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Band structure and electromagnetic transition properties of the low-lying states in the N = Z 68Se nucleus
were studied within the framework of interacting boson model 3. The isospin excitation states with T > TZ

are identified. The M1 and E2 matrix elements for low-lying states have been investigated and were used to
identify the low-lying mixed symmetry states. Special attention is given to the occurrence of 0+

2 state, recently
predicted by the projected shell-model (PSM) calculation. The present predicted spectrum for 68Se is close to the
recent PSM results and confirms the results for the 0+

2 state. The calculated results are compared with available
experimental data, and they are in general good agreement.
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I. INTRODUCTION

During recent years comprehensive new experimental
information on energy levels in the N � Z nuclei have
been collected [1–5]. Because isospin excitations have been
observed at modest excitation energies in these nuclei, this
region is of specific interest because different microscopic
theoretical approaches can be compared and tested. These
nuclei are expected to give new insight into the neutron-proton
correlation. The studies [6–8] have demonstrated that mixing
between T = 0 and T = 1 modes and between Tz = ±1
and Tz = 0 in the T = 1 mode are necessary in an isospin
invariant approach. In even-even Z = N nuclei, the 0+

1 , T = 0
ground state is separated from the excited T = 1 states by a
relatively large energy gap and isospin symmetry forces the
isovector pairing to be identical in all three T = 1 pairing
channels. However, the relative dominance of T = 0 versus
T = 1 pairing in N = Z nuclei has been shown to be linked
to the energy separation of the two types of pair and hence
to the separation of the T = 0 and T = 1 states in odd-odd
N = Z nuclei. Over the past few years, the structure of these
nuclei have received intensive attention [9–17]. Many detailed
theoretical description of these nuclei were available, due
largely to the fact that the structure of these nuclei provides a
sensitive test for the isospin symmetry of nuclear force. The
isospin effect were studied in Refs. [18–23].

In this work, we shall examine an alternative description
of the band structure and isospin excitation states (T > Tz) of
68Se in the interacting boson model 3 (IBM-3). As we shall
see, this model can provide a relatively simple, yet accurate,
description for the states. This work can be considered a
continuation of the work in Ref. [24] and a partial effort to
the comprehensive understanding of the nuclear structure in
this region. Before going to the IBM-3 treatment, it is worth
mentioning the following work. The excitation states of 68Se
were investigated in Refs. [25,26], where the levels were
inferred from the 12C(58Ni,2n) and 40Ca(36Ar,2α) reactions.
The nuclear structure of coexistence of differently deformed
shapes has been found in 68Se, where the ground-state band
has an oblate deformation whereas an excited band has prolate
deformation [27]. Some effort has been made to provide a more

sophisticated description of these low-lying states. However,
these calculations are generally restricted to the study of
nuclear shape and band structure with isospin (Tz = 0).

More recently, several theoretical investigations of 68Se
isotope have been carried out:

(i) Sun [28], has performed systematic analysis of even-
even 68Se isotope in the projected shell model, sat-
isfactorily reproduced the excitation energy levels of
this nucleus, including the coexisting oblate and prolate
minima, the backbending at J = 8+ and 16+ and a
number of high K isomers at approximately 5 MeV
above the ground state.

(ii) Kaneko et al. [29] have considered the configuration
space (2p3/2, 1f5/2, 2p1/2, 1g9/2) and performed shell
model and constrained Hartree-Fock calculations for
some N = Z nuclei. The authors found shape transition
from prolate to oblate deformation in these N = Z nuclei
and oblate-prolate coexistence at 68Se. The ground state
of 68Se has an oblate shape, whereas the shape of 60Zn
and 64Ge are prolate.

(iii) Afanasjev and Frauendorf [30], have performed cal-
culations using the cranked relativistic mean field,
cranked relativistic Hartree-Bogoliubov theories, and
cranked Nilsson-Strutinsky approach for 68Se isotope;
their calculations strongly suggest that the presence of
strong isovector np pairing at low spin and the strength
is restricted by the isospin symmetry.

(iv) Sun et al. [31] have investigated shape isomeric states
using a multi-mass-zone x-ray burst model, given a two
waiting point nuclei 68Se and 72Kr that are characterized
by shape coexistence. The ground state takes an oblate
shape with (ε2 = 0.25) and another local minimum with
a prolate shape (ε2 = 0.4) is found to be 1.1 MeV(68Se)
and 0.7 MeV (72Kr), which were interpreted as isomeric
states.

II. THE MODEL HAMILTONIAN AND THE PARAMETER

The IBM describes the low-lying energy levels in the even-
even nuclei, starting from the symmetric coupling of bosons. In
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this model one can describe collective states by a system of N

identical bosons. These bosons have angular momentum L =
0 (s-boson) and L = 2 (d-boson), respectively [32–34]. The
neutron-proton extension of the model (IBM-2) predicts a new
class of states [35] having mixed symmetry in the proton and
neutron degrees of freedom. The mixed symmetry states have
been successfully observed in various experiments [36–38].
The main advantage of this description, in which the proton-
neutron degree of freedom is included explicitly, is that it is
closely related to the microscopic shell model, allowing the
microscopic derivation of the parameters of the model [39].

In lighter nuclei the valence protons and neutrons are filling
the same major shell, isospin must be introduced. Within the
IBM with isospin (IBM-3) [40], the neutron-proton pair must
be included in addition to the two other types of bosons in
the IBM-2 to form an isospin triplet. The microscopic picture
of the interacting boson model is given in terms of collective
pairs of nucleon. The building blocks of the IBM-3 are the
neutron-neutron boson (sν, dν), neutron-proton boson (sδ, dδ)
and proton-proton boson (sπ , dπ ). The three s-bosons and three
d-bosons form a T = 1 multiplet, respectively. The IBM-3
has U (18) group as its dynamical symmetry group, and the
dynamical group chain must contain the OL(3) and SUT (2)
groups, because the angular momentum and the isospin are
good quantum numbers [41–44]. One class of group chain is
the U (6) × U (3) limit, which includes [45]

U(18) ⊃ (Uc(3) ⊃ SUT (2))

× (Usd (6) ⊃ Ud (5) ⊃ Od (5) ⊃ Od (3))

U(18) ⊃ (Uc(3) ⊃ SUT (2))
(1)

× (Usd (6) ⊃ Osd (6) ⊃ Od (5) ⊃ Od (3))

U(18) ⊃ (Uc(3) ⊃ SUT (2))

× (Usd (6) ⊃ SUsd (3) ⊃ Od (3)).

These group chains are called the U(5), O(6), and SU(3) limits,
and they describe the vibrational, γ -unstable, and rotational
motion, respectively. These limits have been used in the
microscopic study of the IBM-3 [41,46].

The IBM-3 Hamiltonian can be written as

H = εsn̂s + εd n̂d + H2, (2)

where

H2 = 1

2

∑
L2T2

CL2T2 [(d†d†)L2T2 · (d̃d̃)L2T2 ]

+ 1

2

∑
T2

B0T2 [(s†s†)0T2 · (s̃ s̃)0T2 ]

+
∑
T2

A2T2 [(s†d†)2T2 · (d̃ s̃)2T2 ]

+ 1√
2

∑
T2

D2T2 [(s†d†)2T2 · (d̃d̃)2T2 ]

+ 1

2

∑
T2

G0T2 [(s†s†)0T2 · (d̃d̃)0T2 ]. (3)

The symbols T2 and L2 represent the two-boson isospin and
angular momentum, respectively. The parameters A,B,C,D,
and G are the two-body matrix elements. There has been
microscopic study of these parameters [47–49]. The normal
product form of the Hamiltonian (2) and the Casimir operators
of IBM-3 limits are related. They can be given, after some
tedious algebra. We have rewritten the Hamiltonian in terms of
linear combination of Casimir operators, which is convenient
to analyze the dynamical symmetry nature. The expressions
of the Casimir operators can be found in Ref. [45]. In Casimir
operator form, the Hamiltonians is

H = λC2Usd (6) + aT T (T + 1) + εC1Ud (5)

+ γC2Osd (6) + ηC2SUsd (3)

+βC2Ud (5) + δC2Od (5) + aLCOd (3). (4)

The ĈnG denotes the nth order Casimir operator of the algebra
G. The definition of all operators and the full Hamiltonian
of the IBM-3 in terms of Casimir operators can be found in
Ref. [46].

Although this nucleus has large deformations, the ratio
E4+

1 /E2+
1 = 2.27 is close to 2.5 rather than 3.3, suggest-

ing γ unstable collective motion. Furthermore, the ratio
E4+

1 /E2+
2 = 1.21 and until now no experimental data for 0+

2
state were available. Within IBM-3, the features exhibiting
the isospin excitation have not been investigated previously.
We expect neutron-proton boson to play a crucial role in this
spectra, especially in the isospin excitation states. To describe
the energy spectra we use the Hamiltonian form in terms of
the Casimir operators of dynamical symmetry groups given
in Eq. (4). In performing the energy fit, the aT parameter
was fitted to relative position of 0+

T =2, i.e., the shift between
the T = 0 ground state and the first T = 2 state. Here we
have assumed that the ground-state energy of 68Ge is equal to
that of the IBM-3 calculated 0+

T =2 state in 68Se. We estimate
the energy of the isospin analog state in 68Ge by considering
the binding energy difference of 68Se and 68Ge and then
subtracting the Coulomb energy difference. This estimation
is crude because Coulomb energy depends on the shape of
the nucleus sensitively. By using the data in Ref. [50] and the
following Coulomb energy formula

ECoulomb = 0.70
Z2

A1/3
(1 − 0.76 Z−2/3), (5)

we obtained the energy of the T = 2 isospin analog state in
68Ge to be 6.054 MeV, which is close to the energy of the
0+

T =2 at 6.060 MeV in our IBM-3 calculation. The λ parameter
determines the position of the mixed symmetry states. They
occur when the motions of the protons and neutrons are not
in phase. The mixed-symmetry states lie usually high in the
energy, and therefore the Majorana interaction is varied so as
to push up these states at about 5 MeV. Using the available
experimental and theoretical information as a guide we have
derived “initial” values of input parameters. We use a perturbed
U(5) Hamiltonian together with a perturbation predominantly
of O(6) type. The spectrum is dominated by the vibrational
C1Ud (5) term, where the coefficient of C1Ud (5) is very large. The
low-lying levels of 68Se can be described by the following
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TABLE I. The parameters of the IBM-3 Hamiltonian used for the description of the 68Se isotope. The εdρ − εsρ = 0.748 MeV, where
ρ = π, ν.

Ai(i = 0, 1, 2) Ci0(i = 0, 2, 4) Ci2(i = 0, 2, 4) Ci1(i = 1, 3) Bi(i = 0, 2) Di(i = 0, 2) Gi(i = 0, 2)

−4.380,−1.680,1.680 −4.980,−4.432,-4.110 1.080,1.628,1.950 −1.996,−1.766 −4.400 1.660 0.000,0.000 0.045,0.045

Hamiltonian:

H = −0.18C2Usd (6) + 1.010T (T + 1) + 0.430C1Ud (5)

+ 0.010C2Osd (6) + 0.012C2Ud (5)

+ 0.031C2Od (5) + 0.023COd (3). (6)

The corresponding parameters in the form of Eq. (3) are
also given in Table I. In order to have a good understanding
how these parameters affect the collective feature of the
states we vary the parameters around the optimal values. The
procedure was to vary one parameter in small steps while
keeping the other fixed. The CL2T2 , with L2 = 0, 2, 4 and
T2 = 0, 2, are well known to affect only the details of the
energy spectrum, in particular the splitting of the two-phonon
states. The parameters A1, C11, and C31 are similar to the
Majorana interactions in the IBM-2, which will be referred
also as Majorana interactions here, and they are important to
shift the states with mixed symmetry with respect to the total
symmetric ones. The B0 and B2 parameters have a very large
effect on the energy levels, whereas the G0 and G2 parameters
have very small effect, especially on the ground-state band.
The D0 and D2 parameters are adopted zero because in the
SU(3) Casimir operator is absent in the Casimir form of the
Hamiltonian, reflecting the fact that the nucleus is γ soft.

III. EXCITATION ENERGY

The 68Se isotope (N = Z = 34) has Nπ = Nν = 3 bosons.
In the ground state of this nucleus the f7/2 shell is filled, and the
six protons and six neutrons outside N = Z = 28 closed shell
core occupy the lowest-lying orbitals ranging from p3/2 to f5/2.
Accordingly, both proton and neutron boson are of particle
type. The T = 0 states were observed up to Jπ = 26+ [25].
Experimental data [51] and calculations from three models,
the IBM-3, PSM [31] and SM [29], are presented in the Fig. 1
and discussed in the text. The energy levels have been ordered
into groups according to isospin and U(6) symmetry labels. In
Fig. 1, we show the fits to the data for the 2+

1 , 4+
1 , 6+

1 , 8+
1 , 10+

1 ,
and 12+

1 states of ground-state band, as well as the 2+
2 , 4+

2 ,
and 6+

2 states of the first excitation band, respectively. The
splitting of 2+

2 and 4+
1 in the “two phonon states” is well

reproduced. Clear reproduction of the low-lying structural
features observed in the experimental data can be seen,
especially those of the ground-state band in the calculations of
all three models as shown in Fig. 1. We have a very reasonable
fit to the experimental data about these states up to 10+

1 .
The maximum deviation in the first excitation band occurs
at the 6+

2 state with an error about 0.5 MeV. It is noticed that
the isotope exhibits backbanding in the ground band, which can
be explained by the collective backbanding proposed in Ref.
[52]. Recently, Sun et al. [28] studied the property of the 8+

state of ground band for 68Se and observed the first and second
sharp backbending at J = 8+ and J = 16+, respectively, and
they considered these states as isomeric states because no
allowed low multipolarity γ -transition matrix elements can
connect these states to the nearby ground-state bands. We see
a good agreement between the calculated energy of J = 8+

2
in the PSM result with experimental ones, and this is outside
of the IBM-3 model space. The state at 3.073 MeV in the
experimental data with a transition Eγ = 2.220 MeV to the
2+

1 state [51] is closed to the full symmetry state with J = 4+
3

at 3.013 MeV in our IBM-3 results.
We have analyzed the wave function of the low lying

states, and found that the main components of the wave
function for the states in the ground-state band are all basically
sN , sN−1d, sN−2d2, sN−3d3 and so on configurations. For
instance

|2+
1 〉 = −0.472

{∣∣s3
ν s

2
πd1

π

〉 + ∣∣s3
πs2

ν d
1
ν

〉} + 0.272
{∣∣s2

ν s
1
πs2

δ d
1
π

〉
+ ∣∣s1

ν s
2
πs2

δ d
1
ν

〉 + ∣∣s2
ν s

2
πs1

δ d
1
δ

〉} + 0.373
∣∣s5

δ d
1
δ

〉
− 0.334

∣∣s1
ν s

1
πs3

δ d
1
δ

〉 + · · · ·,
|4+

1 〉 = +0.518
∣∣s2

πs2
ν d

1
ν d1

π

〉 − 0.244
{∣∣s2

ν s
1
πs1

δ d
1
πd1

δ

〉
+ ∣∣s1

ν s
2
πs1

δ d
1
ν d1

δ

〉} + 0.292
{∣∣s3

ν s
1
πd2

π

〉 + ∣∣s1
ν s

3
πd2

ν

〉}
+ 0.211

{∣∣s1
ν s

3
δ d

1
πd1

δ

〉 + ∣∣s1
πs3

δ d
1
ν d1

δ

〉}
+ 0.259

∣∣s2
δ s

1
ν s

1
πd2

δ

〉 − 0.374
∣∣s4

δ d
2
δ

〉 + · · · ·,
|6+

1 〉 = +0.451
{∣∣s2

ν s
1
πd1

ν d2
π

〉 + ∣∣s1
ν s

2
πd2

ν d1
π

〉} + 0.225
{∣∣s1

πs2
δ d

1
ν d2

δ

〉
+ ∣∣s1

ν s
2
δ d

1
πd2

δ

} + 0.1502
{∣∣s3

ν d
3
π

〉 + ∣∣s3
πd3

ν

〉}
+ 0.184

∣∣s1
ν s

1
πs1

δ d
3
δ

〉 − 0.300
∣∣s1

πs1
ν s

1
δ d

1
ν d1

πd1
δ

〉
− 0.375

∣∣s3
δ d

3
δ

〉 + · · · · .

FIG. 1. Comparison between lowest excitation energy bands
(T = Tz, Tz + 1, and Tz + 2) of the IBM-3 calculation, PSM from
Ref. [31], SM from Ref. [29], and experimental data from Ref. [51]
for 68Se.
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The first and second J = 3+ states are both full symmetry
states at 2.630 and 3.645 MeV, respectively. The IBM-3 wave
functions of the first excitation states with J = 0+ and T =
TZ, TZ + 1, and TZ + 2 are

|0+
T =0〉 = −0.509

∣∣s2
ν s

2
πd1

πd1
ν

〉 + 0.367
∣∣s4

δ d
2
δ

〉 − 0.293
{∣∣s3

ν s
1
πd2

π

〉
+ ∣∣s3

πs1
ν d

2
ν

〉} − 0.255
∣∣s1

πs1
ν s

2
δ d

2
δ

〉
+ 0.240

{
s1
ν s

1
πs2

δ d
1
πd1

ν

〉 + ∣∣s2
ν s

1
πs1

δ d
1
πd1

δ

〉
+ ∣∣s1

ν s
2
πs1

δ d
1
ν d1

δ

〉} + · · · ·,
|0+

T =1〉 = +0.583
{∣∣s3

ν s
1
πd2

π

〉 − ∣∣s3
πs1

ν d
2
ν

〉} + 0.238
{∣∣s2

πs2
δ d

2
ν

〉
− ∣∣s2

ν s
2
δ d

2
π

〉 + ∣∣s1
ν s

2
πs1

δ d
1
ν d1

δ

〉 − ∣∣s2
ν s

1
πs1

δ d
1
πd1

δ

〉}
+ 0.206

{∣∣s1
ν s

3
δ d

1
πd1

δ

〉 − ∣∣s1
πs3

δ d
1
ν d1

δ

〉} · · · ·,
|0+

T =2〉 = +0.682
∣∣s6

δ

〉 − 0.373
∣∣s3

ν s
3
π

〉 − 0.107
∣∣s4

δ d
2
δ

〉
− 0.075

∣∣s2
ν s

2
πd1

ν d1
π

〉 + · · · · .

The 0+
2 is a remarkably pure two d-boson state containing

a significant amount of d2
δ component, and the expectation

values of s- and d- boson numbers of this state are 3.987 and
2.013, respectively. Although the 0+

T =2 state is mainly a sN

state with some admixture of the two-d-boson state. The first
calculated T = 1 and 2 states are identified according to the
analog states in 68As and 68Ge, respectively. The excitation
energy from the T = 0 ground-state bands to the first isospin
excitation T = 1 band states is well reproduced, where the
calculated energy of the 3+

T =1 state equals 5.67 MeV, which is
close to the energy of the T = 1 isospin analog ground state
in 68As at 4.86 MeV.

From Fig. 1, we see that the mixed J = 2+ state with
[N − 1, 1] partition is lower in energy than the 1+ state,
i.e., the lowest mixed symmetry state is a J = 2+. Among
the low-lying states, the 1+ state is of particular interest.
It is predicted by the IBM [53,54] as a mixed symmetry
state and is called the scissors mode [55], characterized by
large values of B(M1) and small B(E2) values. Classically,
these states can be regarded as small amplitude oscillations of
the angle between symmetry axes of the deformed valence
neutrons and valence protons [56]. It has been discovered
in high-resolution electron-scattering experiment [57]. The
1+ T = 1 state has been observed in N = Z 44Ti nucleus
at 7.216 MeV. In the case of Z = N nucleus the first
calculated 1+ state comes from [N − 1, 1] partition with
T = 1 at a relatively high excitation energy of 5.540 MeV
for 68Se. No experimental data are available about this state
at the moment. In the IBM-3 Hamiltonian one can fit these
energy levels by changing the Majorana interaction with
L2 = 1. The main components of the mixed symmetry 1+
state are 0.8215|s2

π s2
ν d

1
ν d1

π 〉 − 0.3873|s1
πs1

ν s
2
δ d

1
ν d1

π 〉. The IBM-
3 calculation has well reproduced the staggering of odd-even
angular momentum levels in the γ band, i.e., (3+

1 , 4+
2 ),.... The

calculation predicted a 0+
3 level at 2.153 MeV in 68Se, and this

remains to be seen in experiment.

IV. ELECTROMETRIC TRANSITIONS

In this section the M1 and E2 transitions in 68Se are
investigated. The E2 transition can be calculated by the

following transition operators [44]

T (E2) = T 0(E2) + T 1(E2), (7)

where

T 0(E2) = α0

√
3[(s†d̃)20 + (d†s̃)20] + β0

√
3[(d†d̃)20], (8)

T 1(E2) = α1

√
2[(s†d̃)21 + (d†s̃)21] + β1

√
2[(d†d̃)21]. (9)

The M1 transition is also a one boson operator with an
isoscalar part and an isovector part

T (M1) = T 0(M1) + T 1(M1), (10)

where,

T 0(M1) = g0

√
3(d†d̃)10 = g0L/

√
10, (11)

T 1(M1) = g1

√
2(d†d̃)11, (12)

and g1 and g0 are the isovector and isoscalar g factor,
respectively, and L is the angular momentum operator.

E2 transitions are calculated with parameters close to the
values used in the recent work in Ref. [24], where α0 = β0 =
0.076 eb and α1 = β1 = 0.05 eb. Due to the predominantly
isovector nature of T (M1) operator, the g factors are g1 =
2.7µN and g0 = 0.0µN , respectively. In addition, the isovector
M1 transition between the T = 0 states are forbidden. The E2
and M1 transitions are shown in Fig. 2 and listed in Table II.

To see the contributions from the isoscalar and isovector
parts in the M1 and E2 transitions directly, we write the terms
in the zero isospin z component of the transition operators as
follows

T 0
sd (E2) = [(s†d̃)2 + (d†s̃)2]π + [(s†d̃)2 + (d†s̃)2]δ

+ [(s†d̃)2 + (d†s̃)2]ν, (13)

T 0
dd (E2) = [(d†d̃)2]π + [(d†d̃)2]δ + [(d†d̃)2]ν, (14)

T 1
sd (E2) = [(s†d̃)2 + (d†s̃)2]π − [(s†d̃)2 + (d†s̃)2]ν, (15)

T 1
dd (E2) = [(d†d̃)2]π − [(d†d̃)2]ν, (16)

T 0
dd (M1) = [(d†d̃)1]π + [(d†d̃)1]δ + [(d†d̃)1]ν, (17)

T 1
dd (M1) = [(d†d̃)1]π − [(d†d̃)1]ν . (18)

FIG. 2. Energy levels (T = Tz, Tz + 1, Tz + 2) and the
B(E2)(solid line) and B(M1)(dotted line) values are in units
of e2 · b2 and µ2

N, respectively. The U(6) partition is given in
parentheses for each level.
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TABLE II. The E2 and M1 transition properties. Columns 2–6 are the reduced matrix elements for the various terms in the E2 transition
operator. Column 7 is the reduced E2 transition probability. Columns 8 are the reduced matrix elements for the isovector M1 transition
operator, and column 9 is that for the total M1 transition operator. Column 10 is the B(M1) value. Here the B(E2) and B(M1) are given
relative percentages and the reduced values are shown in Fig. 2.

J +
i → J +

f T 0
sd (E2) T 0

dd (E2) T 1
sd (E2) T 1

dd (E2) T (E2) B(E2) T 1
dd (M1) T (M1) B(M1)

2+
1 → 0+

1 −4.9772 −0.3783 100

2+
2 → 2+

1 2.9191 −0.0002 0.2218 146

1+
T =1 → 2+

1 −1.5416 −0.0770 35

1+
T =1 → 2+

2 0.0001 −0.4908 −0.0245 4 −0.5809 −0.7662 100

1+
T =1 → 0+

1 0.1541 0.2033 1.43

1+
T =1 → 2+

T =1 1.7523 0.1331 105

2+
T =1 → 0+

1 −4.5318 −0.2265 35

2+
T =1 → 2+

1 0.8176 0.0408 7 0.6352 0.8377 71.71

2+
T =1 → 2+

2 −0.0002 −0.4776 −0.0239 2

0+
T =1 → 2+

T =1 0.9092 0.0691 86

0+
T =1 → 2+

1 0.8192 0.0409 28

0+
T =1 → 2+

2 −0.0001 −0.0001 0.4600 0.0229 11

0+
T =2 → 1+

T =1 −0.0487 −0.0643 1.23

0+
T =2 → 2+

T =1 −1.1100 −0.0555 53

2+
T =2 → 2+

T =1 −0.4478 −0.0224 2 −0.3479 −0.4588 21.45

2+
T =2 → 1+

T =1 −1.0901 −0.0545 6

2+
T =2 → 0+

T =2 4.9775 0.3783 100

The total transition operators are

T (E2) = α0T
0
sd (E2) + β0T

0
dd(E2) + α1T

1
sd(E2) + β1T

1
dd (E2),

(19)

T (M1) =
√

3

4π

{
g0T

0
dd (M1) + g1T

1
dd (M1)

}
. (20)

The reduced E2 and M1 transition probabilities are

B(E2; Ji → Jf ) = 2Jf + 1

2Ji + 1
|〈Jf ‖T (E2)‖Ji〉|2, (21)

B(M1; Ji → Jf ) = 2Jf + 1

2Ji + 1
|〈Jf ‖T (M1)‖Ji〉|2, (22)

where we have used the Brink-Satchler convention [58] for the
reduced density matrix element 〈Jf ‖T (E2)‖Ji〉.

For this N = Z nucleus, it is found that the transition be-
tween the T = 1 states does not have an isovector component
as shown in Table II. A very peculiar phenomenon is the decay
of the first isospin excitation Jπ = 2+ state. This state decays
preferentially to the 2+

1 state through an M1 transition with
B(M1) = 0.702µ2

N , and it does not decay to the 2+
2 state.

The latter transition is almost forbidden. When looking at the
individual E2 transition terms as shown in Table II, we found
that the isoscalar E2 components are large for both 2+

1 → 0+
1

and 2+
2 → 2+

1 transitions. The 1+
1 → 2+

T =1 and 0+
T =1 → 2+

T =1
E2 transitions with �T = 0 are similarly isoscalar dominant.
The M1 transition from the 1+

1 → 2+
2 is of special interest.

It is of allowed �T = 1 nature with B(M1) =0.9790 µ2
N ,

whereas the transition 1+
1 , T = 1 → 2+, T = 1 is isospin

forbidden. The quadrupole moments of the 2+
1 and 4+

1
states are Q(2+

1 ) = 0.1306 eb and Q(4+
1 ) = 0.1947 eb,

respectively.

V. CONCLUSION

This calculation has yielded several interesting results.
First, the excitation energy of the second 0+

2 state in 68Se
is identified as 1.106 MeV. The present calculated energy is
consistent with the SM and PSM results as shown in Fig. 1, and
it will be highly desirable to substantiate this model predictions
in future experiment.

Second, when we did the calculation for this nucleus, we
did not take into account of the experimental 2+

2 states in the
fitting. However, the calculated 2+

2 state result agrees very
well with the recent SM and PSM calculation and agrees with
the experimental data at 1.594 MeV. In all theoretical studies,
no J = 2+ state are closed to the experimental J = 2+ at
1.197 MeV [26]. The nature of this level needs further study.

Third, based on isospin analog state in 68Ge, the calculation
suggests that the first and second isospin excited J = 2+
and J = 0+ states with T = 1 are at 4.922 and 5.163 MeV,
respectively, with [N − 1, 1] U(6) label. These suggestions do
not contradict the experimental data [51].

Fourth, because IBM-3 has three charge states, it is
possible to have U(6) partitions into three rows, namely the
[N1, N2, N3] states that are characteristic of IBM-3. We
found that such state comes high in energy, up at about
7.5 MeV, and the lowest such example being a scissor mode
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at 7.486 MeV, which is predominantly the [4, 1, 1] partition
with T = 1. The first state coming from [2, 2, 2] partition is
a J = 0+ at 8.223 MeV with T = 0. It is very significant if
these properties are observed in experiment.
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