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Improved short-range correlations and 0νββ nuclear matrix elements of 76Ge and 82Se
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We calculate the nuclear matrix elements of the neutrinoless double beta (0νββ) decays of 76Ge and 82Se for
the light neutrino exchange mechanism. The nuclear wave functions are obtained by using realistic two-body
forces within the proton-neutron quasiparticle random-phase approximation (pnQRPA). We include the effects
that come from the finite size of a nucleon, from the higher-order terms of nucleonic weak currents, and from the
nucleon-nucleon short-range correlations. Most importantly, we improve on the presently available calculations
by replacing the rudimentary Jastrow short-range correlations by the more advanced unitary correlation operator
method (UCOM). The UCOM-corrected matrix elements turn out to be notably larger in magnitude than the
Jastrow-corrected ones. This has drastic consequences for the detectability of 0νββ decay in present and future
double beta experiments.
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The nuclear matrix elements of neutrinoless double beta
(0νββ) decay have become an important issue in present-day
neutrino physics (see, e.g., Refs. [1–4]). This has been boosted
by the verification of the existence of neutrino mass by the
oscillation experiments [5] and the claimed discovery of the
0νββ decay [6,7]. Further incentive to produce reliable nuclear
matrix elements comes from the needs of the running NEMO
3 [8] and CUORICINO [9] experiments, as well as future
large-scale experiments under R&D planning and construction
(see, e.g., Ref. [10]). For these experiments the nuclear matrix
elements are an essential prerequisite in the extraction of
reliable values for the absolute mass scale of the neutrino [11]
and possibly the CP phases of the neutrino-mixing matrix [12].

The most popular nuclear model to treat the structure
of medium-heavy and heavy double beta decaying nuclei is
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) [13–15]. Some recent shell model results are also
available [16,17]. The pnQRPA model is tailored to efficiently
describe the energy levels of odd-odd nuclei and their beta
decays to the neighboring even-even nuclei [18]. Its derivative,
renormalized pnQRPA [19], has also been used to compute
double beta matrix elements [20,21], although its use has
been heavily criticized (see, e.g., Ref. [22] and references
therein). A problem with the use of the pnQRPA (and the
renormalized pnQRPA) is that it contains a free parameter, the
so-called particle-particle strength parameter, gpp, that controls
the magnitude of the proton-neutron two-body interaction
matrix elements in the T = 0 pairing channel [23,24]. There
are basically two ways to fix the value of this parameter,
either by using the data on two-neutrino double beta (2νββ)
decay [21] or the data on single beta decay [25,26]. In the
case of 76Ge and 82Se there is no available data on single beta
decays, so in this work we have chosen to use the 2νββ data
to fix the possible values of gpp.

In this article we address the mass mode of the 0νββ

decay where a light virtual Majorana neutrino is exchanged
by the two decaying neutrons of the initial nucleus. Typically
the exchanged momentum is so large as to force the two
neutrons to overlap unless steps are taken to prevent the
occurrence of such a spurious event. The traditional way

[27,28] to remove this spuriosity is to introduce an explicit
Jastrow-type correlation function into the involved two-body
transition matrix elements in the parametrization of Miller and
Spencer [29]. This method, although microscopically inspired,
is just a phenomenological way to introduce short-range
correlations into the two-nucleon relative wave function. A
conspicuous flaw of the Jastrow method is that the Jastrow
function effectively cuts out the small r [30] part from the
relative wave function of the two nucleons. For this reason, the
traditionally adopted Jastrow procedure [13] does not conserve
the norm of the relative wave function [31].

In the present calculations we improve on the Jastrow
method and adopt the more sophisticated microscopic ap-
proach of the unitary correlation operator method (UCOM)
[32]. In the UCOM one obtains the correlated many-particle
state |�̃〉 from the uncorrelated one as

|�̃〉 = C|�〉, (1)

where C is the unitary correlation operator [32]. Due to
the unitarity of the operator C, the norm of the correlated
state is conserved and no amplitude is lost in the relative wave
function. In the 0νββ calculations this leads to a more complete
description of the relative wave function at small distances r ,
as was demonstrated in [33]. It should be stressed that no extra
free parameters are introduced by the use of the UCOM at
the level of double beta decay calculations. All the needed
parameters have been fixed by minimization procedures for
ββ-independent observables [34]. The UCOM method has
been demonstrated [35] to produce good results for the binding
energies of nuclei over a wide mass range already at the
Hartree-Fock level. It was also shown that the UCOM renders
a good starting point for inclusion of long-range correlations
by means of many-body perturbation theory.

In Ref. [33] it was demonstrated for the 48Ca and 76Ge
0νββ decays that the Jastrow procedure leads to the excessive
reduction of 30–40% in the magnitudes of the 0νββ nuclear
matrix elements. At the same time the UCOM reduces the
magnitudes of the matrix elements only by 7–16%. This
explains the large short-range correlation corrections to the
matrix elements of Ref. [21].
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The issue about the magnitude of the short-range correc-
tions is an extremely important one since it directly affects
the magnitudes of the relevant nuclear matrix elements used
to extract the neutrino masses from potentially succesful
future double beta experiments. There are large differences
between the Jastrow and UCOM corrections, the Jastrow
corrected matrix elements being substantially smaller that the
UCOM corrected ones. This difference would severely alter
the predicted sensitivities of future neutrino experiments, the
UCOM corrected matrix elements being more favorable for
the detection of neutrinoless double beta decay.

The double beta decays of 76Ge and 82Se proceed through
the virtual states of the intermediate nuclei 76As and 82Br to the
ground states of the final nuclei 76Se and 82Kr. By assuming
the neutrino-mass mechanism to be the dominant one, we can
write the inverse of the half-life as [14]

[
t

(0ν)
1/2

]−1 = G
(0ν)
1

( 〈mν〉
me

)2

(M (0ν))2, (2)

where me is the electron mass and G
(0ν)
1 is the leptonic phase-

space factor. The 0νββ nuclear matrix element M (0ν) consists
of the Gamow–Teller, Fermi, and tensor parts as

M (0ν) = M
(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T . (3)

Numerical calculations show that the tensor part in Eq. (3)
is quite small and its contribution can be safely neglected
in what follows. The expressions for the phase-space factor,
the effective neutrino mass 〈mν〉 and the matrix elements of
Eq. (3) are given, e.g., in Refs. [11,13,14]. To the “bare” matrix
elements we have applied the Jastrow short-range correlation
corrections, together with the higher-order terms of nucleonic
weak currents and the nucleon’s finite-size corrections in
the way described in Refs. [21,36]. In addition, we have
computed the corrected matrix elements by replacing the
Jastrow correlations with the UCOM correlations.

We calculated the wave functions of all the nuclear states in
the intermediate nuclei by the use of the pnQRPA framework
in the model space of 1p-0f-2s-1d-0g-0h11/2 single-particle
orbitals, both for protons and neutrons. The single-particle
energies were obtained from a spherical Coulomb-corrected
Woods–Saxon potential with a standard parametrization,
optimized for nuclei near the line of beta stability. Slight
adjustments were done for some of the energies at the vicinity
of the proton and neutron Fermi surfaces to better reproduce
the low-energy spectra of the neighboring odd-A nuclei and
those of the intermediate nuclei.

The Bonn-A G-matrix was used as a two-body interaction
and was renormalized in the standard way, as discussed, e.g., in
Refs. [37,38]. Due to this phenomenological renormalization
we did not perform an additional UCOM renormalization [34]
of the two-body interaction. After fixing all the Hamiltonian
parameters, the only free parameter left was the gpp parameter
mentioned earlier. In Fig. 1 we have studied the gpp dependence
of the matrix element M (0ν) of Eq. (3) for both 76Ge and
82Se. We have used R = 1.2A1/3 fm as the nuclear radius,
and the finite-size, higher-order term and UCOM corrections
were taken into account. Here one can see the typical
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FIG. 1. The 0νββ nuclear matrix elements M (0ν) of Eq. (3) for the
decays of 76Ge and 82Se as functions of the particle-particle interaction
parameter gpp.

breakdown of the pnQRPA at large values of gpp. Moreover,
the corresponding breakdown points for the two nuclei are
close to each other.

We obtained the physical values of gpp by using the method
of Ref. [21]. Consequently, we used the recommended data
[39] on 2νββ-decay half-lives of 76Ge and 82Se by including
the experimental error limits and the uncertainty in the value
of the axial-vector coupling constant 1.0 � gA � 1.254. The
resulting intervals [40] of “experimental matrix elements”
were then converted to the following intervals of gpp values:

1.02 � gpp � 1.06 for 76Ge,
(4)

0.96 � gpp � 1.00 for 82Se.

In Fig. 2 we show for the 82Se decay the decomposition
of the total matrix element Eq. (3) into multipoles. The bare
matrix element contains no short-range, finite-size or higher-
order-term corrections, whereas the UCOM and Jastrow matrix
elements include all these corrections. The spread in the
multipole contributions corresponds to the gpp interval for
82Se in Eq. (4). More specifically, the upper end of the bar
represents the case gpp = 0.96 with gA = 1.0 and the lower
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FIG. 2. Multipole decomposition of the matrix element M (0ν) of
Eq. (3) for the decay of 82Se. The spread in the multipole contributions
corresponds to the gpp interval for 82Se in Eq. (4).
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TABLE I. Matrix element M (0ν) of Eq. (3) computed by correcting
successively the bare matrix element (b.m.e.) by the higher-order
terms in the nucleonic current (A), by the nucleon finite-size effect
(B), and by either the Jastrow (C) or UCOM (D) correlations. The
values gpp = 1.0 and gA = 1.254 were used in the calculations.

Nucleus b.m.e. +A +A+B +A+B+C +A+B+D

76Ge −8.529 −7.720 −6.356 −4.723 −6.080
82Se −5.398 −4.862 −3.914 −2.771 −3.722

end the case gpp = 1.00 with gA = 1.254. In the figure we
see that the corrections substantially reduce the magnitude
of a given multipole contribution. The differences between
the Jastrow and UCOM-corrected multipole contributions
increase with increasing multipole. This pattern is reminiscent
of the one shown in Fig. 3 of Ref. [33] where no finite-size or
higher-order term corrections were taken into account. All this
bears evidence of the fact that the rudimentary Jastrow method
overestimates the effect of nuclear short-range correlations in
0νββ-decay calculations.

In Table I we display the effects of the various corrections
to the matrix elements M (0ν) of 76Ge and 82Se. There we
show in the second column the bare matrix elements (b.m.e.),
then in the third column we show the b.m.e. corrected for
the higher-order terms in the nucleonic current (A). In the
fourth column we have added the nucleon finite-size effect
(B) to the previous matrix elements (b.m.e.+A), and finally,
in the last two columns, we have added to the previous matrix
elements (b.m.e.+A+B) either the Jastrow (C) or UCOM (D)
short-range corrections.

Table I is very interesting in the sense that there we can
access the magnitudes of the various corrections to the bare
matrix element. The magnitudes of the corrections coming
from the finite nucleon size and the higher-order terms of
the nucleonic current together amount to 25–30%. In fact,
the magnitude of our bare matrix element is roughly the
one reported in Refs. [21,36]. Even after correcting by the
higher-order terms and the nucleon finite-size effect the matrix
elements agree roughly, as shown in Table II. From the table
we also see that our computed Jastrow corrections are much
less than the ones obtained in Refs. [21,36]. The reason for this
is not clear. The net effect is that our final matrix elements,
especially the UCOM-corrected ones, are much larger than
those of Refs. [21,36]. On the other hand, our shell model

TABLE II. Matrix element |M (0ν)| of Eq. (3) for 76Ge
obtained in the present calculation and by Šimkovic et al.
[36]. Shown are the results without and with the short-
range correlations (s.r.c.) for gA = 1.254.

without s.r.c. with s.r.c.

Present [36] Jastrow UCOM [36]

6.36 5.16 4.72 6.08 2.80

TABLE III. Beta decay log f t values for transi-
tions from the 2−

1 states of 76As and 82Br to one- and
two-phonon states in the indicated final nuclei.

Jf
76Se 82Kr

Exp. Th. Exp. Th.

0+
g.s. 9.7 9.0 8.9 9.3

2+
1 8.1 7.7 7.9 7.7

0+
2 10.3 9.2 � 9.6 9.4

2+
2 8.2 8.7 8.0 9.0

4+
1 11.1 10.9 ? 11.1

computed Jastrow correlation corrections for 48Ca [33] agree
with the ones of Ref. [41].

To check the consistency of our calculations we also
computed the single β− decay rates from the lowest 2−
states of the intermediate nuclei 76As and 82Br to the lowest
2+ collective state, 2+

1 , and its 0+
2 , 2+

2 and 4+
1 two-phonon

excitations (see, e.g., Ref. [38]) in 76Se and 82Kr. The wave
function of the 2+

1 state was calculated by the use of the
quasiparticle random-phase approximation (QRPA) [18] and
its energy was fixed to the experimental one [38]. Beta decays
to the mentioned final states were computed by the method of
the multiple commutator model (MCM) of Ref. [38].

The 2− wave function was calculated by using the central
value of gpp in the intervals of Eq. (4). In the case of a 2− initial
state this choice works fine since the calculated beta decay
rates depend only weakly on gpp within the range relevant for
the 2νββ and 0νββ decays. We compare the computed log f t

values with the available data in Table III. From this table it is
seen that the computed numbers nicely reproduce the trends
of the measured ones, although the assumption that the states
0+

2 , 2+
2 and 4+

1 are pure two-phonon excitations is an idealized
one. It has to be noted that there is no experimental data on
beta decay of the lowest 1+ state in 76As and 82Br. For some
double-beta-decaying systems the 1+ data exists and matching
of beta and double beta decay could be more problematic due
to the stronger gpp dependence of the beta decay rates from a
1+ intermediate state [25].

Our final results for the 0νββ nuclear matrix elements
have been collected in Table IV. These matrix elements were
calculated with the UCOM short-range corrections by also
taking into account the finite size of the nucleons and the

TABLE IV. Nuclear 0νββ matrix elements of Eq. (3)
for the decays of 76Ge and 82Se. The UCOM and other
corrections are included. The used gpp values are also
indicated.

gpp
76Ge 82Se

1.02 1.06 0.96 1.0

M
(0ν)
F 1.923 1.803 1.304 1.214

M
(0ν)
GT −4.632 −4.208 −3.293 −2.950

M (0ν) −6.555 −5.355 −4.597 −3.722
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TABLE V. Values of the matrix element |M (0ν)| of Eq. (3)
obtained in several recent calculations.

Nucleus Present [21] [36] [26]

76Ge 5.36–6.56 2.26–2.74 2.80 4.03–5.92
82Se 3.72–4.60 1.86–2.45 2.64 2.82–4.14

higher-order terms in the nucleonic weak current. The two
different values of the matrix elements correspond to the gpp

and gA parameter combinations indicated earlier in the text.
As can be seen, the values of the final matrix elements vary
between

5.355 � |M (0ν)| � 6.555 for 76Ge,
(5)

3.722 � |M (0ν)| � 4.597 for 82Se.

We compare these matrix elements with other recent
calculations in Table V. There the values 1.0 � gA � 1.254
are used for the axial-vector coupling constant, except that
Šimkovic et al. [36] use gA = 1.254. The results of Civitarese
et al. [26] are based on the formalism introduced in Ref. [42]
where the finite size of the nucleon and the nucleonic weak
current were obtained from a relativistic quark-confinement
model. In Ref. [42] the generated nucleonic weak current is
incomplete as compared to the present formalism, adopted
from Ref. [36]. Also the short-range correlations were not
taken into account. In this sense the last column of Table V
should be compared to the fourth column “+A+B” of
Table I. As already said, the differences between the two
results can be explained by the different treatment of the
weak-interaction current and the nucleon form factor. We then
conclude that our present results are more complete that the
ones of Ref. [26] and thus should be more reliable. It is worth
mentioning that in Ref. [33] the quoted matrix elements were
calculated for the “default” value gpp = 1.00 without taking
into account the higher-order terms in the nucleonic current
and the nucleon finite-size effect.

In the matrix element calculations there may be other
uncertainties than the ones induced by the uncertainty in the
value of gpp. Such uncertainties could occur from sources such
as deformation, the mean-field single-particle energies, and
the adopted two-body interaction. In Ref. [21] it was shown
that the effect of the adopted two-body interaction is very
small as long as the interaction is microscopic. Our adopted
Bonn-A interaction is of this type and included in the survey of
Ref. [21]. In Ref. [21] it was furthermore demonstrated that
the size of the single-particle space does not produce sizable
effects as long as the value of gpp is determined from the
2νββ data, as is done in the present calculations. By the
same argument, only small effects are expected from different
parametrizations of the Woods-Saxon mean-field potential and
the resulting slightly different single-particle energies. These
two sources of uncertainty produce effects that can be expected

to be smaller than the one coming from the short-range
correlations.

The role of deformation is the most uncertain one. The
presently discussed nuclei of the two double beta decay
chains are pf-shell nuclei and most likely they have no or
very small static deformation. Instead, they are most likely
soft anharmonic vibrators. The deformation allows of a new
suppression mechanism of 2νββ decay, namely through the
overlap factor used to take into account the nonorthogonality
of the intermediate states generated by using the initial and
final ground states as starting points in two separate pnQRPA
calculations. This suppression mechanism is enhanced when
the deformations of the initial and final nuclei of double beta
decay are different [43]. However, in Ref. [44] it was deduced
experimentally that 76Ge and 76Se exhibit quantitatively
very similar neutron pair correlations. This would indicate
similarity of their ground states and no suppression would
occur through different ground state deformations. For 82Se
and 82Kr this question is still open. In any case, the role of
deformation in 0νββ decay is still largely unexplored and no
definitive conclusion about the importance of deformation can
be drawn for the present.

Our final matrix elements can be converted to 0νββ half-
lives by choosing a value for the effective neutrino mass in
Eq. (2). Expressing the effective mass in units of eV and using
the phase-space integrals tabulated in Ref. [14], we obtain for
the predicted half-lives

t
(0ν)
1/2 = (0.96 − 1.44) × 1024 yr/(〈mν〉[eV])2 for 76Ge,

(6)
t

(0ν)
1/2 = (4.53 − 6.90) × 1023 yr/(〈mν〉[eV])2 for 82Se.

In summary, we have calculated the nuclear matrix elements
for the 0νββ decays of 76Ge and 82Se by using the proton-
neutron quasiparticle random-phase approximation with a
realistic two-body interaction and a realistic single-particle
space. The numerical calculations were done by including
the higher-order terms of the nucleonic weak currents, the
nucleon’s finite-size corrections and the nucleon-nucleon
short-range correlation effects. The short-range correlations
have been calculated by using the unitary correlation operator
formalism that is superior to the traditionally adopted rudimen-
tary Jastrow procedure. The UCOM reduces the bare values of
the computed matrix elements less than the Jastrow procedure,
leading to larger matrix elements than the ones quoted in
the recent literature. This reduces the predicted theoretical
0νββ half-lives of 76Ge and 82Se by a significant amount and
thus directly influences the neutrino-mass sensitivities of the
running and future double beta experiments.
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[15] A. Faessler and F. Šimkovic, J. Phys. G 24, 2139 (1998).
[16] E. Caurier, F. Nowacki, A. Poves, and J. Retamosa, Nucl. Phys.

A654, 973c (1999).
[17] E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005).
[18] J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic

Nuclear Theory (Springer Verlag, Berlin, 2007).
[19] J. Toivanen and J. Suhonen, Phys. Rev. Lett. 75, 410 (1995).
[20] J. Toivanen and J. Suhonen, Phys. Rev. C 55, 2314 (1997).
[21] V. A. Rodin, A. Faessler, F. Šimkovic, and P. Vogel, Nucl. Phys.
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