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Pair condensation in a finite Fermi system
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The lowest seniority-zero eigenstates of an exactly solvable multilevel pairing Hamiltonian for a finite Fermi
system are examined at different pairing regimes. After briefly reviewing the form of the eigenstates in the
Richardson formalism, we discuss a different representation of these states in terms of the collective pairs
resulting from the diagonalization of the Hamiltonian in a space of two degenerate time-reversed fermions. We
perform a two-fold analysis by working both in the fermionic space of these collective pairs and in a space of
corresponding elementary bosons. On the fermionic side, we monitor the variations which occur, with increasing
the pairing strength, in the structure of both these collective pairs and the lowest eigenstates. On the bosonic side,
after reviewing a fermion-boson mapping procedure, we construct exact images of the fermion eigenstates and
study their wave function. The analysis allows a close examination of the phenomenon of pair condensation in
a finite Fermi system and gives new insights into the evolution of the lowest (seniority-zero) excited states of a
pairing Hamiltonian from the unperturbed regime up to a strongly interacting one.
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I. INTRODUCTION

Pairing lies at the heart of quantum many-body physics. In
spite of its long history (fundamental works such as those of
Mayer [1], Flowers [2], and Racah and Talmi [3] in nuclear
physics and that of Bardeen, Cooper, and Schrieffer [4] in
condensed matter physics all date back to the 1950s), pairing
is still a highly topical subject due to its key role in modeling
the structure of a large variety of systems which are the object
of current research (see, e.g., Ref. [5] for a recent analysis of
pairing in nuclear systems).

Pairing affects both finite and infinite systems. The BCS
approximation [4] turns out to be quite appropriate for the
latters. In finite systems (such as nuclei and ultrasmall metallic
grains, for example), the BCS description of pairing is instead
known to lack of reliability as a result of the particle number
violation inherent in the BCS wave function. Although more
sophisticated approaches, such as the number-projected BCS
approximation [6], for example, do exist, none of them has
revealed to be as simple and effective as BCS in infinite
systems.

In this paper, wishing to investigate the properties of the
eigenstates of a pairing Hamiltonian without resorting to
approximate methods, we have focused our attention on an
exactly solvable pairing model which has received a great
deal of attention over the years, namely the so-called reduced
BCS [7] or picket-fence [8] model. Applications of this model
to finite systems range from nuclear physics, where it has been
used as a prototype of a deformed nucleus [9–11], to condensed
matter physics, where it has been largely employed to describe
the superconducting properties of ultrasmall metallic grains
(see Ref. [7] for a comprehensive review article on this
subject). Moreover, being quite sensitive to any violation of
the Pauli principle, the reduced BCS model has often been
used as an ideal testing ground for many-body approximations
such as the random phase approximation and its extensions
[8,11–15]. Recent analysis of the model can be found in
Refs. [16,17].

The exact solutions of the reduced BCS Hamiltonian were
discussed in the 1960s in a series of articles by Richardson
[9,18–21], also in collaboration with Sherman [22], in the
context of nuclear physics. In the Richardson formalism, any
seniority-zero eigenstate of this Hamiltonian is a product of
collective pair operators characterized by amplitudes which
depend on some parameters, the so-called pair energies.
These are determined by solving a set of coupled nonlinear
equations. Although exact, the Richardson formalism does
not offer a straightforward understanding of the structure of
the eigenstates. With increasing the pairing strength, as a result
of the appearence of singularities in the above equations, some
pair energies, two by two, turn into complex-conjugate pairs.
No matter what pairing strength, the Richardson eigenstates
remain a product of distinct collective pair operators, some
of which may then be characterized by complex amplitudes.
The purpose of this paper is that of providing a simpler and
more intuitive description of the pairing eigenstates and of
their evolution at different pairing regimes.

Our analysis will have a two-fold aspect, a fermionic and
a bosonic one. From the fermionic point of view, we will
define a new set of collective pair operators in terms of which
we will reformulate the exact eigenstates. We will therefore
study the evolution of these pairs as well as that of the
eigenstates. The bosonic analysis will instead be made in terms
of elementary bosons, each boson replacing a collective pair.
We will review a mapping procedure to transfer the description
of the original Fermi system onto the space of these elementary
bosons and we will construct an exact image of the fermion
eigenstates which will eventually be examined. This work
will allow a close examination of the phenomenon of pair
condensation in a finite Fermi system and give new insights
into the evolution of the lowest (seniority-zero) excited states
of a pairing Hamiltonian from the unperturbed regime up to a
strongly interacting one.

The paper is organized as follows. In Sec. II, we describe
the model and its exact solutions in the Richardson formalism.
In Sec. III, we reformulate the eigenstates in terms of a new
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set of collective pair operators and study their evolution. In
Sec. IV, we carry out the analysis in terms of elementary
bosons. All the calculations presented up to this point refer to
a system of 12 particles distributed over 12 levels. In Sec. V,
we discuss some results referring to other systems. In Sec. VI,
we summarize the results and draw some conclusions.

II. THE RICHARDSON FORMALISM

The starting point of our work is the Hamiltonian [7,8]

H =
�∑

j=1

εjNj − g

�∑
i,j=1

P
†
i Pj , (1)

where

Nj =
∑

σ

a
†
jσ ajσ , P

†
j = a

†
j+a

†
j−, Pj = (P †

j )†. (2)

This Hamiltonian describes a system of fermions distributed
over a set of � doubly degenerate single particle levels and
interacting via a pairing force with a level-independent strength
g. We restrict our analysis to the case of an even number
of particles (2N ) and assume equally spaced single-particle
energies of the form εj = jd, d being the level spacing.
The operator a

†
jσ (ajσ ) creates (annihilates) a fermion in the

single-particle state (j, σ ), where j identifies one of the �

levels of the model and σ = ± labels time reversed states.
These operators obey standard fermion commutation relations.
We exclude partial occupation of the levels, i.e., levels are
considered as either fully occupied (two particles in time
reversed states) or empty. Singly occupied levels decouple
from the rest and are said to be “blocked” [22] since they do not
participate in the pair-scattering generated by the Hamiltonian
(1). Our model space therefore includes only seniority-zero
states [22].

The derivation of the exact eigenstates and eigenvalues of
the Hamiltonian (1) is extensively discussed in Refs. [9,18,
19,22]. We refer to these publications for a careful study of
the subject. Here, we only resume a few basic results of these
works. It has been shown by Richardson that a state |�〉 of the
form

|�〉 =
N∏

i=1

B
†
i |0〉, B

†
i =

�∑
k=1

1

2εk − Ei

P
†
k (3)

is a seniority-zero (unnormalized) eigenstate of the Hamilto-
nian (1) if the N parameters Ei (the so-called pair energies)
are roots of the set of N coupled nonlinear equations

1 −
�∑

k=1

g

2εk − Ei

+
N∑

l(l �=i)=1

2g

El − Ei

= 0. (4)

The eigenvalue E(�) associated with |�〉 is just the sum of the
corresponding pair energies, i.e.,

E(�) =
N∑

i=1

Ei. (5)

The numerical solution of Eq. (4) meets some technical
difficulties. Indeed, with increasing the strength g of the
pairing interaction, it happens that two (real) pair energies
Ei become equal thus giving rise to a singularity. When this
occurs, these energies turn from real into complex-conjugate
pairs. It is in order to handle only real quantities that
Richardson introduced some new variables ξλ and ηλ [9]. In
the case of the ground state, these are defined such that

E2λ−1 = ξλ − iηλ, E2λ = ξλ + iηλ (λ = 1, 2, . . . , N/2).

(6)

This transformation actually holds only for even N but the
case of odd N can also be taken into account by assuming
that one pair energy is real and the remaining N − 1 pair
energies occur in complex-conjugate pairs [9]. In Eq. (6),
ξλ is assumed to be always real while ηλ can be either pure
imaginary (corresponding to real and distinct E2λ−1 and E2λ)
or real (corresponding to complex conjugates pair energies).
Once the transformation (6) is made, Eqs. (4) depend only on
the real quantities ξλ and η2

λ which can therefore be calculated
numerically (although at the cost of a further change of
variables [9]).

As an illustrative example, in Fig. 1 we show the ground
state pair energies which are obtained in the case 2N =
� = 12. All the calculations which will be discussed up to
Sec. IV refer to this system. In Sec. V, we will examine some
other systems. The pairing strength is varied in the interval
(0, 2) (in units of d). All pair energies turn out to be real up
to g = 0.39, namely up to the singular point where E5 = E6.
At this point, E5 and E6 become complex-conjugate pairs.
The same happens to the pair energies E3 and E4 at g = 0.60
and to E1 and E2 at g = 0.89. Beyond these singular points
only the real part ξλ relative to each pair E2λ−1, E2λ is plotted
(dash-dotted lines).

The solution of Eqs. (4) in the case of the first excited state
requires (besides a different choice of “boundary conditions”
[9]) a different definition of the transformation (6) which now
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FIG. 1. Pair energies relative to the ground state (solid lines). The
energies are real up to the points where E2λ−1 = E2λ (λ = 1, 2, 3).
From there on, they turn into complex-conjugate pairs of the type of
Eq. (6) and only their real part ξλ is shown (dash-dotted lines). All
values are in units of d .
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FIG. 2. Pair energies relative to the first excited state (solid lines).
Similarly to Fig. 1, dash-dotted lines refer to their real part ξλ [see
Eq. (7)]. All values are in units of d .

becomes

E2λ = ξλ + iηλ, E2λ+1 = ξλ − iηλ, (λ = 1,2, . . . ,N/2 − 1)
(7)

E1 = ξN/2 + iηN/2, EN = ξN/2 − iηN/2.

In Fig. 2, we show the pair energies which are derived in this
case. The basic difference with respect to the ground state
(Fig. 1) consists in the behavior of the lowest and highest pair
energies which are now always real. Therefore, as evident from
Figs. 1 and 2, in the Richardson formalism both the ground
state and the first excited state are always products of N distinct
pair operators B

†
i , some of which, depending on the pairing

strength, may be characterized by complex pair energies.

III. REFORMULATING THE RICHARDSON
EIGENSTATES

The complex-conjugate form of the pair energies which
enter into the definition of the ground state and the first excited
state (but the discussion is actually not limited to these states
[9]) guarantees that these states can be easily reformulated in
a real form. In the case of the ground state, for example, one
has that

|�〉 =
N/2∏
λ=1

B
†
2λ−1B

†
2λ|0〉 (8)

(it is hereafter assumed that N is even) and, by making use of
the definition (6), one finds

B
†
2λ−1B

†
2λ = (�†

λ)2 + η2
λ(	†

λ)2, (9)

where

�
†
λ =

�∑
k=1

2εk − ξλ

(2εk − ξλ)2 + η2
λ

P
†
k , (10)

	
†
λ =

�∑
k=1

1

(2εk − ξλ)2 + η2
λ

P
†
k . (11)

The pair operators �
†
λ and 	

†
λ only depend on the real

coefficients ξλ and η2
λ and the same is true for the product

B
†
2λ−1B

†
2λ (9). Equation (9) therefore provides a tool to rewrite

the Richardson ground state in a real form no matter what g. As
a result, this state may be expressed as a linear combination of
states which are products of the operators �

†
λ and 	

†
λ. Similar

considerations hold also in the case of the transformation (7).
Each eigenstate being characterized by a different set of

pairs (�†
λ,	

†
λ), a description of the system in terms of these

collective pairs is bound to remain, however, undesirably
complicated and unclear. Moreover, no more than � linearly
independent pairs can actually be constructed in the model
space under examination. An unified description of all eigen-
states in terms of a single set of (at most) � pairs is certainly
to be preferred. This is what we have done in this work by
choosing as a set of linearly independent pairs those which
result from the diagonalization of H in the space {P †

i |0〉}. We
will comment in the following on some consequences of this
choice. These pairs, say 
†

ρ , are therefore such that

〈0|
ρ

†
ρ ′ |0〉 = δρρ ′ , 〈0|
ρH


†
ρ ′ |0〉 = ε̃ρδρρ ′ . (12)

The formulation of each eigenstate |�〉 in terms of 
†
ρ can be

done, in principle, by expressing the pairs �
†
λ and 	

†
λ in terms

of 
†
ρ or, more simply, by diagonalizing H in the space

F = {
†
ρ1


†
ρ2

· · · 
†
ρN

|0〉 ≡ |ρ〉}1 � ρ1 � ··· � ρN � �. (13)

It is worth noticing that the number of states |ρ〉 of F is by
far larger than the actual dimensionality of the model space
under discussion [given by the binomial coefficient

(�

N

)
]. A

diagonalization of the overlap matrix in F allows, however, to
define a set of

(�

N

)
basis states which can therefore be used to

construct the exact spectrum of the Hamiltonian.
The pairs 
†

ρ are by construction linear combination

of the pairs P
†
k , i.e., 
†

ρ = ∑�
k=1 p(k, ρ)P †

k . In Fig. 3, we
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FIG. 3. (Color online) Amplitudes p(k, ρ) characterizing the
collective pairs 
†

ρ (1 � ρ � 12) for two values of the pairing strength
g. The pairs 
†

ρ are ordered for increasing values of their energy ε̃ρ .
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plot the amplitudes p(k, ρ) (they are normalized such that∑
k p(k, ρ)2 = 1) characterizing each of the N = 12 pairs 
†

ρ

of the system under study and for two pairing strengths, namely
g = 0.2 (“weak” coupling) and g = 2.0 (“strong” coupling).
The pairs 
†

ρ are ordered for increasing values of their
energy ε̃ρ . The behavior of the amplitudes p(k, ρ) appears
quite different in the two cases. For g = 0.2 (upper panel), all
curves exhibit a sharp maximum very close to 1 (in absolute
value), thus denoting a very low degree of collectivity of
the pairs 
†

ρ . These can essentially be identified with the
corresponding pairs P †

ρ . For g = 2.0 (lower panel), all pairs
appear to be more spread out over the single particle levels and,
in particular, one pair clearly stands out from all others for its
very smooth behavior of p(k, ρ). This is the pair corresponding
to the lowest eigenvalue ε̃ρ [see Eq. (12)], i.e., the pair 


†
1. It

is worth noticing that this pair, differently from all others,
is also characterized by amplitudes all carrying the same
sign.

It is interesting to examine the energies ε̃ρ of these pairs.
They are shown in Fig. 4 by the solid lines. As a reference,
in the same figure, the dashed lines show the unperturbed pair
energies, namely the energies of these pairs at g = 0. The
difference between ε̃ρ and the corresponding unperturbed pair
energy defines the binding energy of the pair 
†

ρ . All pairs

appear to be bound at any g but 

†
1 exhibits a binding energy

which, in the strong coupling region, by far exceeds that of the
remaining pairs.

Although we have so far illustrated the features of all
possible � pairs 
†

ρ that one can construct and introduced
a space F built in terms of these, we remark that the exact
spectrum of H can also be obtained by working in subspaces
of F which involve only a restricted set of pairs 
†

ρ . In the
case under study (� = 2N = 12), for example, it is already
sufficient to include pairs 
†

ρ up to ρ = 9. In order to simplify
the numerical calculations we have constrained our analysis
within such a subspace of F (hereafter F̃ ).

Moving from the weak to the strong coupling region,
significant changes are expected to occur not only in the
structure of the pairs 
†

ρ but also in that of the eigenstates
|�〉. Monitoring these changes is, however, not straightforward
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FIG. 4. (Color online) Energies ε̃ρ of the pairs 
†
ρ as defined in

Eq. (12) (solid lines). The dashed lines show the energies of the same
pairs at g = 0. All values are in units of d .
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FIG. 5. The quantity R(ρ, 1) discussed in the text for the states
|ρ(1)

w 〉 = 

†
1


†
2


†
3


†
4


†
5


†
6|0〉 and |ρ(1)

s 〉 = (
†
1)6|0〉. The dash-dotted

line shows the maximum values reached by the remaining R(ρ, 1)’s
in region II.

due to the composite nature of the operators 
†
ρ . In order to

follow the evolution of the lowest eigenstates with increasing
the pairing strength, we have examined the overlaps between
these and all the states |ρ〉 of F̃ . In particular, we have focused
our attention on the lowest four eigenstates |�ν〉 (ν = 1, 4)
and we have examined the quantity R(ρ, ν) = |〈ρ|�ν〉|, |ρ〉
hereafter representing the state |ρ〉 properly normalized. For
each eigenstate |�ν〉, we have searched for the states |ρ(ν)

w 〉 and
|ρ(ν)

s 〉 corresponding to a maximum of R(ρ, ν) in the regions
of weak and strong coupling, respectively. The evolution of
R(ρ, ν) for ρ = ρ(ν)

w and ρ = ρ(ν)
s has therefore been studied.

As far as the ground state is concerned, at small
g’s, the maximum of R(ρ, 1) is found for |ρ(1)

w 〉 =



†
1


†
2


†
3


†
4


†
5


†
6|0〉 while, at large g’s, for |ρ(1)

s 〉 = (
†
1)6|0〉.

The behavior of R(ρ(1)
w , 1) and R(ρ(1)

s , 1) as a function
of g is shown in Fig. 5 by the lines labeled ρ(1)

w and
ρ(1)

s , respectively. For g <∼ 0.25 (hereafter region I), one has

R(ρ(1)
w , 1) ≈ 1. Since 


†
i → P

†
i when g → 0 (see Fig. 2),

in this limit, |�1〉 approaches (as expected) the unperturbed
ground state of the system, namely the state with the lowest
six orbitals fully occupied and the remaining ones empty. For
g >∼ 1.25 (hereafter region II), one has instead R(ρ(1)

w , 1) ≈ 0,
i.e., |�1〉 has basically no overlap with |ρ(1)

w 〉. In the same
region, R(ρ(1)

s , 1) reaches a value very close to 1 [one finds
R(ρ(1)

s , 1) = 0.998 at g = 2.0] after having rapidly increased
from an initial value of 0.31 at g ≈ 0 [we remark that R(ρ(1)

s , 1)
is undefined at g = 0 due to the Pauli principle which forbids
the existence of |ρ(1)

s 〉]. Because of the nonorthogonality
of the states |ρ〉, the fact that R(ρ(1)

s , 1) ≈ 1 does not imply
that the remaining values R(ρ, 1) can be neglected. As shown
in Fig. 5, however, the maximum value of R(ρ, 1) among all
remaining states is considerably lower than R(ρ(1)

s , 1) (see the
dash-dotted line) and, contrary to the latter, keeps decreasing
with increasing g.

We have also evaluated the correlation energy of the state
|ρ(1)

s 〉 (namely the difference between the energy of this state
and that of the unperturbed ground state) and compared
it with the corresponding energy of the ground state. The
relative difference is shown in Fig. 6 and it is seen to rapidly
approach zero with increasing g. At g = 2.0, this difference
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FIG. 6. Relative difference between the correlation energy of the
state |ρ(1)

s 〉 = (
†
1)6|0〉 (properly normalized) and the corresponding

energy of the ground state (in percent).

is 0.26% whereas the minimum relative difference found in
correspondence with the remaining states |ρ〉 does not get
lower than 33.6%. All these results [which, by the way, become
more and more pronounced beyond the range (0,2) of the
strength g examined so far] support the conclusion that, with
increasing g, the ground state is approaching a state of the form
(
†

1)6|0〉, namely a condensate of the pair 

†
1. This picture of

the ground state is noticeably different from that which one
has in terms of the Richardson pairs B

†
i .

A question which naturally arises at this stage is how



†
1 compares with the pair defining the ground state in

the BCS approximation. The BCS ground state is indeed,
by construction, a linear combination of condensates of
collective pairs, each condensate carrying a different number
of pairs. The BCS pair has the form 


†
BCS = ∑

k p
(BCS)
k P

†
k ,

the amplitudes p
(BCS)
k being proportional to the ratio vk/uk

of the coefficients which define the quasi-particle operator
α
†
kσ = uka

†
kσ − vkak−σ . For the sake of brevity, we avoid

discussing the details of the BCS formalism for which we
rather address to standard textbooks (see, e.g., Ref. [23]). We
also refer to Ref. [24] for an analysis of the BCS approximation
within the present model. Here, we only confine ourselves to
comparing the amplitudes of the pairs 


†
1 and 


†
BCS. These

are shown in Fig. 7 for two values of the pairing strength:
g = 1.5 (upper panel) and g = 2.0 (lower panel). The two pairs
exhibit very close amplitudes (their difference decreasing with
increasing g) in spite of the fact that the BCS approximation
works rather badly in the model under study [24]. The two
strengths of Fig. 7 both belong to region II. In region I, on one
hand, the BCS approximation does not provide any nontrivial
solution (these are found only for g >∼ 0.32) and, on the other
hand, no form of condensation in the ground state emerges
in the formalism of the pairs 


†
i . No comparison is therefore

possible in this region.
As far as the first excited state is concerned, at

small g’s, the maximum of R(ρ, 2) is found for |ρ(2)
w 〉 =



†
1


†
2


†
3


†
4


†
5


†
7|0〉 while, at large g’s, for |ρ(2)

s 〉 =
(
†

1)5

†
7|0〉. The behavior of R(ρ(2)

w , 2) and R(ρ(2)
s , 2) as a

function of g is shown in Fig. 8 by the lines labeled ρ(2)
w and
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FIG. 7. (Color online) Amplitudes of the pairs 

†
1 (circles) and



†
BCS (triangles) for two values of the pairing strength g.

ρ(2)
s , respectively. As expected, for g → 0, the first excited

state approaches the configuration P
†
1 P

†
2 P

†
3 P

†
4 P

†
5 P

†
7 |0〉 which

corresponds to the lowest seniority-zero excitation in absence
of interaction. In region II, instead, the first excited state
evolves torward the condensate (
†

1)5

†
7|0〉. This evolution

is, however, definitively less rapid than that observed for the
ground state. As in the case of the ground state, in region II,
the maximum value of R(ρ, 2) among all remaining states is
considerably lower than R(ρ(2)

s , 2) and, contrary to the latter,
keeps decreasing with increasing g (dashed-dotted line).

The condensate |ρ(2)
s 〉 differs from |ρ(1)

s 〉 for the presence of
the pair 


†
7 replacing a pair 


†
1. Simple considerations based

on the energies ε̃ρ of the pairs would have rather suggested
as more likely the appearence of the pair 


†
2 which is the one

immediately above 

†
1 (though separated by a large gap) and

considerably lower than 

†
7 (see Fig. 4). As it can be seen

in Fig. 8, instead, the quantity R(ρ, 2) for |ρ〉 = (
†
1)5


†
2|0〉
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FIG. 8. The quantity R(ρ, 2) discussed in the text for the states
|ρ(2)

w 〉 = 

†
1


†
2


†
3


†
4


†
5


†
7|0〉 and |ρ(2)

s 〉 = (
†
1)5


†
7|0〉. The dash-

dotted line shows the maximum values reached by the remaining
R(ρ, 2)’s in region II. The dashed line refers to R(ρ, 2) for |ρ〉 =
(
†

1)5

†
2|0〉.
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(dashed line) remains very close to zero throughout region II
therefore denoting the absence of any appreciable contribution
of this component to the structure of the first excited state at
large g’s. We will further comment in Sec. V on such an
interesting outcome.

The analysis of the second and third excited states turns out
to be more involved than those carried out so far. The reason
is that these states happen to be exactly degenerate and this
degeneracy does not allow an unambigous definition of their
wave functions. Indeed, if |�3〉 and |�4〉 are the eigenstates
(with energies E(�3) = E(�4) ≡ E(�34)) which result from a
diagonalization of H in F̃ , any other pair of states of the type

|�(+)
34 〉 = d3|�3〉 + d4|�4〉,

(14)
|�(−)

34 〉 = d4|�3〉 − d3|�4〉
with d2

3 + d2
4 = 1 (for simplicity we are assuming to handle

only real quantities) also represents a pair of eigenstates with
the same energy. |�(+)

34 〉 and |�(−)
34 〉 depend on the coefficients

d3 and d4 and so does any overlap between them and a generic
state |i〉. Therefore, in this case, an analysis of the structure of
the states of the type already discussed for the ground and first
excited states needs some additional remarks.

A quantity which does not suffer of any ambiguity related
to the degeneracy of |�3〉 and |�4〉 is

M(34)
i = 〈i|�3〉2 + 〈i|�4〉2. (15)

M(34)
i is indeed invariant for the transformation (14). This

quantity represents the maximum value that the squared
overlap between the generic state |i〉 and |�(+)

34 〉 can reach.
This maximum is found in correspondence with the state

|�(+)
i,34〉 = 1√

M(34)
i

(〈i|�3〉|�3〉 + 〈i|�4〉|�4〉). (16)

The paired eigenstate is

|�(−)
i,34〉 = 1√

M(34)
i

(〈i|�4〉|�3〉 − 〈i|�3〉|�4〉). (17)

The latter state is, by construction, such that 〈i|�(−)
i,34〉 = 0.

We have monitored the evolution, as a function of the
pairing strength, of all the overlaps 〈ρ|�(+)

ρ,34〉 for |ρ〉 belonging
to F̃ and observed, in region II, a maximum in correspondence
with the state |ρ〉 = (
†

1)5

†
8|0〉 ≡ |ρ(+)

s 〉. We have therefore
selected among all possible states of the type (14) the states
|�(+)

ρ,34〉 and |�(−)
ρ,34〉 for ρ = ρ(+)

s (hereafter simply |�(+)〉 and
|�(−)〉). The properties of these states are illustrated in the
following.

In Fig. 9, we show the quantity R(ρ,+) = |〈ρ|�(+)〉|
for two different states: |ρ〉 = |ρ(+)

s 〉 and |ρ〉 =



†
1


†
2


†
3


†
4


†
5


†
8|0〉 ≡ |ρ(+)

w 〉. The behavior of these overlaps
closely reminds those of Figs. 5 and 8. The state |�(+)〉 is seen
to approach the configuration P

†
1 P

†
2 P

†
3 P

†
4 P

†
5 P

†
8 |0〉 for g → 0

(but it should be noticed that, at g = 0, |�(+)〉 is undefined
due to the Pauli principle which prevents the state |ρ(+)

s 〉 from
existing) and to evolve toward the condensate (
†

1)5

†
8|0〉 at

0 0.5 1 1.5 2
g

0

0.25

0.5

0.75

1

R
(ρ

,+
)

wρ

ρ

I II

s

(+)

(+)

FIG. 9. The quantity R(ρ,+) discussed in the text for the states
|ρ(+)

w 〉 = 

†
1


†
2


†
3


†
4


†
5


†
8|0〉 and |ρ(−)

s 〉 = (
†
1)5


†
8|0〉. The dash-

dotted line shows the maximum values reached by the remaining
R(ρ, +)’s in region II.

large g’s. In the same figure, the dash-dotted line shows the
maximum value among all remaining overlaps.

As far as the paired eigenstate |�(−)〉 is concerned, in
Fig. 10, we show the quantity R(ρ,−) = |〈ρ|�(−)〉| for
|ρ〉 = (
†

1)5

†
6|0〉 ≡ |ρ(−)

s 〉 and |ρ〉 = 

†
1


†
2


†
3


†
4


†
6


†
7|0〉 ≡ |ρ(−)

w 〉. The state |�(−)〉 therefore approaches
P

†
1 P

†
2 P

†
3 P

†
4 P

†
6 P

†
7 |0〉 for g → 0 (but, similarly to |�(+)〉, it is

undefined at g = 0 due to the Pauli principle) and evolves
torward the condensate (
†

1)5

†
6|0〉 at large g’s. Still in

Fig. 10, the dash-dotted line shows the maximum value
among all remaining overlaps. Interestingly enough, one finds
that R(ρ(−)

s ,−) is very close (the relative difference being
of the order 10−5) to the maximum value that the overlap
between the state |ρ(−)

s 〉 and a state of the type (14) can
reach. Therefore if, on one side, the state |�(+)〉 maximizes by
construction the overlap with the state |ρ(+)

s 〉 = (
†
1)5


†
8|0〉,

on the other side, one finds that the paired eigenstate |�(−)〉
maximizes (almost exactly) the overlap with the state |ρ(−)

s 〉 =
(
†

1)5

†
6|0〉. Similarly to what observed in the case of the first

excited state, the evolution of |�(+)〉 and |�(−)〉 toward the

0 0.5 1 1.5 2
g

0

0.25

0.5

0.75

1

R
(ρ

,−
)

wρ

ρ

I II

s
(-)

(-)

FIG. 10. The quantity R(ρ, −) discussed in the text for the states
|ρ(−)

w 〉 = 

†
1


†
2


†
3


†
4


†
6


†
7|0〉 and |ρ(−)

s 〉 = (
†
1)5


†
6|0〉. The dash-

dotted line shows the maximum values reached by the remaining
R(ρ, −)’s in region II.
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respective condensates (
†
1)5


†
8|0〉 and (
†

1)5

†
6|0〉 is clear

but not as rapid as for the ground state.
It is worthy comparing these results with those which

are obtained if one adopts slightly perturbed single-particle
energies of the type, for example, εi = (i + i2/�3)d. These
single-particle energies are characterized by a spacing not any
longer constant but varying from 1.002d up to a maximum of
1.013d. This tiny variation in the spacing is, however, sufficient
to remove the degeneracy of |�3〉 and |�4〉 (at g = 1, for
example, one finds E(�3) = 34.179 and E(�4) = 34.182 to be
compared with the value E(�34) = 33.991 for the degenerate
case). The analysis of this nondegenerate case fully confirms
all the results obtained so far. In particular, the overlaps of
the eigenstates |�3〉 and |�4〉 with the states |ρ(+)

w 〉, |ρ(+)
s 〉

and |ρ(−)
w 〉, |ρ(−)

s 〉 turn out to be undistinguishable from those
shown in Figs. 9 and 10 for the states |�(+)〉 and |�(−)〉.

IV. THE BOSONIC APPROACH

The description of the lowest eigenstates of the Hamiltonian
(1) given so far, both in the Richardson formalism and in
the formulation of Sec. III, has required handling objects
(the collective pairs) which have a composite nature. This
inevitably makes the analysis of the wave functions rather
difficult. In this section, we discuss a different approach which
is instead based on the use of “elementary” objects, namely
of bosons characterized by commutation relations of the type
[bi, b

†
i ′ ] = δii ′ , [bi, bi ′ ] = 0. Each elementary boson replaces

a collective pair. This formalism has the merit of allowing a
more transparent analysis of the states. In Sec. IV A, we review
the mapping procedure that we use to transfer the description
of the system from the original space of the collective pairs
onto the space of the elementary bosons. In Sec. IV B, we
discuss the results which are obtained in the new formalism.

A. The mapping procedure

The problem of mapping a system of composite objects
(such as the pairs 


†
i ) onto a space of corresponding ele-

mentary objects (such as the bosons b
†
i ) is a well known one

and can be tackled in several ways (see, e.g., Ref. [25] for a
review on the subject). The approach that we have adopted
in this work retains the basic principles of that discussed
in Ref. [26] and closely follows its revised form recently
discussed in Ref. [15]. With respect to the latter, the present
formulation refers to a more general case. Being based on a
correspondence between fermion and boson states and on the
equality between corresponding matrix elements, the approach
follows the philosophy of the Marumori method [27,28].

We try to keep the formalism as general as possible. Let
therefore P†

i be a generic collective pair creation operator. The
index i is supposed to run from 1 up to a maximum value N (1).
We define the space

F (n) = {P†
k1
P†

k2
· · ·P†

kn
|0〉}1 � k1 � k2 � ··· � kn � N (1)

≡ {|n, k〉}1 � k � N (n) . (18)

This can be seen as a generalization of the space F of Eq. (13).
The set of N (n) states |n, k〉 is, in general, nonorthonormal.
In order to single out a subset of orthonormal states, we
diagonalize the overlap matrix 〈n, i|n, j 〉. Let N (n)

j and f
(n)
ij be

the eigenvalues and eigenfunctions, respectively, which results
from this diagonalization. They are such that∑

l

〈n, i|n, l〉f (n)
lj = N (n)

j f
(n)
ij , (19)

∑
i

f
(n)
ij f

(n)
ij ′ = δjj ′ ,

∑
j

f
(n)
ij f

(n)
i ′j = δii ′ . (20)

In general, only Ñ (n) eigenvalues (Ñ (n) < N (n)) turn out to
be different from zero and, correspondingly, we introduce the
states

|ñ, k〉 =
{ 1√

N (n)
k

∑
i f

(n)
ik |n, i〉, 1 � k � Ñ (n)∑

i f
(n)
ik |n, i〉, Ñ (n) + 1 � k � N (n)

. (21)

According to such a definition, the first Ñ (n) states |ñ, k〉 are
orthonormal while the remaining ones are zero norm states.

In correspondence with any operator P†
i , we introduce an

elementary boson operator b
†
i of the type discussed above. Let

also |0) be the boson vacuum. Similarly to the fermion space
F (n), we introduce the boson space

B(n) =
{

1√
Mρ

b
†
k1

b
†
k2

· · · b†kn
|0)

}
1 � k1 � k2 � ··· � kn � N (1)

≡ {|n, k)}1�k�N (n) , (22)

where Mρ is a normalization factor. A one-to-one correspon-
dence exists between the states of F (n) and B(n), the basic
difference being, however, that the states |n, k) are already
orthonormal. In correspondence with the states |ñ, k〉, we
introduce the new set of boson states (still orthonormal)

|ñ, k) =
∑

i

f
(n)
ik |n, i), 1 � k � N (n) (23)

and define the transformation operator

V = |0)〈0| +
N (1)∑
k1=1

|1̃, k1)〈1̃, k1| +
N (2)∑
k2=1

|2̃, k2)〈2̃, k2| + · · ·

≡
∑

n

N (n)∑
kn=1

|ñ, kn)〈ñ, kn|. (24)

The boson image of a fermion operator T is defined as

TB = V T V † =
∑
n,kn

∑
n′,kn′

|ñ, kn)〈ñ, kn|T | ˜n′, kn′ 〉( ˜n′, kn′ |. (25)

As a first remark, we observe that TB is hermitian if so is T .
If, in particular, the fermion operator conserves the particle
number, as in the case of a generic Hamiltonian H, Eq. (25)
gives

HB =
∑

n

∑
k,k′

|ñ, k)〈ñ, k|H|ñ, k′〉(ñ, k′|. (26)
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Let us point out some properties of HB . It follows from
Eq. (26) that

(ñ, k|HB |ñ, k′) = 〈ñ, k|H|ñ, k′〉. (27)

This equality implies that, for each n, the diagonalization
of HB in the full space of states |n, k) [or, equivalently,
|ñ, k)] will result in Ñ (n) “physical” eigenvalues identical
to the fermion ones plus N (n) − Ñ (n) “spurious” eigenvalues
which are exactly zero. As it is evident from Eq. (27), the
presence of these extra eigenvalues is related to the existence
of N (n) − Ñ (n) zero norm states |ñ, k〉. Furthermore, one sees
that no mixing is possible between physical and spurious
eigenstates.

By making use of Eqs. (19) and (20), one also derives from
the equality (27)

(n, l|HB |n,m) =
∑
ij

R
(n)
li 〈n, i|H|n, j 〉R(n)

jm, (28)

with

R
(n)
li =

Ñ (n)∑
k=1

f
(n)
lk

1√
N (n)

k

f
(n)
ik . (29)

Equation (28) directly relates the matrix elements of HB in
B(n) with those of H in F (n). An expression of the form of
Eq. (28) can also be found in Ref. [29].

The definition (25) of the image TB involves the boson states
|ñ, k). In order to find an explicit expression of TB in terms
of boson operators only, one needs to express the projection
operator |0)(0| as a function of b†, b. This can be done by first
noticing that

1 = |0)(0| +
∑
k1

b
†
k1

|0)(0|bk1

+
∑

k1�k2

1

1 + δk1k2

b
†
k1

b
†
k2

|0)(0|bk1bk2 + · · · (30)

and therefore proceeding iteratively. At the first step, it is

|0)(0| = 1 −
∑
k1

b
†
k1

|0)(0|bk1

−
∑

k1�k2

1

1 + δk1k2

b
†
k1

b
†
k2

|0)(0|bk1bk2 − · · · (31)

and by substituting this in Eq. (30) one derives

|0)(0| = 1 −
∑

k

b
†
kbk + O(4), (32)

where, in general, by O(n), we mean terms with at least n

operators b†, b arranged in normal order with respect to the
boson vacuum |0). The iteration proceeds by inserting Eq. (32)
again in Eq. (31) and so on up to the desired level of complexity
of |0)(0|.

B. Numerical results

Let us apply the mapping procedure just described to the
system under study. We assume P†

i = 

†
i and, consistently

with what done so far, we restrict the set of these pairs to the
lowest 9. In such a case, the space F (6) of Eq. (18) simply
reduces to the space F̃ defined in Sec. III. In order to fulfill the
equality (27) [or Eq. (28)] up to n = 6, the boson Hamiltonian
HB has to carry, in general, up to six-body terms. Due to
the fact that the pairs 


†
i diagonalize the Hamiltonian [see

Eq. (12)], the simplest of these terms, i.e., the one-body
term, turns out to be diagonal. The choice of formulating
the eigenstates in terms of these pairs rather than directly
in terms of the pairs �

†
λ,	

†
λ has been made also in such a

perspective. In this case, the energies ε̃i acquire the meaning
of single-boson energies and the boson Hamiltonian takes
the form HB = ∑

i ε̃ib
†
i bi + VB, VB being an interaction term

which contains, in general, up to six-body operators. A
Hamiltonian of this type qualitatively reminds that of well
known phenomenological models such as the interacting boson
model (IBM) [30].

On the basis of the properties of the mapping procedure
illustrated in the previous subsection, the diagonalization of
HB in B(6) is expected to result in a physical spectrum
identical to that of H in F̃ plus some spurious eigenvalues.
The explicit construction of the physical eigenstates can be
carried out in a straightforward way by taking advantage of
the calculations already performed in the fermion space F̃ . By
keeping the same notation used in the previous subsection, a
generic fermion eigenstate |�ν〉 can be written as

|�ν〉 =
Ñ (6)∑
k=1

c̃
(ν)
k |6̃, k〉 =

N (6)∑
i=1

(
Ñ (6)∑
k=1

1√
Nk

(6)
f

(6)
ik c̃

(ν)
k

)
|6, i〉.

(33)

Due to the equality of Eq. (27), the corresponding boson
eigenstate is simply

|�ν) =
Ñ (6)∑
k=1

c̃
(ν)
k |6̃, k) =

N (6)∑
i=1

 Ñ (6)∑
k=1

f
(6)
ik c̃

(ν)
k

 |6, i)

≡
∑

i

c
(ν)
i |6, i). (34)

From the knowledge of the coefficients f
(6)
ik and c̃

(ν)
k , it is

therefore immediate to construct the amplitudes c
(ν)
i which

define the boson image |�ν).
The analysis of the eigenstates in terms of elementary

bosons is undoubtedly simpler than that in terms of collective
pairs. As in the fermionic case, the analysis has concerned the
lowest four eigenstates. For each |�ν), we have searched for
the largest (in absolute values) amplitudes c

(ν)
i in the regions

of weak and strong coupling. We denote these amplitudes c(ν)
w

and c(ν)
s , respectively. As far as the ground state is concerned,

in Fig. 11 we show the amplitudes |c(1)
w | and |c(1)

s |. These turn
out to be associated with the components b

†
1b

†
2b

†
3b

†
4b

†
5b

†
6|0) and

1√
6!

(b†1)6|0), respectively. These components are the bosonic

counterparts of the states |ρ(1)
w 〉 and |ρ(1)

s 〉 introduced in Sec. III
and the behavior of |c(1)

w | and |c(1)
s | indeed reminds that of the

corresponding fermionic quantities R(ρ(1)
w , 1) and R(ρ(1)

s , 1)
shown in Fig. 5. At very small values of g one finds |c(1)

w | 
 1
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0 0.5 1 1.5 2
g

0

0.25

0.5

0.75

1
c 

  |
|

i

(1) (1)

I II

w s

(1
)

c   c   ||||

FIG. 11. Absolute values of the amplitudes c(1)
w and c(1)

s associated
with the components b

†
1b

†
2b

†
3b

†
4b

†
5b

†
6|0) and 1√

6!
(b†

1)6|0), respectively,
of the boson ground state |�1). The dashed-dotted line shows
the maximum value reached by the remaining amplitudes |c(1)

i | in
region II.

and, due to the normalization condition
∑

i c
2
i = 1, this implies

that |�1) 
 b
†
1b

†
2b

†
3b

†
4b

†
5b

†
6|0). Therefore, in spite of their nature

which would allow them to share the same level, the bosons
b
†
i each occupy a different level. This reflects the fact that,

in this region, the bosons b
†
i are associated with pairs 


†
i

with a very low degree of collectivity (see Fig. 2, upper
panel). Consequently, the underlying fermionic structure plays
a crucial role and the Pauli principle, whose presence in
the boson space is guaranteed by the many-body structure
of the boson Hamiltonian, severely affects the behavior of
these bosons. The amplitude |c(1)

w | rapidly goes to zero with
increasing g and, correspondingly, c(1)

s rises up by reaching
values larger than 0.9 at g ≈ 2. In region II, the boson ground
state thus becomes largely dominated by the condensate
(b†1)6|0), the boson b

†
1 corresponding to the highly collective,

deeply bound pair 

†
1. The Pauli principle no longer manifests

itself explicitly in this region. Still in Fig. 11, the dashed-dotted
line shows the maximum values reached by the remaining
amplitudes |c(1)

i | in region II.
The behavior of |c(ν)

w | and |c(ν)
s | for the three lowest excited

states is shown in Figs. 12–14. Figure 12 refers to the first
excited state. The amplitudes c(2)

w and c(2)
s plotted in this

figure are found in correspondence with the components
b
†
1b

†
2b

†
3b

†
4b

†
5b

†
7|0) and 1√

5!
(b†1)5b

†
7|0), respectively, of |�2). As

far as the second and third excited states are concerned, the
analysis has been carried out according to the same criteria
discussed for the corresponding fermion eigenstates. This has
lead to the definition of a pair of eigenstates |�(+)) and |�(−)),
exactly analogous to |�(+)〉 and |�(−)〉, whose basic features
are illustrated in Figs. 13 and 14. The amplitudes c(+)

w and c(+)
s

turn out to be associated with the components b
†
1b

†
2b

†
3b

†
4b

†
5b

†
8|0)

and 1√
5!

(b†1)5b
†
8|0), respectively. The amplitudes c(−)

w and c(−)
s

are instead found in correspondence with the components
b
†
1b

†
2b

†
3b

†
4b

†
6b

†
7|0) and 1√

5!
(b†1)5b

†
6|0), respectively. In Figs. 12–

14, the dashed-dotted line shows the maximum values reached
by the remaining amplitudes |c(ν)

i | in region II.

0 0.5 1 1.5 2
g

0

0.25

0.5

0.75

1

c 
  |

|
i

(2) (2)

I II

w s

(2
)

c   || | |c   

FIG. 12. Absolute values of the amplitudes c(2)
w and c(2)

s associated
with the components b

†
1b

†
2b

†
3b

†
4b

†
5b

†
7|0) and 1√

5!
(b†

1)5b
†
7|0), respectively,

of the boson first excited state |�2). The dashed-dotted line shows
the maximum values reached by the remaining amplitudes |c(2)

i | in
region II.

0 0.5 1 1.5 2
g

0

0.25

0.5

0.75

1

c 
  |

|
i

(+) (+)

I II

w s

(+
)

c   | | || c   

FIG. 13. Absolute values of the amplitudes c(+)
w and c(+)

s as-
sociated with the components b

†
1b

†
2b

†
3b

†
4b

†
5b

†
8|0) and 1√

5!
(b†

1)5b
†
8|0),

respectively, of the boson state |� (+)) (see text). The dashed-dotted
line shows the maximum values reached by the remaining amplitudes
|c(+)

i | in region II.

0 0.5 1 1.5 2
g

0

0.25

0.5

0.75

1

c 
  |

|
i

(-) (-)

I II

w s

(-
)

c   || | |c   

FIG. 14. Absolute values of the amplitudes c(−)
w and c(−)

s as-
sociated with the components b

†
1b

†
2b

†
3b

†
4b

†
6b

†
7|0) and 1√

5!
(b†

1)5b
†
6|0),

respectively, of the boson state |� (−)) (see text). The dashed-dotted
line shows the maximum values reached by the remaining amplitudes
|c(−)

i | in region II.
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FIG. 15. (Color online) Overlaps between the ground state and
the condensate (
†

1)N |0〉 (solid line) and between the ground state
and the state 


†
1


†
2 · · · 
†

N |0〉 (dashed-dotted line) for systems with
different number of particles (shown next to each line).

The behaviours of the amplitudes of the bosonic eigenstates
which are illustrated in the above figures are fully consistent
with the results of the fermionic analysis of Sec. III. One
observes an evolution of the three lowest excited states toward
states which are largely dominated by condensates of the type
(b†1)5b†α|0). In particular, one finds α = 7 for the first excited
state and α = 8 and α = 6 for the (degenerate) second and
third excited states |�(+)) and |�(−)). As it is clearly visible in
these figures and as it has also been observed in the fermionic
analysis, the above evolution is, however, definitely less rapid
than that observed in the case of the ground state.

V. OTHER SYSTEMS

All the calculations discussed so far have referred to
a system of 2N = 12 particles distributed over � = 12
levels. Performing the same kind of calculations for larger
systems becomes soon difficult due to the rapidly growing
size of the matrices involved. However, taking advantage
of the knowledge of the Richardson ground state obtained
by solving Eqs. (4), it has been possible to perform some
calculations also for systems with 2N = 16 and 2N = 20
particles (still distributed over � = 2N levels). In particular,
we have evaluated the overlap between the ground state and the
condensate (
†

1)N |0〉 as well as the overlap between the ground
state and the state 


†
1


†
2 · · · 
†

N |0〉. The corresponding results
are shown in Fig. 15. For completeness, we have included in
the same figure the results for the system with 2N = 12 already
shown in Fig. 5 and we have also added those referring to the
smaller system with 2N = 8. The behaviours of these overlaps
are all similar but, as a major result, one may notice that the
evolution toward the condensed phase becomes sharper and
sharper with increasing the number of particles.

VI. SUMMARY AND CONCLUSIONS

This paper has been devoted to an analysis of the lowest
seniority-zero eigenstates of the reduced BCS Hamiltonian

for a finite Fermi system. We have first briefly reviewed the
form of these eigenstates in the Richardson formalism: they
are a product of distinct collective pair operators, some of
which, depending on the pairing strength, may be characterized
by complex amplitudes. We have therefore attempted an
alternative and (in our purposes) more transparent description
of these states in terms of a new set of collective pairs. These are
the pairs resulting from the diagonalization of the Hamiltonian
in a space of two degenerate time-reversed fermions. We
have first discussed the evolution, as a function of the pairing
strength, of both these pairs and the lowest eigenstates for a
system of 12 particles distributed over 12 levels.

With increasing g, we have observed the formation of a
pair markedly different from all others for its high degree of
collectivity and its large binding energy: this is the lowest pair



†
1. This pair has been found very similar to that resulting in

the BCS approximation. The numerical analysis has clearly
pointed out the existence of two well distinct regimes, one
at small g’s (the region I) characterized by eigenstates which
are basically a product of distinct, poorly collective, weakly
bound pairs and one at large g’s (the region II) characterized
instead by different condensates of 


†
1. As far as the ground

state is concerned, we have observed an evolution toward
the condensate (
†

1)6|0〉 while for the three lowest excited
states condensates of the type (
†

1)5

†
λ|0〉 with λ = 6, 7, 8

have emerged. The evolution toward the condensed phase has
turned out to be faster in the case of the ground state.

The appearance of the pairs 

†
6,


†
7, and 


†
8 in the

condensates that describe the main components of the three
lowest excited states may seem somewhat surprising since
other pairs exist (e.g., 


†
2 or 


†
3) which have a considerably

lower energy. Besides the energy, a crucial difference between
the pairs 


†
6,


†
7, and 


†
8 and lower pairs such as 


†
2 or 


†
3

can be found in the distribution of their amplitudes: this is
peaked at or above the Fermi level for 


†
6,


†
7, and 


†
8 and at

the lowest single particle levels for 

†
2 or 


†
3. This different

distribution has manifestly favored the pairs 

†
6,


†
7, and 


†
8

by allowing them to overcome the handicap represented by
their higher energy.

In the recent past, truncated nuclear shell model calculations
have been performed by working in spaces spanned by
some sets of collective pairs (see, e.g., [31] and references
therein). These pairs have been constructed by diagonalizing
the Hamiltonian in spaces of two nucleons outside the closed
shells and by selecting (for given spin and isospin) the pairs
solely on the basis of their energy. The results of the present
work clearly show, however, that energy is not the only
parameter that should be considered for a correct selection
of the pairs and that a more comprehensive criterium taking
also into account the structure of the pairs should rather be
devised.

We have also performed a complementary analysis of the
lowest eigenstates of the reduced BCS Hamiltonian by work-
ing in a purely bosonic framework, each boson being the image
of a collective pair. After reviewing a mapping procedure,
we have constructed an exact image of the lowest eigenstates
which have therefore been examined. This approach has lead
to conclusions in full agreement with those of the fermionic
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analysis by offering, as an advantage, a more direct access to
the structure of the states.

In the bosonic approach, increasing the pairing strength has
resulted in a marked variation of the single boson energies
(equal by construction to the energies of the above collective
pairs) which have passed from an equally spaced distribution
(at small g’s) up to a distribution characterized by a large
gap between the lowest level and the remaining ones (at large
g’s). Correspondingly, the occupancy of the boson levels has
passed from an uniform one (one boson per level) up to a
pronounced boson condensation on the lowest level. The two
regimes already observed in the fermionic analysis have thus
clearly manifested themselves in the bosonic case as well.
Although not very sharply defined, the regions of the pairing

strength at which these different regimes occur are consistent
with those resulting from the analysis of Ref. [17]. Calculations
performed (but only at the fermionic level and for the ground
state) for systems up to 2N = 20 particles distributed over � =
20 levels have all provided results similar to the corresponding
ones for 2N = � = 12 by evidencing an evolution toward
the condensed phase which becomes sharper and sharper with
increasing the number of particles.
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