
PHYSICAL REVIEW C 75, 054309 (2007)

Simplified modeling of cluster-shell competition in carbon isotopes
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We study the cluster-shell competition in carbon isotopes. Two parameters are introduced for the 12C core to
characterize the transition from a cluster state to a shell-model state as a measure of the cluster-shell competition:
one expresses the relative distance between α clusters and the other does the dissolution of one of the α clusters.
We show the energy curves as functions of these parameters. The calculation is performed by combining the
simplified modeling of cluster-shell competition for the 12C core and AMD triple-S. As the neutron number
increases, the α-α distance becomes smaller; on the contrary, the dissolution of α clusters is enhanced. The
origins of the anomalously small B(E2) value of 16C are discussed from cluster-shell competition point of view,
and the appearance of pure cluster state around the 10 MeV region is suggested.
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I. INTRODUCTION

Nuclear systems show different facets in changes of the
proton-neutron number and the excitation energy. One of
the standard picture for the nuclear systems is the shell-
model viewpoint that a self-consistent mean-field is created
by the nucleons themselves. Here, nucleons are treated
as quasi-free particles moving in a potential, despite the
original nucleon-nucleon interaction is rather short range, and
there is no potential source at the center of the nucleus.
Here, the spin-orbit interaction is very strong contrary to
the atomic systems so that it makes possible to explain
the observed magic numbers [1,2]. Therefore, basically,
the jj-coupling type wave function is adopted in the shell
model.

One of the other important aspects of the nuclear systems
is the cluster model. The main feature of the cluster model
is that strongly correlated subsystems are spatially localized
as constituents. Here, the most plausible constituent is the
α particle, namely two protons and two neutrons occupy the
(0s)4 configuration corresponding to the lowest closed shell.
These four nucleons strongly interact with each other; how-
ever, on the contrary, the α-α interaction is weak. Hence, the
α particles can be considered as subunits in the nucleus. This
molecular viewpoint of the α particles has been introduced
even before the shell model [3], and such cluster structure
has been extensively studied for more than 40 years [4–6].
Recently, for some light neutron-rich nuclei, theoretical and
experimental investigations have been carried out based on the
cluster models, which became one of the important topics of
light exotic nuclei [7,8].

Although the shell model and the cluster model have quite
different features, the real systems may have both components.
To take into account the shell-model component in the cluster
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model, the effect of dissolution of the α-cluster(s) due to
the spin-orbit interaction, which does not act for the Nα

systems, should be treated. In our previous work [9], we
have demonstrated “cluster-shell competition” in light nuclei
based on AMD triple-S [10]. In the calculation, the wave
functions of antisymmetrized molecular dynamics (AMD)
[11] are generated as basis states and superposed by means
of an effective way to choose the basis set. To take into
account the spin-orbit contribution efficiently, the cooling
equation is applied only for the imaginary parts of the
Gaussian center parameters of the nucleons, whereas their real
parts are randomly generated. After performing the angular
momentum projection, important basis states are chosen
in the same way as stochastic variational method (SVM)
[12,13].

As the second step of the study on the cluster-shell
competition, we have proposed a simplified method and
discussed that the imaginary parts of the Gaussian center
parameters can be a measure of the transition from a cluster
state to a shell-model state [14]. When the parameter for the
imaginary part, �, changes from 0 to 1, the four nucleons in
one of the α clusters gradually shift into the jj-coupling type
wave function. This introduction of the parameter � is called
simplified modeling of spin-orbit interaction (SMSO) [14]. We
have also studied how the tensor correlation is taken account
in the cluster model in a similar manner [15].

In this work, we study the cluster-shell competition in
neutron-rich carbon isotopes by combining SMSO and AMD
triple-S. We introduce two parameters for the 12C core part;
(1) R1 as the α-α distance parameter and (2) � as a measure of
dissolution of one of the α clusters. The change of optimum R1

and � values with respect to the number of neutrons is studied.
Also, we study the energy levels of 16C and search for the pure
cluster state in the level scheme. Finally, we calculate the
B(E2) values and show the relation between the B(E2) values
and two parameters R1 and �. The origins of anomalously
small B(E2) value in 16C are discussed.
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II. FRAMEWORK

We briefly discuss our framework of SMSO [14]. The total
Hamiltonian has the following form:

Ĥ =
A∑

i

t̂i − T̂c.m. +
A∑

i<j

v̂ij . (1)

Here, A is the mass number and t̂i is the kinetic energy
operator for each nucleon. The kinetic energy of the center
of mass motion (T̂c.m.) is exactly subtracted from the total
Hamiltonian. v̂ij is the effective nucleon-nucleon interaction,
which includes central, spin-orbit, and Coulomb terms. In
this study, other noncentral forces (e.g., tensor force) are not
included explicitly. We use the Volkov No. 2 interaction [16]
for the central part of v̂ij ,

V (r) = (W − MPσP τ + BPσ − HPτ )

× [
V1e

−ρ1r
2 + V2e

−ρ2r
2]

, (2)

where the exchange parameters are taken as W = 1 −
M,M = 0.61, and B = H = 0.125. For the spin-orbit term,
we use the G3RS interaction [17],

Vls(r) = V ls
0 [e−d1r

2 + e−d2r
2
]P (3O)L · S, (3)

where d1 = 5.0 fm−2, d2 = 2.778 fm−2, V0 = 2000 MeV, and
P (3O) is a projection operator onto a triplet odd state. All
of the parameters of the interaction are determined from α +
n and α + α scattering phase shifts and the binding energy
of the deuteron [18]. However, M is slightly modified from
the original value (0.6) to 0.61 for the analysis of the carbon
isotopes, and furthermore, the bound state for the n + n system
is eliminated by introducing B and H parameters in Eq. (2).

In actual calculations, we introduce SMSO for the 12C core
to describe the cluster-shell competition by a simple parameter.
The total wave function is fully antisymmetrized and the spatial
part of the i-th nucleon is described by a Gaussian wave packet
centered at �zi/

√
ν. The 12C core is described as three α clusters

with an equilateral triangle shape using the length parameter
R1 on the xz plane. Hence, the parameter R1 stands for the
distance between the Gaussian center parameters of the α

clusters. The limit of R1 → 0 corresponds to the wave function
of the lowest state of the (SU(3)) shell model. It has been shown
in Ref. [19] that the ground state of 12C given by a microscopic
three α model has large overlap, e.g., more than 50%, with the
lowest shell-model configuration.

Furthermore, to describe the dissolution of the α particle,
we transform one of the α clusters into four independent (jj-
coupling-like) particles by giving the imaginary parts for the
Gaussian center parameters. In addition to the real part ( �R),
we introduce a parameter � for the imaginary part as follows:

�zi/
√

ν = �R + i�
(�ei

spin × �R)
, (4)

where �ei
spin is the unit vector along the spin direction. The � =

0 case corresponds to the (0s)4 configuration for the each α

particle. In the extreme case of � = 1, however, four nucleons
in one of the α-cluster have the wave functions of the p3/2

orbit, and hence the spin-orbit interaction acts attractively [14].

Although only one of the α clusters is dissolved, this condition
has been known to be almost sufficient to take into account the
spin-orbit contribution in 12C [9].

To solve the motion of the valence neutrons around the
12C core, we combine SMSO and AMD triple-S [10] for
14C (12C+2n) and 16C (12C+4n). We superpose the AMD
wave functions. In each AMD wave function, the real parts
of the Gaussian center parameters for the valence neutrons
outside the 12C core are randomly generated. The cooling
equation is applied only for their imaginary parts in order
to take into account the spin-orbit contribution, efficiently. In
the cooling procedure, only project the parity of the system.
After performing the angular momentum projection onto 0+,
important basis state are selected in the same way as the
stochastic variational method (SVM) [12,13]. Although the
same set of the selected basis states is used for other Jπ states,
the coefficients for the linear combination of the basis states
are obtained by diagonalizing the Hamiltonian for each Jπ

state independently.

III. RESULTS

A. Energies of the carbon isotopes

First, we show the calculated energies of the carbon
isotopes. For 14C and 16C, there are two and four neutrons
outside the 12C core, respectively. The real part of the Gaussian
center parameters of these neutrons are randomly generated
under the weight function of w(r) = exp(−r/R2). We choose
the parameter R2 = 1.5 fm to achieve the fast convergence
of the energy. Here, due to the difference of the number of
neutrons, the energy convergence of 16C is slower than that
of 14C as shown in Fig. 1. Typical number of basis states
introduced for 16C is 250.

In the present framework, the spin orientation of each
nucleon is quantized along the z axis, and the 12C core is
placed on the xz plane based on SMSO. For the closed-shell
nucleus, i.e., 14C (N = 8), the result is insensitive to the spin
axis with respect to the 12C core. However in 16C, which is an

−105

−100

−95

 0  50  100  150  200  250
N

E
ne

rg
y 

(M
eV

)

14C

16C

−102
−101
−100
−99
−98
−97

 50  100N

E
ne

rg
y 

(M
eV

)

Normal
Sz=1 mixed

FIG. 1. Energy convergence of 14C and 16C calculated with
SMSO and AMD triple-S. The horizontal axis is the number of
introduced basis states (N ), where distribution of the valence neutrons
is randomly generated. In the upper-right panel, the “Normal” and
“Sz = 1 mixed” show the calculations with Sz = 0 only and Sz = 1
mixed basis set, respectively.
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open-shell nucleus of the sd shell, we introduce the basis states
with Sz = 1 in addition to Sz = 0 so that the valence neutrons
can have the optimal spin direction:

{|�〉} = {|�(Sz = 0)〉} ⊕ {|�(Sz = 1)〉}. (5)

In practice, a basis state with Sz = 1 is generated once
in every four times, and states with Sz = 0 are generated
in other three times. The efficiency of inclusion of Sz = 1
in 16C is shown in the inserted panel on the right-upper
position of Fig. 1, where “Normal” and “Sz = 1 mixed” show
the calculations using Sz = 0 only and Sz = 1 mixed basis
set, respectively. Superposing the basis states with different
spin-orientation is found to increase the speed of the energy
convergence.

The energy curves of 12C, 14C, and 16C as functions of R1

and � are shown in Fig. 2. The optimum values of R1 and �

are different each other in these nuclei. In 12C (upper panel),
the energy of R1 = 2.5 fm gives the lowest than that energy at
� = 0, where the spin-orbit interaction have no effect on the
system. However, as � increases, the energy curve of R1 =
1.5 fm, which lies higher position than that of R1 = 2.5 fm at
� = 0, goes down, and the minimum point appears at around
� = 0.4. This shows that the contribution of the spin-orbit
interaction makes the R1 value smaller, and both the cluster
and shell-model components are mixed in the ground state. In
14C (middle panel) and 16C (lower panel), a smaller R1 value
gives the lowest energy (R1 = 0.5 fm). Due to the presence
of valence neutrons, the nucleus becomes a strongly bound
system, and the wave function approaches to the shell-model
picture. Thus the optimal � value increases to 0.8 in these
nuclei. The optimum values of R1 and � for 12−16C and the
energies are summarized in Table I.

When the valence neutrons are added to 12C, the optimum
value of R1 becomes smaller, and simultaneously the optimum
� becomes larger. Therefore, it can be concluded that the 3α
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FIG. 2. Calculated energies of 12C (upper panel), 14C (middle
panel), and 16C (lower panel) as functions of �. Solid and open
circles, solid and open squares, solid and open triangles correspond
to R1 = 3.0, 2.5, 2.0, 1.5, 1.0, and 0.5 fm, respectively.

TABLE I. The optimum values of the parameters R1 and � for
the carbon isotopes.

12C 14C 16C

R1 (fm) 1.5 0.5 0.5
� 0.4 0.8 0.8
E (MeV) −88.6 −106.4 −108.5

structure of 12C is dissolved as the increase of the number
of the valence neutrons. In 16C, the 12C core has completely
different structure from the “free” 12C by considering from the
small R1 and large � values.

Next, we calculate the energy levels of 16C using the
wave function with the optimum values of R1 = 0.5 (fm)
and � = 0.8. Results are shown in Fig. 3. The energy levels
of the 0+

1 , 0+
2 , 2+

1 , and 2+
2 states are in agreement with the

experimental data. The 4+
1 state lies lower position than the

experiment, and the 3+
1 state is, on the contrary, higher. This

tendency of the appearance at low (high) in energy of the 4+
1

(3+
1 ) state is similar to the AMD calculation with variation

before (after) the Jπ projection as VBP (VAP) [20]. This is
because our framework has a sort of mixed procedure of VBP
and VAP. The cooling equation is performed before the angular
momentum projection, which corresponds to VBP, and the
basis set is selected after the angular momentum projection
onto Jπ = 0+, which is VAP. However, the set of the basis
states are not optimized for Jπ states which has different
character from that of the 0+ state. Nevertheless, in the recent
approach [21], the energy levels are well described by the
core+n + n model space.

Although the shell-model-like component is dominant in
the ground state, cluster state may appear in the excited states.
To search for such state in 16C, we mix the wave functions
with different R1 and � values. In Fig. 4, “Base 1” stands
for the wave functions with the optimum values (R1 = 0.5 fm
and � = 0.8), and the 12C core is close to the shell-model-like
structure. In addition to these basis states, a different base set of
“Base 2” is introduced, which is clusterlike (R1 = 2.5 fm and
� = 0.0). We found that the energy of the 0+

3 state goes down
significantly, whereas the energies of the ground and second
0+ states do not change drastically. Therefore, it is considered
that 3α cluster structure with a geometric shape appears in
Ex = 10 MeV region of 16C, in analogy with the crystallization
of the clusters in 14C [22].
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FIG. 4. The 0+ energy levels of 16C. Here “Base 1” shows the
basis states with R1 = 0.5 (fm) and � = 0.8, and “Base 2” shows
R1 = 2.5 (fm) and � = 0.0.

B. B(E2) values of the carbon isotopes

In 16C, anomalously small B(E2) value is reported from
an experiment [23]. The observed B(E2, 2+

1 → 0+
1 ) value is

0.63 e2fm4, which is almost 13 times smaller than that of 12C,
although both nuclei have the same proton number. Here, we
calculate B(E2; 2+

1 → 0+
1 ) with the optimum values of R1

and �. The obtained B(E2) value is very small, 0.01 e2fm4,
which is even smaller than the experimental value as shown
in Table II. We also calculate the “neutron B(E2)” value
(B(E2)n in Table II) by inverting the charges of neutrons
and protons as ep = 0 and en = e. The obtained value is
relatively large; B(E2; 2+

1 → 0+
1 )n = 4.11 e2fm4. Therefore,

the neutron part of the 16C is deformed, and the proton part is
considered to be spherical. The experimental B(E2) value
can be explained by introducing effective charge (∼ 0.4e)
for the neutron part; however, the value is slightly larger
compared to the recent core+n + n model calculation [21],
which consistently explains the B(E2) values of 15C and 16C.
The calculated B(E2) values of 12C and 14C are also listed in
this table. The calculated proton and neutron B(E2) values
of 14C are 2.99 and 0.03 (e2fm4), respectively, and contrary
to 16C, the normal B(E2) value is much larger than that for
the neutrons due to the shell effect. In 14C, the small neutron
B(E2) value shows that the neutrons have the closed-shell
configuration of the p-shell, and the 2+-excitation comes from
the proton part.

TABLE II. Calculated B(E2; 2+
1 → 0+

1 ) values of the carbon
isotopes. The B(E2)n values for 14C and 16C are calculated by
inverting the charge as ep = 0 and en = e. Units of R1 and B(E2)
are fm and e2fm4, respectively. Experimental data are taken from
Ref. [24] (12C and 14C) and Ref. [23] (16C).

(R1, �) B(E2) B(E2)n

12C (1.5, 0.4) 3.51 3.51
Exp. 8.2 ± 0.1

14C (0.5, 0.8) 2.99 0.03
Exp. 3.74 ± 0.5

16C (0.5, 0.8) 0.01 4.11
Exp. 0.63

The mechanism for the small B(E2) value of 16C is
considered in the following way: (1) Due to the small
relative α-α distance corresponding to the parameter R1, the
deformation of the proton part becomes small. (2) Because � is
large, and hence an α cluster is dissolved into four independent
particles, the 2+

1 state is no longer a collective (rotational) state.
(3) A strong proton-neutron correlation makes the protons
deeply bound in neutron-rich nuclei, thus the 2+-excitation is
mostly caused by the neutrons outside the 12C core. The effects
of (1) and (2) can be confirmed by comparing the B(E2) value
of 12C with that of 14C. In 12C and 14C, the optimal R1 and �

values change from (1.5 fm, 0.4) to (0.5 fm, 0.8), and the B(E2)
value decreases from 3.51 to 2.99 (e2fm4). However, the value
for 14C is still much larger than that of 16C. Therefore, the
remaining effect must come from the origin (3). The relatively
large neutron B(E2) value of 16C supports this picture, which
is also suggested in Ref. [21].

IV. SUMMARY AND DISCUSSION

We have studied carbon isotopes with the combined
frameworks of AMD triple-S and SMSO. As the neutron
number increases, the 3α-cluster structure of the 12C core
disappears as shown in terms of the decrease of R1 and
increase of �. We have also studied the B(E2; 2+

1 → 0+
1 )

values of the carbon isotopes and analyzed the mechanism
to make the B(E2) value of 16C very small in terms of the
cluster-shell competition. By comparing with the values of
12C with various R1 and � parameters, it has been shown that
the shrinkage effect of the 3α structure and dissolution of an
α make the B(E2) value small. The 12C core of 16C is more
shell-model-like structure judging from the small R1 (0.5 fm)
and large � (0.8) values. However, in 16C, another origin,
the item (3) in the last paragraph of the previous section,
plays an important role that the excitation of the valence
neutrons is the main source of the 2+ excitation. Because the
protons are strongly bound in neutron-rich nuclei, the 1p − 1h

excitation of the protons needs higher energy compared with
the excitation of the neutrons.

Although the shell-model-like component is dominant in
the ground state of 16C, a cluster state appears in the excited
states. The energy of the 0+

3 state significantly decreases if we
add pure cluster states with R1 = 2.5 (fm) and � = 0, whereas
the energies of the ground and second 0+ states do not change
drastically. Therefore, it can be considered that the 3α-cluster
structure with an equilateral triangle shape appears in Ex = 10
MeV region of 16C, in analogy with the crystallization of the
clusters in 14C [22].

As a future work, we proceed to study heavier carbon
isotopes and also the other isotopes with the present framework
of SMSO plus AMD triple-S for the consistent understanding
of the cluster-shell competition.
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