
PHYSICAL REVIEW C 75, 045805 (2007)

Large-scale prediction of the parity distribution in the nuclear level density and
application to astrophysical reaction rates
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A generalized method to calculate the excitation-energy dependent parity ratio in the nuclear level density is
presented, using the assumption of Poisson distributed independent quasi particles combined with BCS occupation
numbers. It is found that it is crucial to employ a sufficiently large model space to allow excitations both from
low-lying shells and to higher shells beyond a single major shell. Parity ratios are only found to equilibrate
above at least 5–10 MeV of excitation energy. Furthermore, an overshooting effect close to major shells is
found where the parity opposite to the ground state parity may dominate across a range of several MeV before
the parity ratio finally equilibrates. The method is suited for large-scale calculations as needed, for example,
in astrophysical applications. Parity distributions were computed for all nuclei from the proton dripline to the
neutron dripline and from Ne up to Bi. These results were then used to recalculate astrophysical reaction rates in
a Hauser-Feshbach statistical model. Although certain transitions can be considerably enhanced or suppressed,
the impact on astrophysically relevant reactions remains limited, mainly due to the thermal population of target
states in stellar reaction rates.
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I. INTRODUCTION

Knowledge of the nuclear level density in general and,
more specifically, at low excitation energies is of interest for a
number of reasons. Comparison to experimental level densities
helps testing nuclear structure models [1]. In reaction theory,
the nuclear level density is an important ingredient both for the
determination of the relevant reaction mechanism and for the
calculation of reaction cross sections [2]. Because of the low
effective interaction energies in astrophysical applications, the
level density at low excitation energy is usually assumed to be
crucial to determine astrophysical reaction rates.

The level density ρ as a function of spin J , parity π , and
excitation energy E can be written as

ρ(E, J, π ) = P(E,π )F(E, J )ρtot(E), (1)

with the spin projection F . In most previous applications
to astrophysics (e.g., Ref. [2]), equally distributed parities
with P(E,π = ±1) = 1/2 for both even and odd parity
have been assumed at all energies but it is obvious that this
assumption is not valid at low excitation energies. This work
focuses on the determination of the parity projection factor
P and its implication on the calculation of reaction rates for
astrophysics.
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In astrophysical applications usually different aspects are
emphasized than in pure nuclear physics investigations. Explo-
sive burning produces a large number of unstable nuclei for
which experimental information is unavailable. Thus, the study
of such models requires prediction of nuclear properties for a
large number of nuclei, several thousands when considering
all nucleosynthesis processes. However, reaction rates are
obtained by energy-averaging cross sections in the relevant
energy range (see Eq. (26)), given by the so-called Gamow
window [3]. Therefore, small deviations from the true cross
sections may cancel out. This also may dampen the impact
of variations in the predicted nuclear properties, such as the
nuclear level density.

In principle, the nuclear level density should be extracted
from microscopic models. However, conventional shell-model
calculations of level density are limited to the mass range
A � 50 [4–6] because of the combinatorial increase of the
dimension of the model space with the number of single-
particle levels and/or the number of valence nucleons. Large-
scale shell-model calculations of level densities are possible
in the framework of the shell-model Monte Carlo (SMMC)
method [7–9]. Most SMMC calculations have been carried
out in one full major shell. However, they can be extended to
higher excitation energies by including all other shells within
a mean-field approximation [1]. The SMMC calculations are
in general time-consuming and are difficult to carry out for the
large number of nuclei required in large-scale astrophysical
applications so far. Although computers have become faster, a
consistent microscopic description of all required properties
for all nuclei is still not feasible. This is, of course, also
due to the still insufficient knowledge of nuclear interactions
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in general and its effects in neutron- or proton-rich nuclei.
Therefore, many approaches for calculating astrophysical
reaction rates make use of more phenomenological treatments.
This does not imply that they are just mathematical fits to
a given property, made in the region of stability and then
extrapolated to unstable nuclei. Instead, they are based on
some physical insight in the origin of the given property that
makes it possible to extend its application also to unknown
nuclei with only few parameters to be adapted. Among
the traditional examples of such approaches is the shifted
Fermi-gas model [10,11] of the nuclear level density and its
variations. As long as nucleons can be assumed to exhibit
a Fermi-gas behavior, the energy dependence of the level
density can be described by a few parameters. This has been
proven repeatedly by comparison to experimental data but
also in comparison to microscopic calculations [1,12–14].
Also the behavior of its parameters can be determined by
applying known physical facts and/or by extracting them from
different types of calculations [2,15]. Another example of the
combined phenomenological approach is the macroscopic-
microscopic finite range droplet model (FRDM) [16], which
still proves to be the most successful model to predict nuclear
masses.

In the spirit of the above we present a macroscopic-
microscopic method to determine the parity ratio of nuclear
levels from low to high excitation energy that can be easily
applied to a large number of nuclei. Providing the factor P as a
function of excitation energy—as we do in the following—has
the additional advantage that it can be combined with any total
level density ρtot from any other approach to determine the
density of odd- and even-parity states. The method is based on a
quasiparticle model proposed in Ref. [17] which we extend by
allowing odd particle numbers, inclusion of all shells up to the
11 h̄ω oscillator shell, and including excitations between
all considered shells. Preliminary results were reported in
Refs. [18–21].

The method is introduced in Sec. II, with a discussion of
some interesting effects found in the parity ratios included in
Sec. II D. Section III then focuses on the astrophysical rele-
vance of the parity distribution. Astrophysical rates computed
with the new parity ratio are compared to standard rates widely
used in astrophysical applications in Sec. III C. The article is
concluded with a summary in Sec. IV.

II. DETERMINATION OF PARITY RATIOS

A. Basic approach

We start from the assumption of statistically independent
particles at finite temperature. Because single-particle (s.p.)
levels can either be occupied or empty, the probability
distribution for the occupation can be assumed to be binomial
[7]. The probability to occupy n out of r levels is therefore
given by:

B(r; n) =
(

r

n

)
pn(1 − p)r−n, (2)

where the probability of occupying a level is denoted by p.
We follow [17] by replacing the binomial distribution by a
Poisson distribution P (s). This approximation holds provided
the number of levels r is large and the probability p is small,
with the product rp finite. This can always be achieved by
clustering the single particles into two groups according to
their parity and counting only particles in the group having the
opposite parity to the last occupied level. The probability to
find n particles in that group is then

P (n) = f n

n!
e−f , (3)

where the average number of particles in the group is given
by f . Obviously, neutrons and protons have to be treated
separately. For an even number of nucleons the probability
to find the whole system in a positive-parity state is therefore
given by

P + =
∑

n,even

f n

n!
e−f = coshf e−f , (4)

and to find the system in a negative parity state by

P − =
∑
n,odd

f n

n!
e−f = sinhf e−f . (5)

The probabilities can be related to the total partition function

Z = Z+ + Z− (6)

and the partition functions for odd- and even-parity states, Z−
and Z+, by

P + = Z+

Z
,

P − = Z−

Z
.

(7)

This leads to the expression used in Ref. [17] for even-even
nuclei:

Z−

Z+ = tanhf. (8)

It can be shown [22] that it can be completely generalized
for even and odd numbers of particles by denoting the total
ground-state parity of a nucleus by g and the opposite parity
by s:

P s

P g
= Zs

Zg
= tanhf ′, (9)

where f ′ = fn + fp is now computed from the sum of the
individual average particle numbers f of neutrons and protons.

To determine the desired parity factor P the ratio of the
level densities ρg, ρs with different parity has to be known.
Applying the well-known Laplace transform of the partition
function and employing the saddle point approximation, the
ratio for an excitation energy E is given by [22]

ρs

ρg

= βs

βg

Zs

Zg

√
Cg

Cs
e(βs−βg )E, (10)
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with the heat capacities Cg,Cs . In general, because of the
different number of particles in each group, the inverse nuclear
temperatures βs, βg will be different for the same excitation
energy E. The required partition functions are determined by

Zg = 1

1 + tanhf ′ ,

Zs = 1

1 + 1
tanhf ′

.

(11)

The thermal energy E and the heat capacities can be derived
from the standard thermodynamic relations

E = −∂ ln Z

∂β

C = −β2 ∂2 ln Z

∂β2
.

(12)

Finally, the parity projection factor P is given by

P(E,π = πg) = Pg = ρg

ρtot
= 1

1 + ξ
,

P(E,π = πs) = Ps = ρs

ρtot
= 1

1 + 1
ξ

,

(13)

with

ξ = ρs

ρg

(14)

and πg being the ground-state parity of the nucleus while πs

is the opposite parity.

B. Determination of the mean occupation number

The central quantities fn, fp were determined separately
for neutrons and protons. In the following, we denote them
by f for simplicity and imply that the two kinds of nucleons
were treated separately with their respective s.p. levels and
particle numbers. Assuming Fermi-Dirac distributed particles,
the occupancy fk of each s.p. level with energy εk given by

f FD
k = 1

1 + eβ(εk−µ̄)
(15)

and the average number of particles by

〈n〉 =
∑

k

fk. (16)

Proceeding as before by dividing the s.p. levels into a group
exhibiting the same parity πg as the last occupied state below
the chemical potential µ̄ and another group with opposite
parity πs , the mean value f in the Poisson distribution is then
given by

f =
∑
k∈πs

f FD
k =

∑
k∈πs

1

1 + eβ(εk−µ̄)
. (17)

The chemical potential is found iteratively from the particle
number equation

n =
∑

k

1

1 + eβ(εk−µ̄)
. (18)

With decreasing nuclear temperature Tnuc pairing inter-
actions become increasingly important in nuclear systems,
leading to nucleon pairs in the ground state and at low
excitation energies. The breaking of such pairs requires
additional energy. Hence, the Fermi-Dirac distribution will
not be able to describe the occupation properly at high values
of β = 1/Tnuc. For example, this can be seen in Fig. 3
of Ref. [17], where a comparison between Fermi-Dirac and
BCS occupancies and resulting partition ratios Z−/Z+ are
shown for even-even nuclei. At high nuclear temperatures the
microscopic distributions are well described by Fermi-Dirac
statistics but for lower temperatures deviations start to appear.
For those cases of even-even nuclei, the probability to find
an even number of particles in the πs parity group is clearly
enhanced, odd numbers of particles are suppressed as seen
in the comparison to the SMMC result in Ref. [17]. Similar
effects were reported in Ref. [1].

Pairing effects can be included by using the well-known
Bardeen-Cooper-Schrieffer (BCS) formalism [23], introduc-
ing the BCS occupancy for quasiparticles

f BCS
k = 1/[1 + exp(βEk)] (19)

with the quasiparticle energy

Ek =
√

(εk − µ̄)2 + �2. (20)

The chemical potential µ̄ = µ̄(β) and the pairing gap � =
�(β) are determined for each nuclear temperature Tnuc = 1/β

by solving a nonlinear system of equations, the well-known
particle number and gap equation

n = 1

2

∑
k

[
1 − εk − µ̄

Ek

tanh

(
β

2
Ek

)]

2

�
= G

2

∑
k

�

Ek

tanh

(
β

2
Ek

)
,

(21)

where G is the usual effective pairing coupling constant that
determines the zero-temperature pairing gap �. Although
the single particles are no longer independent in the paired
solution, the Poisson approach of Sec. II A can be kept,
assuming that the quasiparticles are statistically independent
here. For the calculation of the mean occupation in the πs

parity group, it is sufficient to consider only contributions
from quasiparticles, as condensed pairs do not contribute to
any parity change of the system. This leads to

f =
∑
k∈πs

f BCS
k =

∑
k∈πs

1

1 + exp(βEk)
. (22)

It should be noted that here the chemical potential µ̄ and
the pairing gap � are temperature dependent, i.e., have to be
known as a function of β or Tnuc. The BCS equations are solved
iteratively for each inverse temperature β.
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At sufficiently high nuclear temperature, pairing becomes
negligible and there is a phase transition from the BCS to the
Fermi-Dirac regime. However, this transition is not smooth
when only using the above description because the BCS
equations break down above a critical temperature Tc = 1/βc.
Due to the phase transition occuring at Tc, the derivatives
of the partition function Z (containing the mean occupancy
f ) are discontinuous when moving from the BCS regime to
the Fermi-Dirac regime. This induces numerical problems in
the solution of Eq. (10) via Eq. (12), especially also because
the different parity groups exhibit different temperatures. To
avoid the problematic temperature range would be too limiting
because the range of excitation energies most interesting for
studying the parity ratios would be excluded. Therefore, we
employed an approximation by extrapolating the pairing gap
to higher nuclear temperatures. In fact, the transition from the
BCS to the Fermi-Dirac regime should be smooth in nuclei
because the pair coherence length is much larger than the
nuclear radius [24]. In such systems with dimensions smaller
than the coherence length, fluctuations in the order parameters
become important and wash out the discontinuity.

As the pairing effects vanish for high nuclear temperatures,
the pairing gap itself should approach a value of zero, thus
recovering the Fermi-Dirac shape of the distribution (see, e.g.,
Ref. [25] for experimental indications of this effect). This
behavior of the gap could be rigorously obtained, for instance,
by using the static path approximation, integrating over the
static fluctuations of the gap [26]. However, as has been shown
in SMMC calculations [14,27], this behavior can be simply
parameterized in terms of a Fermi-type dependence:

�fit(β) = �fit(Tnuc) = �T = �0

1 + exp[−(Tnuc − T ′
nuc)/a]

,

(23)

where �0 denotes the pairing gap for Tnuc = 0. The parameters
T ′

nuc and a were fitted so that the function approximated as
closely as possible the behavior of the BCS gap below the
critical temperature. As starting values we chose T ′

nuc = 0.8Tc

and a = (T ′
nuc−Tnuc)/ ln (�0/�

BCS
T ′

nuc
−1), which yielded a good

fit to the BCS pairing gap �BCS = � below T ′
nuc. This results in

a suppression of the pairing gap across a temperature range of
the order of MeV, as also previously found in Refs. [6,14,27].
For illustration, Fig. 1 shows a comparison of the BCS solution
and the fit for 66Zn. The results are not sensitive to small
variations in the choice of the starting values. These fits were
subsequently used in the calculation of the chemical potential
µ̄ and finally of the mean occupation number f by applying
Eq. (22) for all values of β.

C. Input quantities and consistency

The parity projected partition functions Zg,Zs are related
to each other, to the total partition function Z, and to the
average occupancy f by Eqs. (6) and (9). Thus, the total
partition function Z and the average occupation number f

remain to be determined.

0 0.5 1 1.5

T (MeV)

0

0.5

1

1.5

∆ 
(M

eV
)

BCS−Solution
Fermi−Fit

66Zn
protons

FIG. 1. Dependence on nuclear temperature of the proton pairing
gap � in 66Zn and its fit by a Fermi-type function (see text).

The determination of f as described in the previous section
implicitly requires knowledge of the pairing strength G and
the s.p. levels. For systems with an even number of particles,
the starting value �0 of the pairing gap was extracted from
odd-even mass differences as described in Ref. [2]. This value
was then used to determine the effective pairing strength G by
solving the coupled Eqs. (21) for Tnuc = 0. Further application
of Eqs. (21) with fixed G at finite nuclear temperatures yields
the temperature dependence of � and the required occupation
of quasiparticle states. Differently from the treatment of the
pairing gap �0 in [2], here we set �0 = 0 for systems with odd
numbers of particles because the pairing effects are expected
to be weak and quickly vanishing with increasing Tnuc. This
means that a pure Fermi-Dirac distribution is used for odd
particle numbers without the need to fit the phase transition.

The s.p. levels were calculated in a deformed Saxon-Woods
potential [28] with parameters from Ref. [29] which reproduce
experimental data well [30,31]. The same deformation was
used as in Refs. [2,32,33], taken from Ref. [10].

Figure 2 illustrates the dependence of the parity distribution
on the single-particle model space in 56Fe. For this nucleus,
the addition of the 2d5/2 orbital to the pf +g9/2-shell leads to a
deviation over 10% in the parity ratio above excitation energies
Ex of about 15 MeV. Further inclusion of higher states such
as 1g7/2 does not change the result for 56Fe (the lines for the
results overlap in the figure) but will be important for heavier
nuclei. Therefore we had to include all major shells up to
11 h̄ω.

We also see in Fig. 2 that levels usually considered as inert
core can also have an important effect. This is clearly seen in
the result accounting for excitations across the full sd+pf +gds
shells. Here we find deviations of at least 10% already at Ex ≈
7 MeV and larger deviations at higher excitation energies. This
is mainly due to excitations from the sd shell.

As a further ingredient, a total nuclear level density ρtot

is required in the determination of the total partition function
Z = Z(β, ρtot). In principle, any total level density determined
in any approach could be supplied here. Because we want to
apply the derived parity factor to the level density of Ref. [2],
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FIG. 2. Ratio of the level densities with odd
and even parities as a function of excitation
energy Ex in MeV in the nucleus 56Fe, calculated
with different sizes of the model space. It is
evident that it is not sufficient to only include
the pf + g9/2 shell.

we took the total level density and the level-density parameters
from there.

In a fully consistent model, s.p. levels determine the level
density assuming all effects have been properly accounted for
and provided that the level density can be computed, e.g., in
a shell model, for all nuclei at all relevant excitation energies.
In principle, this can be achieved, e.g., within the approach
of Ref. [1], but is difficult to carry out for a large number
of nuclei. For practical purposes it is therefore necessary to
include level densities derived in other approaches, such as the
shifted Fermi gas. Proceeding in this manner, however, great
care has to be exercised to achieve consistency between the s.p.
structure, in our case obtained from the Saxon-Woods model,
and the input level density. Inconsistency will lead to spurious
effects in the parity ratio as shown in Fig. 3.

Realistically one has to expect that both the s.p. level
structure from the Saxon-Woods potential and our total level
density bear inherent uncertainties. Thus, when striving for
consistency it is anticipated that both inputs should be adapted.
Here, we used an iteration method that varies only the level
density and not the Saxon-Woods potential, assuming that
the s.p. structure is correct. Although this does not limit the

FIG. 3. Influence of a variation of the input level density ρinput

on the calculated parity ratios in 70Zn. The full line is obtained by
using the standard level density ρstd [2]. The dashed and dotted lines
correspond to variations of the input level density by factors 2 and 5,
respectively. The s.p. levels are held fixed.

applicability of our results, it has to be emphasized that the
variation of the level density ρinput = ρtot shown in Fig. 3 and
found in our iteration procedure is not due to the uncertainty
of ρtot alone but rather is supposed to contain the combined
uncertainties in ρtot and the s.p. levels.

In each iteration step the parity projected level-densities

ρg(E) = 1√
2πCg

βgexp(βgE + ln Zg),

ρs(E) = 1√
2πCs

βsexp(βsE + ln Zs)

(24)

were calculated with an input level density ρinput. The total
level density in this step is then given by the sum of the parity
projections:

ρ(it) = ρg + ρs. (25)

In the first iteration step the standard level density from Ref. [2]
was used for ρinput. In each following step, ρ(it) of the previous
step became the new ρinput and the procedure continued until
ρ(it) and ρinput converged. Convergence was usually achieved
quickly, typically in the third iteration step.

D. Results and discussion of selected examples

Using the approach described in the previous sections, we
have calculated ratios of parity-projected level densities for
all nuclei from Ne to Bi and from proton dripline to neutron
dripline, adopting the large 11h̄ω model space. All target nuclei
in Refs. [32,33] are covered1. The results can be obtained from
the American Institute of Physics’ EPAPS [34] or directly from
the authors at http://nucastro.org.

Representative for our results are Figs. 4–9. It can immedi-
ately be noticed that the parities equilibrate only at excitation
energies above about 5–10 MeV or even higher (see, e.g.,
Fig. 4), even for the more heavy nuclei. This underlines the
importance of using a parity projection factor P �= 1/2 at most
energies of astrophysical interest.

1It should be noted that this also affects, for example, the resulting
driplines as the same inputs as in these references were used here.
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FIG. 4. Ratio of the parity projected level
densities as a function of excitation energy for
Ni isotopes around the neutron sd-shell closure.

Surprising at first glance is the effect we found at closed
shells. The parity ratio can overshoot the equilibrated value of
ρs/ρg = 1 by 20–60% before finally reaching the equilibrium
value at higher excitation energies. The overshooting can be
understood by the fact that parity can only be changed by
excitations between s.p. levels of different parity. When an
oscillator shell is completely filled, i.e., the next available
subshell exhibits opposite parity, any excitation will change
the parity of the system, resulting in a dominance of opposite
parity states.

Although studying the following examples, it should
be kept in mind that both neutron and proton excitations
contribute to the parity ratio. When comparing the ratios within
an isotopic chain, however, the proton contribution will remain
the same and differences between isotopes can be attributed
to the change in neutron number. Similar considerations apply
to the comparison of isotones and the changing proton number.
For example, Fig. 4 shows the evolution of the parity ratio in
Ni isotopes around the neutron sd-shell closure. The sd shell
is filled completely with neutrons for 48Ni. Every excitation of
48Ni populates a single-particle level of opposite parity leading

to a maximal parity change. The formation of the peak can
already be seen for 47Ni but the position of the peak is shifted
toward smaller excitation energies. This energy shift is about
1 MeV reflecting the energy that is needed to break a neutron
pair prior to excitation. The isotopes 49Ni and 50Ni, which both
already populate the pf shell in neutrons, equilibrate at much
higher excitation energies. Parity change can be achieved by
excitations to the g9/2 shell or by excitations from the sd to
the pf shell, requiring higher energy on average than for the
preceding isotopes.

The evolution of the parity ratio for Ni isotopes at the
interface of the pf and gds shell is shown in Fig. 5. Again,
a similar behavior as described above can be observed. The
N = 40 neutron shell is completely filled for 68Ni. Each
excitation from the last occupied 2p1/2 level with negative
parity will populate levels from the gds shell with positive
parity resulting in a parity change of maximal amplitude.
The formation of the peak can already be seen for 66Ni.
The position of the peak is shifted to higher energies as a
larger gap between the 2f5/2 level and the g9/2 level has to be
bridged.
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0 5 10 15 20
0

0.5

1

1.5

0 5 10 15 20
0

0.5

1

1.5ρ −/ρ
+

FIG. 5. Ratio of the parity projected level
densities as a function of excitation energy for
Ni isotopes around the neutron pf-shell closure.
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FIG. 6. Ratio of the parity projected level
densities as a function of excitation energy for
Fe isotopes up to N = 40.

The transitions between the same shells as above in Fe iso-
topes is shown in Fig. 6. Moving from 56Fe, where the neutron
pf shell is only half filled, to 66Fe, where the 2p1/2-shell is
completely filled, it can be seen that the ratio approaches unity
for lower values of the excitation energy as one approaches the
N = 40 shell closure. As the parity can only be changed by
excitations either from the sd to the pdf shell or from the pf to
the gds shell, the ratio will equilibrate faster with increasing
neutron number as the gap between the last occupied orbit in
the pf shell and the gds shell will decrease. For 66Fe, where the
pf shell is completely filled, a pronounced peak around 8 MeV
occurs.

A similar behavior is illustrated by Fig. 7 for the evolution of
the parity ratio in Sr isotopes at the pf and gds interface. Again,
the ratio reaches a maximum in 78Sr with the filling of the
neutron pf shell. A comparison to the Fe isotopes with the same
neutron numbers in Fig. 6 shows the impact of deformation.
The FRDM model [10] predicts the Sr isotopes shown here to
be strongly deformed. The resulting level splitting leads to a

wider, less pronounced peak in the Sr isotopes as compared to
the Fe isotopes.

Another interesting case is seen in Fig. 8, which displays
the evolution of the parity ratio in Sn isotopes in the vicinity
of the gds and pfh shells. The h11/2 subshell is half filled
at 120Sn due to the fact that it is located below the 2d3/2

and 3s1/2 subshells, the latter two belonging to the gds shell.
Comparatively small excitation energy is required to change
the parity by either moving neutrons from the h11/2 subshell
to the higher ds states or by populating the h11/2 subshell
with neutrons from lower gd states. The effect of the latter is
largest when the h11/2 subshell is least occupied, the effect
of the former becomes larger with increased occupation.
That is why there is an overshooting peak found in all Sn
isotopes shown in Fig. 8, with the one in 120Sn being the
most pronounced because both excitations contribute almost
equally. However, due to the mixing of gds and h11/2 states, the
overshooting is not as strong as the one found for 66Fe at the pf
closure.
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Above, the evolution of the parity ratio was discussed in
isotopic chains, where each parity change results from an
excitation of neutrons only. A similar effect is found for
protons. For instance, Fig. 9 shows the evolution of the N = 50
isotone parity ratio. The proton numbers for the four shown
nuclei (Y, Zr, Nb, and Mo) are 39, 40, 41, and 42, respectively.
Again, a peak can be observed in 90Zr as the proton pf shell
is completely filled for this nucleus. Weak deformation is
predicted for these nuclei which leads to a suppression of
the peak.

III. APPLICATION IN ASTROPHYSICS

A. Introduction

In the following we discuss the implications of a realistic
parity distribution in astrophysical applications. The astro-
physical reaction rate is the central quantity in the nuclear
reaction networks employed to follow nucleosynthesis in
different astrophysical environments. For nucleon-nucleus
and nucleus-nucleus reactions it is given by folding the

reaction cross section with the Maxwell-Boltzmann velocity
distribution of the interacting nuclei

r = n1n2

√
8

πM(kT∗)3

∫ ∞

0
σ ∗(E′)E′exp

(
− E′

kT∗

)
dE′.

(26)

The stellar plasma temperature is denoted by T ∗, the reduced
mass of the interacting nuclides by M , and their number
densities by n1, n2. The stellar cross section is defined as

σ ∗(Ec.m.)

=
∑

µ
(2Jµ + 1)exp(−Eµ/kT∗)

∑
ν
σµν(Ec.m.)∑

µ
(2Jµ + 1)exp

(−E
µ

i /kT∗) , (27)

including sums over excited states µ, ν in the target and
final nucleus, respectively, with Jµ and Eµ denoting spin and
excitation energy of the µ-th target state.
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FIG. 9. Evolution of the odd- to even-parity
ratio within the N = 50 isotones in the vicinity
of the proton pf-shell closure.
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B. Relevant reaction theory

For the majority of reactions relevant in astrophysics, the
reaction cross sections σµν have to be calculated with different
reaction models as experimental information often is not
available in the relevant energy range or even impossible to
obtain due to the short half-lives of the involved nuclei. Even if
data is available, it can only provide a measure of σµ = �νσ

µν

and thus does not provide the required σ ∗. Depending on the
number of resonances in the Gamow window [2], one has to
consider direct reactions, the influence of few resonances, or
an average over many resonances [35]. Here, we want to focus
on the latter and on direct capture.

Provided there is a high number of resonances at the relevant
interaction energy, the formation and decay of a compound
nucleus can be described by averaged transmission coefficients
in the statistical model or Hauser-Feshbach formalism [36].
The transmission coefficients describing the decay of a
compound state k via a process y—with y usually being
emission of nucleons, α particles, or γ quanta—include
sums of the type kT J kπk

y = �ν
kT Jkπk→J νπν

y . Depending on
the nucleus, reaction Q value, and interaction energy Ec.m.,
the properties (spin J ν , parity πν , excitation energy Eν) of the
accessible states may not be known above a certain energy Ec.
Then the sum is replaced by an integration over a level density

kT J kπk

y =
∫ Q+Ec.m.

Ec

∑
J ν ,πν

T J kπk→J νπν

y (Q + Ec.m. − Eν)

× ρ(Eν, J ν, πν)dEν . (28)

The integration starts from Ec = 0 in most cases far from
stability where no excited states are known. The level
density ρ(Eν, J ν, πν) includes the assumption of the parity
distribution. It should be noted that this is the level density in
the final nucleus which is identical to the compound nucleus
only for capture reactions. The interaction energies Ec.m. in
astrophysics typically are smaller than 1 MeV for neutrons
and 5–10 MeV for charged projectiles. A comparison with
our results from the previous section shows that the parity
ratio obviously has not equilibrated at the relevant excitation
energies, even though the reaction Q value has to be added to
these energies.

Considering thermal excitation of the target states in the
transmission coefficients for the formation of the compound
nucleus in state k a relation similar to Eq. (28) can be derived
for the transmission coefficients kTy ′ connecting target and
compound state via a process y ′, this time inserting the level
density in the target nucleus. However, due to the exponential
suppression of the population of the excited target states (see
Eq. (27)) significant contributions to the integral will only stem
from the lowest energies.

The central assumption of the Hauser-Feshbach model
is that the compound state at energy Ek is highly de-
generate. Due to the large number of overlapping res-
onances, the excited compound nucleus can have any
combination of spin and parity. The possible combina-
tions will be weighted by the transmission coefficients
kTy ′ describing the formation process and, e.g., accounting
for spin selection rules. However, in principle one has to sum
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FIG. 10. Energy scheme of a compound nucleus reaction A +
pro → C∗ → ej + B. For a capture reaction on target nucleus A

the ejectile “ej” will be γ radiation and the final nucleus B will be
identical to the compound nucleus C. The standard reaction Q value
is the difference between the separation energies of the projectile and
the ejectile Q = Spro − Sej. When considering individual transitions
between excited states in the target and the final nucleus the released
energy becomes Q = (Spro + E

µ

A) − (Sej + Eν
B ), with the excitation

energies E
µ

A, Eν
B . The excitation energy of the accessed compound

state is then Ek
C = Spro + Epro + E

µ

A , with Epro being the projectile
energy. The decay of the compound state k is computed by a sum
of transitions to individual states and by integrating over an average
level density (shaded area) above the last included state. The target A

can become excited by thermal population of the excited states in an
astrophysical plasma.

over all compound spins J k and parities πk when calculating
the statistical model cross section

σ
y ′y
HF ∝

∑
J kπk

(2J k + 1)
kT J kπk

y ′
kT J kπk

y∑
z=y,y ′,...

kT J kπk

z

. (29)

The denominator contains a total transmission coefficient for
each state J kπk , including all possible de-excitation processes,
e.g., emission of protons, neutrons, α particles, and γ quanta.
The scheme of a compound nucleus reaction is sketched in
Fig. 10.

Direct reactions proceed in a different manner, without
formation of an excited compound nucleus. A nucleon or
nucleon group is directly transferred from the projectile to
the final state without excitation of any other nucleons in the
system [35,37,38]. This mechanism will dominate at very high
interaction energies where the compound nucleus formation
is suppressed due to the short interaction timescale and at
low energies in the absence of resonances, again suppressing
the formation of a compound nucleus. In astrophysics, direct
capture is expected to be important close to the driplines
because of the low particle separation energies. The cross
section σ

µν

DC for direct capture of a projectile on a target in state
µ into a final state ν can be calculated, e.g., in the potential
model [35,37,38] or in the Lane-Lynn formalism [39]. Again,
the total capture cross section is the sum of the contributions
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of the different transitions to discrete states

σ
µ

DC(Ec.m., E
µ, Jµ, πµ)

=
∑

ν

C2
νSνσ

µν

DC(Q + Ec.m. − Eν, Jµ, πµ,Eν, J ν, πν),

(30)

with C and S denoting the isospin Clebsch-Gordan coefficient
and the spectroscopic factor of the final state, respectively.
Because of the importance of direct capture close to the
driplines only, the discrete states are usually experimentally
unknown and have to be extracted from microscopic calcu-
lations. However, it has been shown [40] that the resulting
cross section is very sensitive to the predicted properties of the
states and that thus different microscopic models yield vastly
different results. The sensitivity is much higher than in the
case of compound reactions because no averaged quantities
are used. To circumvent the problem of the exact prediction
of the final states it has been suggested [41–43] to employ
averaged properties also for direct captures, i.e., to replace the
sum over discrete final states by an integration over a level
density

σ̄
µ

DC =
∫ Q

0

∑
J ν ,πν

C̄
2
(Eν,J ν,πν)S̄(Eν,J ν,πν)ρ(Eν,J ν,πν)

× σJµπµ→J νπν

DC (Q + Ec.m. − Eν)dEν (31)

and to use averaged quantities C̄ and S̄, which are assumed
as being constant [43] or energy dependent [41,42,44]. Again,
the expression can be extended to include sums over thermally
populated target states µ. The situation in the case of a direct
capture reaction is shown in Fig. 11.

The sum over spin and parity in Eq. (31) usually contains
only few contributing terms because of the dominance of E1
transitions. Because of the small Q values the integration
does not include such a large energy range as in the Hauser-
Feshbach calculations. These two facts are also the reason why
the impact of a nonequilibrated parity ratio will be much larger
for direct cross sections than for Hauser-Feshbach ones. The
Hauser-Feshbach model assumes implicitly that the compound
nucleus can be formed with any spin and parity (although not
with equal probability for each configuration) and that the
decay of the compound state by γ - or particle emission can
proceed in transitions to a number of final states. This offers
a larger number of possible spin-parity combinations through
which the reaction can proceed than in the case of a direct
process.

Summarizing, the nuclear level density is important in two
aspects: first, to determine the dominant reaction mechanism
and, second, to calculate cross sections accounting for tran-
sitions to a number of final states. It should be noted that
these two aspects require the knowledge of the level density
at different excitation energies and in different nuclei, the
compound nucleus in the former case and the final nucleus in
the latter. In Sec. III C we study the impact of a changed parity
distribution on reaction rates calculated in the two reaction
mechanisms described above.
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J
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J
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A

FIG. 11. Energy scheme of a direct capture reaction A + pro →
B + γ . The energy of the emitted γ quantum is the energy difference
between initial target state and final state. For instance, Q00 is the
released energy for the ground-state-to-ground-state transition and is
equal to the binding energy of the projectile in the final nucleus B.
As in the case of the compound mechanism, it is possible to include
an integration over a level density (shaded region) when the exact
properties of the nuclear states are not known. For simplicity, only
transitions originating from the ground state of target A are drawn
here. For stellar reaction rates it would be important to also include
transitions from thermally excited target states.

C. Comparison to standard rates and possible implications

1. Statistical model rates

Before employing the realistic parity distribution derived in
Sec. II in calculations of astrophysical reaction rates, we want
to arrive at an estimate of the maximum impact to be expected.
The level density enters in the calculation of the transmission
coefficient as given by Eq. (28). For the standard assumption
of equally distributed parities ρ(Eν, J ν, πν) = ρ(Eν, J ν)/2
for all parities πν . As an extreme case we suppose that
the parity ratio is zero at all energies, i.e., only states with
the same parity π0 = πg as the ground state occur and
ρ(Eν, J ν, πν) = 0 for πν �= πg . This also implies that
ρ(Eν, J ν, πg) = ρ(Eν, J ν). We further assume that the
formation coefficient kT J kπk

y ′ dominates the total transmission
coefficient in the denominator of Eq. (29) and thus the process
y and its transmission coefficients determine the cross section.
This can be further simplified by comparing laboratory rates
only, i.e., rates with the reaction target being in the ground
state.

Two cases can be treated separately, capture reactions
and reactions with particle emission, i.e., y = γ and y =
n, p, α, . . ., respectively. In the latter case, πk determines the
allowed partial waves in the transition to the state in the
final nucleus with πν , even partial waves for πk = πν and
odd partial waves otherwise. For the capture reaction, with
πν being in the compound nucleus, the parities select the
allowed electromagnetic transition, i.e., E1 when πk �= πν

and M1 otherwise. For simplicity, electromagnetic transitions
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with higher order are neglected. For our estimate we also
assume that only s and p waves contribute to the cross section
significantly.

With the above assumptions, the transmission coefficient
calculated with Eq. (28) will be comprised of an arithmetic
mean between the contributions of the two allowed transitions
when taking equidistributed parities. With the restriction of
having only one parity available, one of these transitions will be
suppressed completely. Therefore, the resulting transmission
coefficient will be smaller or larger according to which of the
transitions became unavailable. The enhancement factor can
be expressed as

F↑ = 2

1 + χ
, (32)

the suppression factor is found to be

F↓ = 2χ

1 + χ
, (33)

with χ � 1 being the ratio of p- and s-wave transmission coef-
ficient or of M1 and E1 transmission coefficient, respectively,

χ =




T �=1

T �=0
for particles,

T M1

T E1
for radiation.

(34)

It can be seen immediately that the enhancement cannot
exceed a factor of 2 even when χ is very small. However,
the suppression can become strong depending on the ratio of
the transmission coefficients. Because χ is usually smaller
for electromagnetic transitions than for different partial waves
of the particles, the largest effects are expected for capture
reactions. However, the effect depends on the involved parities.
Table I shows the possible combinations.

An examination of all ratios across the nuclear chart shows
that most of them stay in the range given by the above defined
F↑ and F↓. However, there are several exceptions exhibiting
an enhancement of up to a factor of 5. This can be understood
by examining the partial widths of the relevant transitions
that are directly proportional to the transmission coefficients.
In the derivation above it was assumed that the total width
is dominated by one of the transitions also appearing in the
numerator of Eq. (29) and thus canceling with the denominator.
However, if the total transmission coefficient is dominated by
other transitions, e.g., proton and α emission in the case of
a (n,γ ) reaction, then the changes in both Ty and Ty ′ have
to be multiplied, leading to an upper limit of a factor of 4.

TABLE I. Enhancement and suppression of trans-
mission coefficients relative to an equal parity
distribution.

π Allowed transition Factor

πk = πν � = 0 F↑

M1 F↓

πk �= πν � = 1 F↓

E1 F↑

FIG. 12. Ratio of reaction rates as a function of stellar temperature
T ∗ (in 109 K) for the reaction 67Se(n,γ )68Se (note the logarithmic
scale); the line denoted “laboratory: single/equi” gives the ratio
of laboratory rates with the rate r0 calculated assuming that only
the ground-state parity can appear in a nucleus, whereas an equal
distribution of parities was assumed in rate r1 and neglecting any
experimentally known excited states. Similarly, the ratio of stellar
rates is plotted as “single/equi.” The full line gives the ratio of the
“new” stellar rate r0 calculated with the parity dependence derived
in this work and making use of the level information as given in
Table III of Ref. [33] and the “standard” stellar rate r1 as published
in Refs. [32,33]. For comparison, the ratio obtained without consid-
eration of experimental level information is also plotted as “no exp.
lev.” (see text).

Considering that also the total width may be slightly changed,
the factor of 5 found in some cases is easily accommodated.
Figure 12 shows the case of 67Se(n,γ ) where the neutron width
of the compound state k is larger than the γ width but much
smaller than both the proton and α widths. The situation is
slightly different for 68Se(n,γ ), shown in Fig. 13, where the
γ width is much larger than the neutron width but considerably
smaller than the proton and α widths. If the ratio would be fully
dominated by one process, then F↑ and F↓ should increase
and decrease, respectively, with increasing plasma temperature
because at higher excitation energy of the compound nucleus
more intermediate levels can be reached. Thus, either more
levels can be populated by the preferred transition, giving rise
to F↑, or more transitions are missing for F↓. In fact, the total

FIG. 13. Same as Fig. 12 but for the reaction 68Se(n,γ )69Se.
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FIG. 14. Same as Fig. 13 but for the reaction 68Se(p,γ )69Se; note
the different scale in the figure.

effect stems from an interplay between the stellar temperature
dependences of the formation and decay widths (and thus of
the enhancement and suppression factors) and their ratios. This
can lead to a complicated temperature dependence of the rate
ratios with initially declining and finally increasing ratios or
vice versa. Examples are shown in Figs. 14 and 15.

The above examples are extreme cases, including a com-
parison between rates with a parity ratio of zero and rates with
equidistributed parities. To show more pronounced effects,
no experimentally known levels in the participating nuclei
were considered and the targets were assumed to be in the
ground state. For more realistic astrophysical reaction rates,
the targets have to be thermally excited according to the plasma
temperature that increases the number of possible channels for
the formation of the compound nucleus. Moreover, all statis-
tical model calculations consider experimentally determined
low-lying states, employing a theoretical level density only
above the last included level. This will further reduce the effect
of a modified parity distribution but only for nuclei close to
stability for which level information is available. Moreover,
higher partial waves and multipolarities than considered in the
previous estimate will also contribute, thereby further washing
out the effects seen above. Figs. 12–15 also show the actual
ratio obtained when comparing a full calculation of stellar

FIG. 15. Same as Fig. 14 but for the reaction 67Se(p,γ )68Se.

rates employing the parity distribution derived in Sec. II and
including experimental information from Table III of Ref. [33]
with the standard FRDM rate set published in Refs. [32,33].

2. Direct capture

In principle, Eqs. (32) and (33) also apply for the en-
hancement and suppression factors, respectively, in the direct
capture mechanism. As mentioned in Sec. III B, however,
the transitions allowed by the spin and parity selection rules
are more limited than in the compound model and thus the
application is more straightforward. Furthermore, there is no
energy-dependent renormalization by a total width. Finally,
due to the nature of the electromagnetic multipole operators
appearing in the expression for the direct capture cross section,
E1 radiation is dominating by far and all other multipoles are
strongly suppressed (see, e.g., Ref. [40]). These factors will
lead to a higher sensitivity of direct captures to the parity ratio.

We defer a large-scale calculation of direct capture rates
for low capture Q values to another article but rather want to
illustrate the above by a simplified example here. Assuming
neutron capture on a πA = +1 target state the allowed neutron
partial wave �α in the entrance channel is determined by the
parity selection rule

(−1)�απA = (−1)�γ πB. (35)

Since E1 (�γ = 1) emission is by far dominating, this can be
further simplified to

(−1)�α = −πB, (36)

with πB being the parity of the final state. Therefore only even
partial waves will be allowed for πB = −1 and only odd partial
waves for πB = +1. The latter relation would just reverse if
the target state had odd parity. Because of the low projectile
energies relevant in nuclear astrophysics, only s and p waves
will have a significant contribution to the cross section. Thus,
the ratio χ to be inserted in Eqs. (32) and (33) becomes

χ = σ
µ→ν,pwave
DC

σ
µ→ν,swave
DC

, (37)

with χ<1 because of the higher s-wave cross section (σs ∝
1/

√
E) at small energy. Because of the limited availability of

alternative transitions, contrary to the Hauser-Feshbach case
the suppression or enhancement cannot be compensated in a
direct reaction and the factors F↑ and F↓ will have their full
effect on each transition. For example, χ = 0.18 for capture of
a 100 keV neutron on the 0+ ground state of 140Sn and ending
in a final 3/2 state with an energy release of 1 MeV (see
also Ref. [40]). The inclusion of thermally populated target
states will slightly reduce the effect by making available states
with different spin but same parity because of a predominant
parity at low excitation energy. This will have a smaller impact
than in the Hauser-Feshbach model because low partial waves
dominate the cross section, there is no moderating effect of a
total width, and generally fewer possible transitions.

The application rule for F↑ and F↓ for direct capture
is shown in Table II. For the case of the final nucleus in a
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TABLE II. Enhancement and suppression of
transmission coefficients relative to an equal parity
distribution for direct capture on a target state with
parity π

µ

A and ending in a final state with parity
πν

B . The factors F↑ and F↓ are defined in Eqs. (32)
and (33), respectively.

π Allowed transition Factor

π
µ

A = πν
B �α = 1, 3, 5, . . . F↓

π
µ

A �= πν
B �α = 0, 2, 4, . . . F↑

capture reaction having opposite parity than the target ground
state, the capture rate will be enhanced relative to a rate
calculated using a level density with equally distributed parities
because of the predominance of states with ground-state parity
at low excitation energies. This may only be altered if an
overshooting of the opposite parity occurs, as discussed in
Sec. II D. However, direct capture is important only at such
low separation energies that the overshooting regime is not
reached.

3. Discussion

We have calculated parity distributions for all nuclei
between proton and neutron dripline from Ne to Bi and
recomputed the Hauser-Feshbach astrophysical reaction rates
given in [32,33] with the same parameters as quoted there
(set FRDM). Selected examples were already shown in
Figs. 12–15. In Sec. III C1 we discussed considerable enhance-
ment or suppression for certain transitions. In the astrophysical
context, however, the impact of the new parity ratio remains
limited. This is due to several reasons.

First, the impact of a change in the parity distribution is
higher for reactions with large Q values because a larger num-
ber of transitions from the compound nucleus is energetically
accessible. For example, neutron captures will be altered more
strongly on the proton-rich side whereas capture on neutron-
rich targets—provided the compound reaction mechanism is
dominating—will be less affected. A similar observation can
be made for proton capture. Thus, the proton captures occuring
in the rp process [45,46] and the neutron captures in the r

process [47–50] show changes of several percentages relative
to the rates computed with an equal distribution of parities.

Moreover, for small capture Q values, the statistical model
will not be applicable and resonant or direct capture will
dominate. We expect a larger impact of the parity distribution
in the averaged direct capture model but further conclusions
have to await the recalculation of the direct rates. Even
with changed rates, however, it has to be kept in mind
that the processes occurring close to the driplines are often
in equilibrium, where individual rates are not important to
determine the produced nuclear abundances [51]. Rates will
only become important in the freeze-out phases when the
nucleosynthesis path moves closer to stability [45,49,51]. In
these phases the compound mechanism will set in again.

Close to the valley of stability level schemes are known
to comparatively high excitation energies and are used in the
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FIG. 16. Stellar reaction rate ratios for 94Nb(p,γ )95Mo as func-
tion of stellar temperature T ∗ (in units of 109 K); plotted is the ratio
of the stellar rate r0 calculated with the parity distribution derived in
this work with the standard rate r1 from Ref. [32,33]. Further plotted
is the ratio of the same rates but without inclusion of experimentally
known low-lying levels (see text).

calculations of the relevant nuclear cross sections. Usually,
up to 20 levels are included whenever known [32,33].
This will further reduce the effect of the applied parity
distribution because an effective, nonequilibrated parity dis-
tribution is already in use for the lowest excitation energies.
Figures 12–15 show a comparison of rates with and without
included experimental level information. It should be noted
that the slight change in 67Se(n,γ ) is not due to neglected levels
in 68Se but rather due to the modified transmission coefficients
in the competing channels, i.e., proton and α emission. In the
example shown in Figs. 16 and 17, 20 low-lying levels have
been considered in all channels in the standard calculation.
Removing them, the impact of the parity distribution when
using pure level densities can be seen. Generally, only few
low-lying states have to be included because the transitions
with the highest relative energy, leading to the lowest states,
dominate in all channels. Due to the inclusion of experimental
information in the standard calculations, the impact of a
changed parity distribution is also small for the late freeze-out
phases and the nucleosynthesis phases involving nuclei close

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8  9  10

r 0
/r

1

T*

new/standard
no exp. levels

FIG. 17. Same as Fig. 16 but for the reaction 95Zr(p,γ )96Nb.
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to the valley of stability. This includes the photodisintegra-
tion reactions in p-process nucleosynthesis [52–54], even
though they occur on a longer timescale than any freeze-out
process.

Finally, the most important mechanism suppressing the
impact of the parity distribution is the necessity to include
transitions on excited states in the target. In an astrophysical
plasma, excited states can be thermally populated as specified
in Eq. (27). Because of the Bohr independence hypothesis
for compound reactions this allows for a large number of
alternative transitions in case one of the parities is suppressed.
Small alterations of the energy dependence of the cross
sections cannot be seen in the astrophysical reaction rates
anymore due to the folding with the Maxwell-Boltzmann
energy distribution of the interacting nuclei according to
Eq. (26). The fact that the impact of the parity dependence
is strongly suppressed in stellar rates can be clearly seen in
Figs. 12–17. The larger the stellar temperature, the smaller the
parity impact.

Concluding, inclusion of the parity distribution in this work
leads to a change in stellar reaction rates of only several percent
up to about 10% in astrophysically relevant reactions. A few
cases exhibit changes up to a factor of 2 or 1/2, respectively,
but are not astrophysically important.

IV. SUMMARY

We generalized a method to calculate the excitation-energy-
dependent parity distribution in nuclei and used it to calculate
parity ratios for all nuclei up to Bi. We demonstrated the
importance of including a sufficiently large single-particle
model space. In particular, excitations from core single-
particle states can also be important. The parity ratio proved
to be nonequilibrated up to 5–15 MeV. Interestingly, an
overshooting effect in the parity ratio was found at major
shell closures where states with ground-state parity are
outnumbered by states of opposite parity over a range of several
MeV.

The derived parity distribution was then used to recalculate
astrophysical reaction rates. The impact of the new description
on stellar rates including thermal excitations of the target
proved to be limited in the Hauser-Feshbach model although
the impact on direct capture has to be studied further.
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