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Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and
spin-0 particles
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We show that the conditions which originate the spin and pseudospin symmetries in the Dirac equation are
the same that produce equivalent energy spectra of relativistic spin-1/2 and spin-0 particles in the presence of
vector and scalar potentials. The conclusions do not depend on the particular shapes of the potentials and can be
important in different fields of physics. When both scalar and vector potentials are spherical, these conditions for
isospectrality imply that the spin-orbit and Darwin terms of either the upper component or the lower component
of the Dirac spinor vanish, making it equivalent, as far as energy is concerned, to a spin-0 state. In this case,
besides energy, a scalar particle will also have the same orbital angular momentum as the (conserved) orbital
angular momentum of either the upper or lower component of the corresponding spin-1/2 particle. We point out
a few possible applications of this result.
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When describing some strong interacting systems it is often
useful, because of simplicity, to approximate the behavior
of relativistic spin-1/2 particles by scalar spin-0 particles
obeying the Klein-Gordon equation. An example is the case
of relativistic quark models used for studying quark-hadron
duality because of the added complexity of structure functions
of Dirac particles as compared to scalar ones. It turns out
that some results (e.g., the onset of scaling in some structure
functions) almost do not depend on the spin structure of the
particle [1]. In this work we will give another example of
an observable, the energy, whose value may not depend on
the spinor structure of the particle, i.e., whether one has a
spin-1/2 or a spin-0 particle. We will show that when a Dirac
particle is subjected to scalar and vector potentials of equal
magnitude, it will have exactly the same energy spectrum as a
scalar particle of the same mass under the same potentials. As
we will see, this happens because the spin-orbit and Darwin
terms in the second-order equation for either the upper or lower
spinor component vanish when the scalar and vector potentials
have equal magnitude. It is not uncommon to find physical
systems in which strong interacting relativistic particles are
subject to Lorentz scalar potentials (or position-dependent
effective masses) that are of the same order of magnitude
of potentials which couple to the energy (time components
of Lorentz four-vectors). For instance, the scalar and vector
(hereafter meaning time-component of a four-vector potential)
nuclear mean-field potentials have opposite signs but similar
magnitudes, whereas relativistic models of mesons with a
heavy and a light quark, like D- or B-mesons, explain the
observed small spin-orbit splitting by having vector and scalar
potentials with the same sign and similar strengths [2].

It is well-known that all the components of the free Dirac
spinor, i.e., the solution of the free Dirac equation, satisfy
the free Klein-Gordon equation. Indeed, from the free Dirac
equation

(ih̄γ µ∂µ − mc)� = 0 (1)

one gets

(−ih̄γ ν∂ν − mc)(ih̄γ µ∂µ − mc)�

= (h̄2∂µ∂µ + m2c2)� = 0, (2)

where use has been made of the relation γ µγ ν∂µ∂ν = ∂µ∂µ.
In a similar way, for the time-independent free Dirac equation
we would have

(c α · p + βmc2)ψ = (−ih̄c α · ∇ + βmc2)ψ = Eψ, (3)

where, as usual, ψ(r) = �(r, t) exp(i E t/h̄),α = γ 0γ and
β = γ 0. Then, by left multiplying Eq. (3) by cα · p + βmc2,
one gets the time-independent free Klein-Gordon equation

(c2p2 + m2c4)ψ = (−h̄2c2∇2 + m2c2)ψ = E2ψ, (4)

where the relation {β,α} = 0 was used. This all means
that the free four-component Dirac spinor, and of course
all of its components, satisfy the Klein-Gordon equation.
This is not surprising, because, after all, both free spin-1/2
and spin-0 particles obey the same relativistic dispersion
relation, E2 = p2c2 +m2c4, in spite of having different spinor
structures and thus different wave functions. Since there is no
spin-dependent interaction, one expects both to have the same
energy spectrum.
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We consider now the case of a spin-1/2 particle subject to
a Lorentz scalar potential Vs plus a vector potential Vv . The
time-independent Dirac equation is given by

[c α · p + β(mc2 + Vs)]ψ = (E − Vv)ψ. (5)

It is convenient to define the four-spinors ψ± = P±ψ =
[(I ± β)/2] ψ such that

ψ+ =

 φ

0


 ψ− =


 0

χ


 , (6)

where φ and χ are, respectively, the upper and lower two-
component spinors. Using the properties and anticommutation
relations of the matrices β and α we can apply the projectors
P± to the Dirac equation (5) and decompose it into two coupled
equations for ψ+ and ψ−:

c α · p ψ− + (mc2 + Vs)ψ+ = (E − Vv)ψ+, (7)

c α · p ψ+ − (mc2 + Vs)ψ− = (E − Vv)ψ−. (8)

Applying the operator c α · p on the left of these equations
and using them to write ψ+ and ψ− in terms of α · p ψ− and
α · p ψ+, respectively, we finally get second-order equations
for ψ+ and ψ−:

c2p2 ψ+ + c2 [α · p 	]α · pψ+
E − 	 + mc2

= (E − 	 + mc2)(E − 
 − mc2)ψ+, (9)

c2p2 ψ− + c2 [α · p 
]α · pψ−
E − 
 − mc2

= (E − 	 + mc2)(E − 
 − mc2)ψ−, (10)

where the square brackets [ ] mean that the operator α · p only
acts on the potential in front of it and we defined 
 = Vv +Vs

and 	 = Vv − Vs . The second term in these equations can be
further elaborated noting that the Dirac αi matrices satisfy the
relation αiαj = δij + 2

h̄
iεijkSk where Sk, k = 1, 2, 3, are the

spin operator components. The second-order equations now
read

c2 p2 ψ+ + c2 [p 	] · pψ+ + 2i
h̄

[p 	] × p · Sψ+
E − 	 + mc2

= (E − 	 + mc2)(E − 
 − mc2)ψ+, (11)

c2 p2 ψ− + c2 [p 
] · pψ− + 2i
h̄

[p 
] × p · Sψ−
E − 
 − mc2

= (E − 	 + mc2)(E − 
 − mc2)ψ−. (12)

Now, if p 	 = 0, meaning that 	 is constant or zero (if
	 goes to zero at infinity, the two conditions are equivalent),
then the second term in Eq. (11) disappears and we have

c2 p2ψ+ = (E − 	 + mc2)(E − 
 − mc2)ψ+

= [(E − Vv)2 − (mc2 + Vs)
2]ψ+, (13)

which is precisely the time-independent Klein-Gordon equa-
tion for a scalar potential Vs plus a vector potential Vv

1. Since
the second-order equation determines the eigenvalues for the
spin-1/2 particle, this means that when p 	 = 0, a spin-1/2 and
a spin-0 particle with the same mass and subject to the same
potentials Vs and Vv will have the same energy spectrum,
including both bound and scattering states. This last sufficient
condition for isospectrality can be relaxed to demand that just
the combination mc2 + Vs be the same for both particles,
allowing them to have different masses. This is so because
this weaker condition does not change the gradient of 	 and

 and therefore the condition p 	 = 0 will still hold. On
the other hand, if the scalar and vector potentials are such
that p 
 = 0, we would obtain a Klein-Gordon equation for
ψ−, and again the spectrum for spin-0 and spin-1/2 particles
would be the same, provided they are subjected to the same
vector potential and mc2 + Vs is the same for both particles. If
both Vs and Vv are central potentials, i.e., only depend on the
radial coordinate, then the numerators of the second terms in
Eqs. (11) and (12) read

[p 	] · pψ+ + 2i

h̄
[p 	] × p · S ψ+

= −h̄2	′ ∂ψ+
∂r

+ 2

r
	′L · S ψ+, (14)

[p
] · pψ− + 2i

h̄
[p 
] × p · Sψ−

= −h̄2
′ ∂ψ−
∂r

+ 2

r

′L · S ψ−, (15)

where 	′ and 
′ are the derivatives with respect to r of the
radial potentials 	(r) and 
(r), and L = r × p is the orbital
angular momentum operator. From these equations ones sees
that these terms, which set apart the Dirac second-order
equations for the upper and lower components of the Dirac
spinor from the Klein-Gordon equation and thus are the origin
of the different spectra for spin-1/2 and spin-0 particles, are
composed of a derivative term, related to the Darwin term
which appears in the Foldy-Wouthuysen expansion, and a L ·S
spin-orbit term. If 	′ = 0 (
′ = 0), then there is no spin-orbit
term for the upper (lower) component of the Dirac spinor. In
turn, since the second-order equation determines the energy
eigenvalues, this means that the orbital angular momentum of
the respective component is a good quantum number of the
Dirac spinor. This can be a bit surprising, since one knows that
in general the orbital quantum number is not a good quantum
number for a Dirac particle, since L2 does not commute with a
Dirac Hamiltonian with radial potentials. The reason why this
does not happen in these cases was reported in Refs. [3,4], and
we now review it in a slight different fashion. Let us consider
in more detail the case of spherical potentials such that 	′ = 0.
One knows that a spinor that is a solution of a Dirac equation

1There are some authors who introduce a scalar potential Vs in the
Klein-Gordon equation by making the replacement m2c4 → m2c4 +
V2

s . Here we introduce it, as most authors do, as an effective mass
m∗ 2 = (m+Vs/c

2)2, since it is the way that it is introduced in the Dirac
equation. The two potentials are related by V2

s = (mc2 +Vs)
2 −m2c4.
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with spherically symmetric potentials can be generally written
as

ψjm(r) =




i
gj l(r)

r
Yj l m(r̂)

fj l̃(r)

r
Yj l̃ m(r̂)


 , (16)

where Yj l m are the spinor spherical harmonics. These result
from the coupling of spherical harmonics and two-dimensional
Pauli spinors χms

,Yj l m = 
ms

ml

〈lml ; 1/2ms |jm〉Yl ml
χms

,
where 〈lml ; 1/2ms |jm〉 is a Clebsch-Gordan coefficient and
l̃ = l ± 1, the plus and minus signs being related to whether
one has aligned or anti-aligned spin, i.e., j = l ± 1/2. The
spinor spherical harmonics for the lower component satisfy the
relation Yj l̃ m = −σ · r̂Yj l m. The fact that the upper and lower
components have different orbital angular momenta is related
to the fact, mentioned before, that L2 does not commute with
the Dirac Hamiltonian

H = c α · p + β(Vs + mc2) + Vv

= c α · p + βmc2 + 
P+ + 	P−, (17)

where P± are the projectors defined above. However, when
	′ = 0, there is an extra SU(2) symmetry of H (so-called
“spin symmetry”) as first shown by Bell and Ruegg [5]. When
we have spherical potentials, Ginocchio showed that there is
an additional SU(2) symmetry (for a recent review see [4]).
The generators of this last symmetry are

L = LP+ + 1

p2
α · p L α · p P− =


 L 0

0 Up L Up


 , (18)

where Up = σ · p/(
√

p2) is the helicity operator. One can
check that L commutes with the Dirac Hamiltonian,

[H,L] =
[
c α · p, LP+ + 1

p2
α · p L α · p P−

]

+
[
	,

1

p2
α · p L α · p

]
+ [
, L]

=
[
	,

1

p2
α · p L α · p

]
= 0, (19)

where the last equality comes from the fact that 	′ = 0. The
CasimirL2 operator is given byL2 = L2P++ 1

p2 α·p L2 α·p P−.
Applying this operator to the spinor ψjm (16), we get

L2ψjm = L2ψ+
jm + 1

p2
α · p L2 α · p ψ−

jm

= h̄2l(l + 1)ψ+
jm + α · p cL2 ψ+

jm

E − 	 + mc2

= h̄2l(l + 1)ψ+
jm + h̄2l(l + 1)ψ−

jm

= h̄2l(l + 1)ψjm, (20)

where ψ±
jm = P±ψjm and we used the relation, valid when

	′ = 0, ψ+
jm = (E − 	 + mc2)α·p

cp2 ψ−
jm. From Eq. (20) we

see that ψjm is indeed an eigenstate of L2. Thus the orbital
quantum number of the upper component l is a good quantum

number of the system when the spherical potentials Vs(r) and
Vv(r) are such that Vv(r) = Vs(r) + C	, where C	 is an
arbitrary constant. Also, according to we have said before,
there is a state of a spin-0 particle subjected to these same
spherical potentials (or, at least, with a scalar potential such
that the sum Vs +mc2 is the same) that has the same energy and
the same orbital angular momentum as ψjm. In addition, the
wave function of this scalar particle would be proportional to
the spatial part of the wave function of the upper component.

Note that the generator of the “spin symmetry” S is given
by a similar expression as Eq. (18) just replacing L by h̄/2 σ

[4,5], meaning that S2 ≡ S2 = 3/4 h̄2I so that spin is also a
good quantum number, as would be expected. Actually, one
can show that the total angular momentum operator J can be
written as L+S, so that l, ml (eigenvalue of Lz), s = 1/2,ms

(eigenvalue ofSz) are good quantum numbers. Then, of course,
j and m = ml + ms are also good quantum numbers, but
only in a trivial way, because there is no longer spin-orbit
coupling. Therefore, in the spinor (16) one could just replace
the spinor spherical harmonic Yj l m by Yl ml

χms
and Yj l̃ m by

−σ · r̂Yl ml
χms

. Note that if 	 is a nonrelativistic potential,
	 � mc2 and 	′ � m2c4/(h̄c), i.e., it is slowly varying over
a Compton wavelength. In this case, the spin-orbit term will
also get suppressed. In fact, the derivative of the 	 potential is
the origin of the well-known relativistic spin-orbit effect which
appears as a relativistic correction term in atomic physics or
in the v/c Foldy-Wouthuysen expansion (only the derivative
of Vv appears because usually no Lorentz scalar potential Vs

is considered, and therefore 	 = Vv).
When 
′ = 0, or Vv(r) = −Vs(r) + C
 , with C
 an

arbitrary constant, there is again a SU(2) symmetry, usually
called pseudospin symmetry ([5,6]) which is relevant for
describing the single-particle level structure of several nuclei.
This symmetry has a dynamical character and cannot be fully
realized in nuclei because in relativistic mean-field theories the

 potential is the only binding potential for nucleons [7,8]. For
harmonic oscillator potentials this is no longer the case, since
	, acting as an effective mass going to infinity, can bind Dirac
particles [9,10], even when 
 = 0. As before, in the special
case of spherical potentials, there is another SU(2) symmetry
whose generators are

L̃ = 1

p2
α · p L α · p P+ + LP− =


 Up L Up 0

0 L


 . (21)

In the same way as before, applying L̃2
to ψjm, we would find

that L̃2
ψjm = h̄2 l̃(l̃ + 1)ψjm, that is, this time it is the orbital

quantum number of the lower component l̃ which is a good
quantum number of the system and can be used to classify
energy levels. Again, provided the vector and scalar potentials
are adequately related, there would be a corresponding state
of a spin-0 particle with the same energy and same orbital
angular momentum l̃, and, furthermore, its wave function
would be proportional to the spatial part of the wave function
of the lower component. As before, the pseudospin symmetry
generator S̃ can be obtained from L̃ by replacing L by h̄/2 σ .
The good quantum numbers of the system would be, besides
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l̃, ml̃, s̃ ≡ s = 1/2 and ms̃ . Again, J = L̃ + S̃. It is interesting
that, as has been noted by Ginocchio [9], the generators of
spin and pseudospin symmetries are related through a γ 5

transformation since S̃ = γ 5Sγ 5 and L̃ = γ 5Lγ 5. This
property was used in a recent work to relate spin symmetric
and pseudospin symmetric spectra of harmonic oscillator
potentials [11]. There it was shown that for massless particles
(or ultrarelativistic particles) the spin- and pseudospin spectra
of Dirac particles are the same. In addition, this means that
spin-symmetric massless eigenstates of γ 5 would be also
pseudospin symmetric and vice versa. Since in this case
	 = 
 = 0, or Vv = Vs = 0, this is, of course, just another
way of stating the well-known fact that free massless Dirac
particles have good chirality.

Naturally, for free spin-1/2 particles described by spherical
waves, both l and l̃ are good quantum numbers, which
just reflects the fact that one can have free spherical waves
with any orbital angular momentum for the upper or lower
component and still have the same energy, as long as their
linear momentum magnitude is the same, or, put in another
way, the energy of a free spin-1/2 particle cannot depend on
its direction of motion.

In summary, we showed that when a relativistic spin-1/2
particle is subject to vector and scalar potentials such that
Vv = ±Vs + C±, where C± are constants, its energy spectrum
does not depend on their spinorial structure, being identical
to the spectrum of a spin-0 particle which has no spinorial
structure. This amounts to say that if the potentials have these
configurations there is no spin-orbit coupling and Darwin
term. If the scalar and vector potentials are spherical, one
can classify the energy levels according to the orbital angular
momentum quantum number of either the upper or the lower
component of the Dirac spinor. This would then correspond to
having a spin-0 particle with orbital angular momentum l or l̃,
respectively. This spectral identity can of course happen only
with potentials which do not involve the spinorial structure of
the Dirac equation in an intrinsic way. For instance, a tensor
potential of the form iβσµν(∂µAν − ∂νAµ) does not have an
analog in the Klein-Gordon equation, so that one could not

have a spin-0 particle with the same spectrum as a spin-1/2
particle with such a potential. This is the case of the so-called
Dirac oscillator [12] (see [10] for a complete reference list),
in which the Dirac equation contains a potential of the form
iβσ 0imωri = imωβα · r. Another important potential, the
electromagnetic vector potential A, which is the spatial part
of the electromagnetic four-vector potential, can be added
via the minimal coupling scheme to both the Dirac and the
Klein-Gordon equations. Since α · (p − eA)α · (p − eA) =
(p − eA)2 + 2eh̄∇ × A · S, the spectra of spin-0 and spin-1/2
particles cannot be identical as long as there is a magnetic
field present, even though the condition Vv = ±Vs + C±
is fulfilled. It is important also to remark that, since for an
electromagnetic interaction Vv is the time-component of the
electromagnetic four-vector potential, this last condition is
gauge invariant in the present case, in which we are dealing
with stationary states, i.e., time-independent potentials. So, in
the absence of a external magnetic field (allowing, for instance,
an electromagnetic vector potential A which is constant or a
gradient of a scalar function), a spin-0 and spin-1/2 particle
subject to the same electromagnetic potential Vv and a Lorentz
scalar potential fulfilling the above relation would have the
same spectrum.

The remark made above about the similarity of spin-0 and
spin-1/2 wave functions can be relevant for calculations in
which the observables do not depend on the spin structure
of the particle, like some structure functions. One such
calculation was made by Paris [13] in a massless confined
Dirac particle, in which Vv = Vs . It would be interesting to
see how a Klein-Gordon particle would behave under the same
potentials. More generally, this spectral identity can also have
experimental implications in different fields of physics, since,
should such an identity be found, it would signal the presence
of a Lorentz scalar field having a similar magnitude as that of a
time-component of a Lorentz vector field, or at least differing
just by a constant.
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[12] D. Itô, K. Mori, and E. Carriere, Nuovo Cimento A 51, 1119

(1967); M. Moshinsky and A. Szczepaniak, J. Phys. A 22, L817
(1989).

[13] M. W. Paris, Phys. Rev. C 68, 025201 (2003).

047303-4


