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Isospin dependence of 1S0 proton and neutron superfluidity in asymmetric nuclear matter
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We investigate the 1S0 neutron and proton superfluidity in isospin-asymmetric nuclear matter. We have
concentrated on the isospin dependence of the pairing gaps and the effect of a microscopic three-body force. It is
found that as the isospin asymmetry goes higher, the neutron 1S0 superfluid phase shrinks gradually to a smaller
density domain, whereas the proton one extends rapidly to a much wider density domain. The three-body force
turns out to weaken the neutron 1S0 superfluidity slightly, but it suppresses strongly the proton 1S0 superfluidity at
high densities in nuclear matter with large isospin asymmetry.
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I. INTRODUCTION

Superfluidity plays an important role in understanding a
number of astrophysical phenomena in neutron stars [1–9].
In the inner crust of a neutron star where the total baryon
density ρ is low, neutrons are thought to be superfluid in the
1S0 channel. In the nuclear core part (i.e, the outer core part),
protons may form a superfluid in the 1S0 partial wave states,
and neutron superfluidity is expected in the 3P2-3F2 partial wave
channel. It is generally expected that the cooling processes via
neutrino emission [3–5], the properties of rotating dynamics,
the postglitch timing observations [6,7], and the possible vertex
pinning [8] of a neutron star are rather sensitive to the presence
of neutron and proton superfluid phases as well as to their
pairing strength. Recently it has been shown [9] that a weak
proton 1S0 superfluidity is consistent with the cooling data if
the effect of the possible presence of accreted envelopes is
taken into account in the cooling scenario.

Nucleon superfluidity in symmetric nuclear matter and pure
neutron matter has been investigated extensively by many
authors using various theoretical approaches [10–24]. All these
investigations have predicted the occurrence of the 1S0 nucleon
superfluid phase in the low-density region although the ob-
tained strengthes of the superfluidity are remarkably sensitive
to the different approaches and the different approximations
adopted. There also exist a few investigations on the nucleon
superfluidity in β-stable neutron star matter [25]. It is shown
that, owing to the small proton fraction in β-stable matter,
the proton superfluid phase in the 1S0 channel may extend to
much higher baryon densities with a much smaller maximum
of the pairing gap as compared to the case of symmetric
nuclear matter. Therefore it is of interest to investigate the
variation of nucleon superfluidity versus isospin asymmetry in
asymmetric nuclear matter, which is expected to be helpful for
understanding the properties of nucleon superfluid phases in
neutron stars.

The aim of this work is devoted to the isospin dependence
of the 1S0 neutron and proton superfluid phases in asym-
metric nuclear matter and to investigating the influence of

*Corresponding address: Institute of Modern Physics, Chinese
Academy of Science, P.O. Box 31, Lanzhou 730000, China;
E-mail: zuowei@impcas.ac.cn

three-body forces, which turn out to be crucial for reproducing
the empirical saturation properties of nuclear matter in a
nonrelativistic microscopic approach [26–28].

II. THEORETICAL APPROACHES

For our present purpose, we shall not go beyond the BCS
framework. In this case, the pairing gap that characterizes the
superfluidity in a homogeneous Fermi system is determined
by the standard BCS gap equation [29], that is,

��k = −
∑

�k′

v(�k, �k′
)

1

2E�k′
��k′ , (1)

where v(�k, �k′
) is the realistic NN interaction in momentum

space and E�k =
√

(ε�k − εF )2 + �2
�k , with ε�k and εF being the

single-particle (s.p.) energy and its value at the Fermi surface,
respectively. In the BCS gap equation, the most important
ingredients are the realistic NN interaction v(�k, �k′

) and the
neutron and proton s.p. energies ε�k in asymmetric nuclear
matter. For the NN interaction, we adopt the Argonne V 18
(AV18) two-body interaction [30] plus a microscopic three-
body force (TBF). The TBF adopted in the present calculation
was originally proposed in Ref. [26] based on the meson-
exchange current approach. The parameters of the TBF, that is,
the coupling constants and the form factors, were determined
[27] from the one-boson-exchange potential model to meet the
self-consistent requirement with the adopted AV18 two-body
force. A more detailed description of the TBF model and the
related approximations can be found in Ref. [26].

The proton and neutron s.p. energies in asymmetric nuclear
matter are calculated by using the BHF approach for isospin-
asymmetric nuclear matter [31]. The starting point of the BHF
approach is the Brueckner G matrix, which satisfies the Bethe-
Goldstone (BG) equation [32]:

G(ρ, β; ω)

= v + v
∑
k1k2

|k1k2〉Q(k1, k2)〈k1k2|
ω − ε(k1) − ε(k2) + iη

G(ρ, β; ω), (2)

where ki ≡ (�ki, σi, τi) denotes the momentum and the z-
components of spin and isospin of a nucleon, respectively,
ω is the starting energy, and Q(k1, k2) is the Pauli operator. The
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isospin-asymmetry parameter is defined as β = (ρn − ρp)/ρ,
where ρn, ρp, and ρ are the neutron, proton, and total nucleon
number densities, respectively. The s.p. energy is given by
ε(k) = h̄2k2/(2m) + U (k). In solving the BG equation, we
adopt the continuous choice [32] for the s.p. potential U (k)
since it has been proven to converge much faster than the gap
choice [33]. Under the continuous choice, the s.p. potential
describes physically the nuclear mean field felt by a nucleon
in the nuclear medium [34] and is calculated from the real part
of the on-shell G matrix.

The neutron and proton superfluidity in nuclear matter can
be described by their pairing energy gaps at their respective
Fermi surfaces. To solve the gap equation, we follow the
scheme given in Ref. [10]. The proton and neutron s.p. energies
in the gap equation are calculated from the BHF approach.
In our calculations, the TBF contribution has been included
by reducing the TBF to an equivalently effective two-body
interaction according to the standard scheme as described in
Ref. [26]. A detailed description and justification of the method
are discussed in Refs. [26,27].

III. RESULTS AND DISCUSSIONS

In Fig. 1 is shown the neutron energy gap in the 1S0

partial wave channel �n
F = �(kn

F ) as a function of the
total baryon density ρ. The curves along the direction of
the arrow from the bottom correspond to β = 0.2, 0.4, 0.6,
and 0.8, respectively. We see that the neutron 1S0 superfluid
phase exists only at low densities (ρ � 0.13 fm−3) and the
peaks of the pairing gaps are located around ρ = 0.02 fm−3,
which is compatible with the previous predictions for pure
neutron matter and symmetric nuclear matter [10,24]. As the
isospin asymmetry β increases, the neutron fraction increases
for a given total density and as a consequence the density
domain for the neutron 1S0 superfluidity shrinks gradually.
In the case without including the TBF, the density region
for the presence of the neutron superfluidity reduces from
ρ � 0.13 fm−3 to ρ � 0.1 fm−3 as the isospin asymmetry
rises from β = 0.2 to β = 0.8. In Ref. [24], we calculated
the 1S0 pairing gaps in symmetric nuclear matter (β = 0) and
pure neutron matter (β = 1). We found that the neutron 1S0
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FIG. 1. Neutron 1S0 energy gap as a function of density in
asymmetric nuclear matter at various asymmetries. The solid curves
are predicted by adopting purely the AV18 two-body interaction; the
dashed ones are predicted by using the AV18 plus the TBF.

superfluid phase is expected to appear in a density range of
ρB � 0.135 fm−3 for symmetric nuclear matter and ρB �
0.09 fm−3 for pure neutron matter, consistent with our present
results. The isospin dependence of the pairing gap obtained
here is readily understood as follows. In asymmetric nuclear
matter, the strength of the neutron pairing gap is related
directly to the neutron number density. As the asymmetry
rises, the neutron excess and the neutron number density for
a given total nucleon density increase. As a consequence, the
density domain for the existence of the neutron superfluid
phase shrinks gradually going from symmetric matter to pure
neutron matter. We notice that, in cases both with and without
inclusion of the TBF, the peak values of the gaps increase
and their locations shift slightly to lower densities as the
matter becomes more isospin asymmetric. This is mainly
attributed to the isospin dependence of the neutron s.p. energy
spectrum in asymmetric nuclear matter. As is known, the
neutron s.p. potential in asymmetric matter becomes shallower
and the neutron effective mass gets larger for a larger isospin
asymmetry according to the BHF and DBHF calculations
[31,35]. We may also see from Fig. 1 that within the region
of the neutron superfluid phase, as the isospin asymmetry
decreases, the pairing gap becomes smaller at low densities
below and in the vicinity of the peak position, whereas it gets
larger at relatively high densities. This isospin behavior stems
from the competition between two different mechanisms. On
the one hand, at a fixed total density on the right side of the
peak position, a higher asymmetry corresponds to a larger
value of neutron density and a weaker neutron superfluidity.
On the other hand, the isospin dependence of the neutron
s.p. spectrum tends to enhance the neutron pairing gap as
the isospin asymmetry increases. At low densities around and
below the peak position, the latter effect is dominant, whereas
as the density increases, the former mechanism becomes more
and more effective. Comparing the solid curves with the
corresponding dashed ones, we may see that the TBF affects
mainly the pairing gap at high densities. Inclusion of the TBF
weakens the neutron superfluidity at high densities and shrinks
the predicted density range for the existence of the neutron
superfluid phase.

In Fig. 2 is reported the proton 1S0 pairing gap in asymmetric
nuclear matter for four different asymmetries, β = 0.2, 0.4,
0.6, and 0.8, respectively. The solid and dashed curves are
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FIG. 2. The same as Fig. 1 but for proton 1S0 pairing gap.
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obtained, respectively, without and with inclusion of the TBF.
The isospin dependence of the proton 1S0 pairing gaps turns
out to be completely different from that of the corresponding
neutron ones in both cases with and without the TBF. It is seen
that, as the isospin asymmetry increases, the density domains
for the existence of the proton superfluid phases enlarge rapidly
and the peaks of the pairing gaps become lower appreciably
and shift to higher densities gradually. As the asymmetry rises
from β = 0.2 to β = 0.8, the density domain extends from
ρ � 0.17 fm−3 to ρ � 0.435 fm−3 in the case not including
the TBF and from ρ � 0.13 fm−3 to ρ � 0.25 fm−3 in the
case including the TBF; the peak values lower from about
2.0 MeV to about 1.4 MeV in both cases. The difference
between the proton and neutron superfluid phases is especially
pronounced at high isospin asymmetries. As compared to the
neutron 1S0 superfluidity, the proton 1S0 superfluid phase in
highly asymmetric matter extends to much higher densities
but with a smaller peak value of the pairing gap. For example,
in the case without inclusion of the TBF, at β = 0.8, the proton
1S0 superfluidity is predicted to exist in the density region of
ρ � 0.435 fm−3, which is much wider than that of ρ �
0.1 fm−3 for the neutron 1S0 superfluidity. This behavior of the
proton superfluidity versus isospin asymmetry can be readily
explained in terms of the isospin dependence of the proton
density and the proton s.p. spectrum in asymmetric nuclear
matter. First, at a fixed total density, a higher asymmetry
corresponds to a smaller proton concentration and a lower
proton density. Such an isospin dependence of the proton
density is directly responsible for the widening of the density
domain as a function of asymmetry. Second, the proton s.p.
potential becomes deeper going from symmetric matter to
pure neutron matter [31], and this results in the lowering of
the proton pairing peak versus asymmetry. At relatively low
densities below and around the peak position, the variation of
the proton s.p. spectrum as a function of asymmetry plays a
major role in determining the isospin variation of the proton
pairing gap and thus the proton superfluidity becomes weaker
at a higher asymmetry. However, as the density increases,
the effect resulting from the decreasing of the proton fraction
versus asymmetry gets stronger. At high enough densities,
it becomes predominant and leads to a turnover of the
isospin behavior of the proton superfluidity (i.e., a stronger
superfluidity at a higher asymmetry). The turnover is clearly
seen in Fig. 2 and stems from the competition between these
two isospin effects.

We notice that the TBF effect is negligibly small at low
densities below and around the peak position. However, it
gets stronger rapidly as the density goes up. The TBF turns
out to induce a significant reduction of the proton pairing
gaps in the high-density superfluidity domain. Consequently,
it leads to a remarkable shrinking of the density domain for
the existence of the proton superfluid phase. We notice that
the TBF suppression of the 1S0 proton superfluidity predicted
here is particularly pronounced for highly asymmetric matter.
For example, at β = 0.8, the density domain of the proton
superfluid phase is reduced by about 50% (i.e., from ρ �
0.435 fm−3 to ρ � 0.25 fm−3) by inclusion of the TBF. In
nuclear matter, proton pairs are embedded in the medium of
neutrons and protons and both the surrounded protons and
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FIG. 3. The TBF contribution in the 1S0 channel to the proton 1S0

pairing interaction at the Fermi momentum vs the total density for
several isospin asymmetries.

neutrons contribute to the TBF renormalization of the proton-
proton interaction; therefore the TBF effect on the proton
pairing correlations is determined by the total nucleon number
density instead of the proton number density. Accordingly, in
spite of the small proton fractions and the low proton densities
at high asymmetries, the TBF modifies strongly the proton-
proton pairing interactions in the high-density superfluidity
domain and weakens considerably the corresponding proton
pairing gaps. One can verify readily from Fig. 2 that the
TBF suppression of the proton superfluidity is mainly in the
high-density region and the reduction of the gap increases
rapidly with increasing total density. We also notice from Fig. 2
that the TBF effect gets stronger as the asymmetry increases
since the proton superfluid phase extends to larger densities for
asymmetric matter at higher isospin asymmetries. Inclusion
of the TBF weakens considerably the isospin dependence of
the predicted proton superfluidity as compared to the results
obtained by adopting purely the AV18 two-body force.

To clarify the TBF effect on the isospin dependence of
the proton 1S0 pairing gap in asymmetric nuclear matter more
clearly, we plot in Fig. 3 the contribution of the averaged
TBF in the 1S0 channel to the proton pairing interaction at the
Fermi momentum versus the total density for several isospin
asymmetries. It is seen from the figure that the TBF generates
a repulsive contribution to the proton pairing interaction
in the 1S0 channel. The repulsive contribution of the TBF
increases continuously as the total density and the isospin
asymmetry increase. It becomes especially strong at large
densities and high asymmetries and may destroy the proton
pairing remarkably.

IV. SUMMARY

In summary, we have calculated the neutron and proton 1S0

pairing gaps in asymmetric nuclear matter based on the BHF
approach and the BCS theory. We have especially investigated
the isospin dependence of the pairing gaps in the 1S0 channel
and the influence of the TBF. It is shown that the isospin
dependence of the proton 1S0 superfluidity in asymmetric
nuclear matter is completely different from that of the neutron
one. The neutron 1S0 superfluid phase exists only in the
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low-density region for all isospin asymmetries. As the matter
goes from symmetric nuclear matter to pure neutron matter,
the peak value of the neuron 1S0 pairing gap becomes larger and
the density domain for the existence of neutron superfluidity
shrinks gradually. The density domain for the proton superfluid
phase enlarges rapidly as the isospin asymmetry rises and may
extend to very high densities for highly asymmetric nuclear
matter. The peak value of the proton pairing gap turns out to
be smaller in asymmetric nuclear matter at a higher isospin
asymmetry.

The TBF affects only weakly the neutron 1S0 superfluid
phase in asymmetric nuclear matter (i.e., it reduces slightly the
pairing gap) because of the low-density region for this kind
of superfluidity. However, it suppresses strongly the proton
superfluidity in the 1S0 channel at high densities, especially
at high asymmetries. The density domain for the existence of
the proton 1S0 superfluid phase is reduced by about 50% from
ρ � 0.435 fm−3 to ρ � 0.25 fm−3 by inclusion of the TBF.

In the present paper, we have concentrated on investigating
the isospin dependence of the 1S0 neutron and proton pairing
gaps in asymmetric nuclear matter and the TBF effect
within the BHF+BCS framework. We have not included the
medium polarization effects in our present treatment. In the
BHF+BCS framework, the irreducible pairing interactions
are approximated by the bare nucleon-nucleon interactions
and the BHF single-particle energy spectra are adopted in the

gap equation. For a strongly interacting Fermi system such as
nuclear matter, on the one hand, the exact pairing interaction
consists of the full RPA bubble series. On the other hand,
the self-energy (the s.p. energy spectrum) is generally energy
dependent (i.e., has a dispersive effect) [22], and the BHF s.p.
energy spectrum is modified essentially by the ground-state
many-body correlations, which may cause the depletion of
the neutron and proton s.p. distributions [36]. The medium
effects discussed here are expected to affect considerably the
nucleon pairing in nuclear matter and their details have not yet
been completely settled [13,21]. These medium polarization
effects are especially unclear in the case of asymmetric nuclear
matter [36]. Our present paper may serve as an intermediate
step to the exploration of the isospin dependence of the nucleon
superfluidity in asymmetric matter. A more complete and
realistic understanding of the problem demands further efforts
on the isospin dependence of the medium polarization effects.
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