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Application of density dependent parametrization models to asymmetric nuclear matter
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Density dependent parametrization models of the nucleon-meson effective couplings, including the isovector
scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state and the neutron star
properties are studied in an effective Lagrangian density approach, using the relativistic mean field hadron theory.
It is known that the introduction of a δ-meson in the constant coupling scheme leads to an increase of the
symmetry energy at high density and so to larger neutron star masses, in a pure nucleon-lepton scheme. We use
here a more microscopic density dependent model of the nucleon-meson couplings to study the properties of
neutron star matter and to reexamine the δ-field effects in asymmetric nuclear matter. Our calculations show that,
due to the increase of the effective δ coupling at high density, with density dependent couplings the neutron star
masses in fact can be even reduced.

DOI: 10.1103/PhysRevC.75.048801 PACS number(s): 21.30.Fe, 21.65.+f, 97.60.Jd

The nonlinear Walecka model (NLWM) [1,2] and derivative
scalar couplings [3], based on the relativistic mean-field (RMF)
approach, have been extensively used to study the properties of
nuclear and neutron matter, β-stable nuclei, and then extended
to the drip-line regions. In the last years some authors [4–8]
have stressed the importance of including the isovector scalar
virtual δ(a0(980)) field in hadronic effective field theories for
asymmetric nuclear matter. The role of the δ meson in isospin
channels appears relevant at high densities [4–8] and so of
great interest in nuclear astrophysics.

In order to describe the medium dependence of nuclear
interactions, a density dependent relativistic hadron field
(DDRH) theory has been recently suggested [9–11]. The
density dependent meson-nucleon couplings are based on
microscopic Dirac-Brueckner (DB) calculations [10,12] and
adjusted to reproduce some nuclear matter and finite nuclei
properties [9–11]. Here we will see the predictions of the
density dependent coupling models when applied to the
neutron stars (NS). In fact it is known that the introduction
of the δ-meson in the constant coupling model [8] leads to
heavier neutron stars in a nucleon-lepton picture. This is not
obvious for density dependent models.

The Lagrangian density with δ mesons, used in this
work, is like the one of RMF approaches, with nucleons
coupled to isoscalar (scalar, vector) σ, ωµ and isovector (scalar,
vector) δ, ρµ, effective meson fields. The most important
difference to conventional RMF theories is the contribution
from the rearrangement self-energies to the DDRH baryon
field equation. The meson-nucleon couplings gσ , gω, gρ , and
gδ are assumed to be vertex functions of Lorentz-scalar bilinear
forms of the nucleon field operators. In most applications of
DDRH theory, these couplings are chosen as functions of the
vector density ρ̂2 = ĵµĵµ with ĵµ = ψ̄γµψ .

The equation of state (EOS) for nuclear matter at T = 0 is
obtained from the energy-momentum tensor. In a mean field
approximation the energy density has the form [11]
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and the pressure is
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with Ei
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2 and nucleon effective masses given by
Mi


 = M − gσσ ± gδδ3, i = n(+), p(−). The scalar fields,
σ (isoscalar) and δ3 (isovector), are expressed in terms of
the corresponding local scalar densities. In the pressure a
rearrangement term appears, in the density dependent case,
as
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where ρ3 = ρp − ρn and ρs3 = ρsp − ρsn, with
ρ, ρs being the baryon and the scalar densities.
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The chemical potentials for protons and neutrons can be
written as, respectively,
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for i = n(−), p(+), with the nucleon Fermi momentum kFi
=

(3π2ρi)1/3.
Since we are interested in the effects of the nuclear EOS

we will consider only pure nucleonic (+leptons) neutron star
structure, i.e., without strangeness bearing baryons and even
deconfined quarks, see [13,14]. The composition is determined
by the requirements of β-equilibrium and charge neutrality,
that for a (n, p, e−) system can be written as

µe = µn − µp = 4Esym(ρ)(1 − 2Xp),
(5)

ρe = 1

3π2
µ3

e = ρp = Xpρ,

where Xp is the proton fraction ρp/ρ. The symmetry energy
can be obtained from the energy per nucleon in the parabolic
approximation:

Esym(ρ) = [E/A(ρ, α) − E/A(ρ, α = 0)]/α2, (6)

where α asymmetry parameter α ≡ (N − Z)/A = −ρ3/ρ.
Then, for a given ρ, the Xp is related to the nuclear symmetry
energy by

3π2ρXp − [4Esym(ρ)(1 − 2Xp)]3 = 0. (7)

In the case of the (n, p, e−, µ−) system, the conditions
read µµ = µe = µn − µp and ρp = ρe + ρµ, with the muon
density ρµ expressed as a function of its chemical potential

ρµ = 1

3π2

(
µ2

µ − m2
µ

)3/2
θ (µe − mµ). (8)

The proton fraction Xp for (npe) and (npeµ) systems are
then deduced. The EOS for the β-stable (npe) and (npeµ)
matter can be estimated by using the obtained values of
Xp. The equilibrium properties of the neutron stars will
be finally studied by solving Tolmann-Oppenheimer-Volkov
(TOV) equations [15] inserting the derived nuclear EOS as
input. We note that the presence of muons slightly increases
the proton fraction for a fixed density, making the matter softer.
We will see this effect in the final equilibrium properties.

The parameters of the model include nucleon, (M =
939 MeV), and meson (mσ ,mω,mρ,mδ , see Table I) masses
and the density dependent meson-nucleon couplings. The
density dependence parametrization used here, inspired by

TABLE I. Parameters of the model.

Meson TW [11] DDRHρ DDRHρδ

σ ω ρ ρ δ

mi(MeV) 550 783 770 770 980
gi(ρ0) 10.73 13.29 3.59 5.86 7.59

FIG. 1. Density dependence of the meson-nucleon couplings.

DB calculations [10,12], was proposed [7,11,16] as gi(ρ) =
gi(ρ0)fi(x), for i = σ, ω, ρ, δ, where x = ρ/ρ0, ρ0 saturation
density.

Parametrization form and parameters are taken from
Ref. [11] for σ, ω mesons and from Refs. [7,16] for ρ, δ

mesons, respectively. The density dependent couplings as a
function of baryon density are displayed in Fig. 1.

For symmetric matter at saturation (ρ0 = 0.153 fm−3) we
get a binding energy E/A = ε/ρ − M = −16.25 MeV and a
compressibility modulus K = 240 MeV. In order to note the
effects of the coupling density dependence we will compare
the results with a nonlinear (NL) relativistic mean field model
with constant couplings which presents very similar saturation
properties (Set A of Ref. [8]), including a symmetry energy
Esym = 31.3 MeV. Both effective models, NL and DDRH are
rather soft for symmetric matter at high density, in agreement
with relativistic collision data, [17], and Dirac-Brueckner
expectations [18].

As shown in Refs. [4,8] when we include the δ coupling
we have to increase the ρ coupling in order to keep the same
symmetry term at saturation (see Table I). Since at higher
densities the δ coupling is increasing while the ρ one is
decreasing (see Fig. 1), as a result in the DDRH choice the
symmetry term will be less repulsive than in the NL case.

The β-equilibrium nuclear matter is relevant for the
composition of the neutron stars, as discussed previously.
The EOS, pressure vs density, for (npe) matter in the density
dependent DDRH vs NL-RMF models is reported in Fig. 2.
We see that, at variance with the NL results, in the DDRH cases
the EOS without δ-meson is stiffer than that with the δ-meson.
This is partially due to the softening of the symmetry term in
the DDRHρδ choice joined to a larger negative contribution
to the pressure from the rearrangement term, see Eq. (2), as
shown inside Fig. 2. We note that both effects are related to
the density increase of the effective gδ coupling (see Fig. 1) as
expected from Dirac-Brueckner calculations [10,12].

We use the two effective nucleon-meson Lagrangians, with
and without density dependent couplings, to calculate neutron
star (NS) properties, with particular attention to the δ-field
effects. The correlation between neutron star mass and radius
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FIG. 2. Equation of state for (npe) matter in different models.
Insert: density dependence of the rearrangement terms in the DDRH
cases.

for the β-equilibrium (npe) and (npeµ) matter obtained by the
DDRH (density dependent) and NL-RMF (constant couplings)
parametrizations are shown in Fig. 3. The obtained maximum
mass, corresponding radius and central density for the (npe)
and (npeµ) neutron star matter are reported in Table II.

We first note that the NLρ and DDRHρ results are rather
similar, with the DDRHρ interaction leading to a little softer
matter, slightly smaller NS mass MS and radius R and larger
central density (see Table II). When we include the δ coupling
we observe a clear effect in opposite directions: the DDRH
case becomes much softer while the NL-RMF choice shows
a much stiffer behavior. This can be seen from Table II, for
the variations in MS/R and central densities, but in fact it
is quite impressive as it appears in Fig. 3: with reference to
the close DDRHρ/NLρ curves we see a clear shift to the “left”
of the DDRHρδ predictions and just the opposite to the “right”
for the NLρδ expectations.

In general we also see, from Table II, that the (npe) star
matter, for all models, has slightly larger masses and radii, and
lower central densities, than the (npeµ) star matter. This is due
to the fact that the (npeµ) star matter has some larger proton

FIG. 3. Mass of the neutron star as a function of the radius of the
neutron star in the two models.

TABLE II. Maximum mass, corresponding radius, and central
density of the star by the different models.

Neutron star Model Dens. dip RMF
properties

DDRHρ DDRHρδ NLρ NLρδ

(npe) matter MS/M
⊙ 2.108 2.01 2.14 2.21

R (km) 11.00 10.29 11.02 11.55
ρc/ρ0 6.99 7.41 6.78 6.44

(npeµ) matter MS/M
⊙ 2.106 1.98 2.12 2.18

R (km) 10.91 10.27 10.91 11.30
ρc/ρ0 7.14 7.44 6.93 6.71

fraction in the regions above a critical baryon density where
the muon appears, as already noted above.

All microscopic approaches of Dirac-Brueckner type to
an effective meson-nucleon Lagrangian picture of the nuclear
matter are predicting a density dependence of the couplings.
We have studied the relative effects on the nuclear EOS at
high baryon and isospin density, with application to nucleon-
lepton neutron star properties. In particular we have focused
our attention on the contribution of the isovector-scalar δ-
meson. In fact in the “constant coupling” (NL-RMF) scheme
the δ leads to very repulsive symmetry energy at high density.
At variance in the “density dependence” case (DDRH) we
can have a “softer” dense asymmetric matter due to combined
mechanisms of a decrease of the isovector-vector gρ coupling
and an increase of the gδ (isovector scalar), which even lead
to a larger pressure reduction from the rearrangement terms.
The effect is clearly seen on equilibration properties of (npe)
and/or (npeµ) neutron stars, with a decrease of the NS mass in
the DDRH case when the δ contribution is included. We note
that in any case pure nucleon-lepton models cannot easily
predict maximum NS masses below two solar units. In fact
there is no observational evidence that prevents the existence
of NSs with such large masses. In this respect of particular
importance has been the recently reported compact object PSR
J0751+1807 [19] with lower mass limit around two solar units
at 68% C.L.

Our results seem to indicate that the large uncertainty of
nucleon matter predictions, see the recent reviews [20,21], of
relevance even for hybrid quark models, can be associated
to the density dependence of the effective meson-nucleon
couplings, in particular of the gδ .

In conclusion we remark the interest of future work on two
main directions:

(i) The importance of further DB confirmations of the
high density behavior of the meson-nucleon effective
couplings, in particular of some fundamental ground
for the expected increase of the gδ;

(ii) The study of dynamical effects of the isovector meson
fields at the high baryon and isospin densities that can be
reached in relativistic heavy ion collisions with exotic
beams. Differential flows and particle productions
appear to be rather promising observables, see the
recent Refs. [22–25].
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