
Y

q

[42,6] (ω − E12 − �64 q)

�62 q�64 q

]
,

(B15)

�
(comp)
[12,34](ω) = −η1 δη1 ,−η2

δη3 ,−η4
δη1 ,η3

×
∑

[56]qq ′

δη5 ,η2
δη6 ,η1

Y
q

[13,5] Y
q ′
[42,6]

�15 q�35 q �62 q ′�64 q ′

× (ω + E56 − �12 q − �34 q ′), (B16)

P
J (++)
[12,34] (ω) = η1 δη1 ,η2

δη3 ,η4

∑
q

[
δη1 ,−η3

X
J q

[12,34]η4

�13 q�24 q

×
(

1

ω − �32 q

− 1

ω − �14 q

)

+ δ[24]

∑
[5]

δη5 ,−η1
Y

q

[13,5]

�51 q�53 q(ω − �52 q)

− δ[13]

∑
[6]

δη6 ,−η2
Y

q

[42,6]

�26 q�46 q(ω − �16 q)

]
, (B17)

Q
J (+−)
[12,34](ω) = δη1 ,η2

δη3 ,−η4

∑
q

{ δη1 ,−η3
X

J q

[12,34]η3

�31 q(ω − �32 q)

+
δη2 ,−η4

X
J q

[12,34]η4

�24 q(ω − �14 q)
+ δ[24]

∑
[5]

[
δη5 ,η1

Y
q

[13,5]

E13�53 q
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+
δη5 ,−η1

Y
q

[13,5]

�51 q

(
1

E13
+ 1

ω − �52 q

)]

+ δ[13]

∑
[6]

[
δη6 ,η2

Y
q

[42,6]

E42�46 q

+
δη6 ,−η2

Y
q

[42,6]

�26 q

×
(

1

E42
+ 1

ω − �16 q

)]}
, (B18)

Q
J (−+)
[12,34](ω) = (−1)j1 +j2 +j3 +j4 Q

J (+−)
[43,21](−ω)

= δη1 ,−η2
δη3 ,η4

∑
q

{
δη4 ,−η2

X
J q

[12,34]η1

�42 q(ω − �32 q)

+
δη3 ,−η1

X
J q

[12,34]η2

�13 q(ω − �14 q)
+ δ[24]

∑
[5]

[
δη5 ,η3

Y
q

[13,5]

E31�51 q

+
δη5 ,−η3

Y
q

[13,5]

�53 q

(
1

E31
+ 1

ω − �52 q

)]

+ δ[13]

∑
[6]

[
δη6 ,η4

Y
q

[42,6]

E24�26 q

+
δη6 ,−η4

Y
q

[42,6]

�46 q

×
(

1

E24
+ 1

ω − �36 q

)]}
. (B19)

Equations (B1)–(B19) completely define the reduced ma-
trix elements A

J
[12,34](ω) which enter Eqs. (42) and (46) for

the “discrete” part of the total correlated propagator in the
coordinate representation. Notice that in Eq. (42) the matrix
elements A

J
[12,34](ω) are the same for all the channels which

differ from each other only by the amplitudes αc
[12]. Notice

also that the form of the above equations for the reduced
matrix elements A

J
[12,34](ω) are the same both for magic and

for open-shell nuclei. In the former case, however, the index η1

in the set [1] = {(1), η1} is not independent, but is determined
by the occupation number n(1) = 0 or 1 of the state (1) = (λ1)

as η1 = 1 − 2 n(1).

APPENDIX C: PHONON INPUT IN THE QTBA

In the present calculations the reduced matrix elements of
the amplitude of quasiparticle-phonon interaction g

q

[12] and
the phonon energies ωq entering formulas for the correlated
propagator of the QTBA were determined within QRPA. As
a first step, the QRPA equation for the transition amplitudes
is solved making use of the basis restricted by discrete and
quasidiscrete single-particle states entering a valence zone near
the Fermi level. In terms of the reduced matrix elements this

equation reads

(ωq − η[E(1) + E(2)])ρ
q

(12)η

=
∑
η′

wind∑
(34)

ηFJq

(12)η,(34)η′ θ(43) ρ
q

(34)η′ , (C1)

where

FJ
(12)η,(34)η′ =

∑
η1 η2 η3 η4

δ
η1 ,η

δ
η2 ,−η

δη3 ,η′ δη4 ,−η′FJ
[12,34], (C2)

FJ
[12,34] = 1

2

∑
LSc

(
αc

[12] − η1η2(−1)Sαc
[2̄1̄]

)
× (

αc
[34] − η3η4(−1)Sαc

[4̄3̄]

)
× (1 + δc,ph)T (J ) LS,LS

(12,34) F (c)S
(12,34), (C3)

F (c)S
(12,34) = δτ1 ,τ2

δτ3 ,τ4

×
∫ ∞

0
dr r2R(1)(r) R(2)(r)R(3)(r) R(4)(r)F (c)

S,τ1 τ3
(r).

(C4)

The quantities entering these formulas are defined by
Eqs. (A15), (A16), (43), (44). Notice that QRPA
equation (C1) includes contributions of all the channels:
ph, pp, and hh, though in the present calculations only
ph channel was included. Normalization condition for the
transition amplitudes ρ

q

(12)η has the form

∑
η

wind∑
(12)

θ(21)η
∣∣ρq

(12)η

∣∣2 = 2Jq + 1. (C5)

The reduced matrix elements g
q

[12] and the reduced probabil-
ity B(q)↑ of excitation induced by the external field (A5) are
determined by the found values of ρ

q

(12)η through the formulas

g
q

[12] =
wind∑
[34]

FJq

[12,34] θ(43) δη3 ,−η4
ρ

q

(34)η3
, (C6)

B(q)↑= 1

2Jq + 1

∣∣∣∣∑
η

wind∑
(12)

θ(21)

(
Ṽ 0

Jq

)
(21)ηρ

q

(12)η

∣∣∣∣
2

, (C7)

where (
Ṽ 0

J

)
(21)η =

∑
LS

ηS[u(1) v(2) + (−1)S v(1) u(2)]

×〈 j2l2‖TJLS‖j1l1〉
(
Ṽ 0

JLS

)
(21), (C8)

(
Ṽ 0

JLS

)
(12) = δτ1 ,τ2

∫ ∞

0
dr r2 R(1)(r)R(2)(r) Ṽ 0

JLSτ1
(r). (C9)

More general formulas for the phonon amplitudes and
energies are drawn in Ref. [22].
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