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Polarized neutron matter: A lowest order constrained variational approach

G. H. Bordbar* and M. Bigdeli
Department of Physics, Shiraz University, Shiraz 71454, Iran, and

Research Institute for Astronomy and Astrophysics of Maragha, Post Office Box 55134-441, Maragha, Iran
(Received 5 August 2006; revised manuscript received 16 November 2006; published 20 April 2007)

In this paper, we calculate some properties of polarized neutron matter using the lowest order constrained
variational method with the AV18 potential and employing a microscopic point of view. A comparison is also
made between our results and those of other many-body techniques.
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I. INTRODUCTION

Pulsars are rapidly rotating neutron stars with strong surface
magnetic fields in the range of 1012–1013 G [1–3]. The physical
origin of this magnetic field remains an open problem and
there is still no general consensus regarding the mechanism to
generate such strong magnetic fields in a neutron star. There
exist several possible ways for generating a magnetic field in a
neutron star, from the nuclear physics point of view; however,
one of the most interesting and stimulating mechanisms that
has been suggested is the possible existence of a phase
transition to a ferromagnetic state at densities corresponding
to theoretically stable neutron stars and, therefore, of a
ferromagnetic core in the liquid interior of such compact
objects. Such a possibility has been studied by several authors
using different theoretical approaches [4–25], but the results
are still contradictory. Whereas some calculations, such as for
instance the ones based on Skyrme-like interactions, predict
the transition to occur at densities in the range (1–4)ρ0

(ρ0 = 0.16 fm−3), others, such as recent Monte Carlo
[20] and Brueckner-Hartree-Fock calculations [21–23] using
modern two- and three-body realistic interactions, exclude
such a transition, at least up to densities around 5ρ0. This
transition could have important consequences for the evolution
of proto-neutron stars, in particular for the spin correlations in
the medium, which strongly affect the neutrino cross section
and the neutrino mean free path inside the star [26].

In recent years, we have computed the equation of state
of symmetrical and asymmetrical nuclear matter along with
some of their properties, such as symmetry energy and pressure
[27–30], and properties of spin-polarized liquid 3He [31] using
the lowest order constrained variational (LOCV) approach.
The LOCV method, which was developed several years ago,
is a useful tool for the determination of the properties of
neutron, nuclear, and asymmetric nuclear matter at zero and
finite temperature [27–39]. The LOCV method is a fully self-
consistent formalism and it does not bring any free parameters
into the calculation. It employs a normalization constraint to
keep the higher order term as small as possible [27,34]. The
functional minimization procedure represents an enormous
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computational simplification over unconstrained methods that
attempt to go beyond lowest order.

In the present work, we compute the properties of polarized
neutron matter using the LOCV method with the AV18

potential [40] and employing microscopic calculations where
we treat explicitly the spin projection in the many-body wave
functions.

II. BASIC THEORY

A. LOCV formalism

We consider a trial many-body wave function of the form

ψ = Fφ, (1)

where φ is the uncorrelated ground-state wave function (sim-
ply the Slater determinant of plane waves) of N independent
neutrons and F = F (1 . . . N) is an appropriate N -body
correlation operator, which can be replaced by a Jastrow form,
that is,

F = S �
i>j

f (ij ), (2)

in which S is a symmetrizing operator. We consider a cluster
expansion of the energy functional up to the two-body term,

E([f ]) = 1

N

〈ψ |Hψ〉
〈ψ |ψ〉 = E1 + E2· (3)

The one-body term E1 for polarized neutron matter can be
written as a Fermi momentum functional [kF

(i) = (6π2ρ(i))
1
3 ]:

E1 =
∑
i=1,2

3

5

h̄2k
(i)2

F

2m

ρ(i)

ρ
· (4)

Labels 1 and 2 are used instead of spin up and spin down
neutrons, respectively, and ρ = ρ(1) + ρ(2) is the total neutron
matter density. The two-body energy E2 is

E2 = 1

2A

∑
ij

〈ij |ν(12)|ij − ji〉, (5)

where ν(12) = − h̄2

2m
[f (12), [∇2

12, f (12)]]+f (12)V (12)f (12)
and f (12) and V (12) are the two-body correlation and
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potential, respectively. For the two-body correlation function,
f (12), we consider the following form [27,28]:

f (12) =
3∑

k=1

f (k)(12)O(k)(12), (6)

where the operators O(k)(12) are given by

O(k=1−3)(12) = 1,
(

2
3 + 1

6S12
)
,

(
1
3 − 1

6S12
)

(7)

and S12 is the tensor operator.
After doing some algebra we find the following equation

for the two-body energy:

E2 = 2

π4ρ

(
h2

2m

) ∑
JLSSz

(2J + 1)

2(2S + 1)
[1 − (−1)L+S+1]

×
∣∣∣∣
〈

1

2
σz1

1

2
σz2

∣∣∣∣ SSz

〉∣∣∣∣
2 ∫

dr

{[
f (1)

α

′2
a(1)

α

2
(kf r)

+ 2m

h2

({Vc − 3Vσ + Vτ − 3Vστ + 2(VT − 3Vστ )

+ 2Vτz}a(1)
α

2(kf r) + [Vl2 − 3Vl2σ + Vl2τ

− 3Vl2στ ]c(1)
α

2
(kf r)

)(
f (1)

α

)
2

]

+
∑
k=2,3

[
f (k)

α

′2
a(k)

α

2
(kf r) + 2m

h2

({Vc + Vσ + Vτ

+Vστ + (−6k + 14)(Vtz + Vt )

− (k − 1)(Vlsτ + Vls) + [VT + Vστ

+ (−6k + 14)VtT ][2 + 2Vτz]}a(k)
α

2
(kf r)

+ [Vl2 + Vl2σ + Vl2τ + Vl2στ ]c(k)
α

2
(kf r)

+ [Vls2 + Vls2τ ]d (k)
α

2
(kf r)

)
f (k)

α

2
]

+ 2m

h2
{Vls + Vlsτ − 2(Vl2 + Vl2σ + Vl2στ + Vl2τ )

− 3(Vls2 + Vls2τ )}b2
α(kf r)f (2)

α f (3)
α

+ 1

r2

(
f (2)

α − f (3)
α

)
2b2

α(kf r)

}
, (8)

where α = {J,L, S, Sz} and the coefficients a(1)
α

2
, etc. are

defined as

a(1)
α

2
(x) = x2IL,Sz

(x), (9)

a(2)
α

2
(x) = x2

[
βIJ−1,Sz

(x) + γ IJ+1,Sz
(x)

]
, (10)

a(3)
α

2
(x) = x2

[
γ IJ−1,Sz

(x) + βIJ+1,Sz
(x)

]
, (11)

b(2)
α (x) = x2

[
β23IJ−1,Sz

(x) − β23IJ+1,Sz
(x)

]
, (12)

c(1)
α

2
(x) = x2ν1IL,Sz

(x), (13)

c(2)
α

2
(x) = x2

[
η2IJ−1,Sz

(x) + ν2IJ+1,Sz
(x)

]
, (14)

c(3)
α

2
(x) = x2

[
η3IJ−1,Sz

(x) + ν3IJ+1,Sz
(x)

]
, (15)

d (2)
α

2
(x) = x2

[
ξ2IJ−1,Sz

(x) + λ2IJ+1,Sz
(x)

]
, (16)

d (3)
α

2
(x) = x2

[
ξ3IJ−1,Sz

(x) + λ3IJ+1,Sz
(x)

]
, (17)

with

β = J + 1

2J + 1
, γ = J

2J + 1
, β23 = 2J (J + 1)

2J + 1
, (18)

ν1 = L(L + 1), ν2 = J 2(J + 1)

2J + 1
,

(19)

ν3 = J 3 + 2J 2 + 3J + 2

2J + 1
,

η2 = J (J 2 + 2J + 1)

2J + 1
, η3 = J (J 2 + J + 2)

2J + 1
, (20)

ξ2 = J 3 + 2J 2 + 2J + 1

2J + 1
, ξ3 = J (J 2 + J + 4)

2J + 1
, (21)

λ2 = J (J 2 + J + 1)

2J + 1
, λ3 = J 3 + 2J 2 + 5J + 4

2J + 1
, (22)

and

IJ,Sz
(x) =

∫
dqPSz

(q)J 2
J (xq)· (23)

In this last equation JJ (x) is the Bessel’s function and PSz
(q)

is defined as

PSz
(q) = 2

3π
[(

k
σz1
F

)
3 + (

k
σz2
F

)
3 − 3

2

((
k

σz1
F

)
2 + (

k
σz2
F

)
2
)
q

− 3
16

((
k

σz1
F

)2 − (
k

σz2
F

)2)2q−1 + q3] (24)

for 1
2

∣∣kσz1
F − k

σz2
F

∣∣ < q < 1
2

∣∣kσz1
F + k

σz2
F

∣∣,
PSz

(q) = 4
3π min

(
k

σz1
F , k

σz2
F

)
(25)

for q < 1
2

∣∣kσz1
F − k

σz2
F

∣∣, and

PSz
(q) = 0 (26)

for q > 1
2 |kσz1

F + k
σz2
F |, where σz1 or σz2 = 1

2 ,− 1
2 for spin up

and spin down, respectively.
Now, we can minimize the two-body energy [Eq. (8)] with

respect to the variations in the function fα
(i) but subject to the

normalization constraint [28],

1

A

∑
ij

〈ij |h2
Sz

− f 2(12)|ij 〉a = 0, (27)

where in the case of spin-polarized neutron matter the function
hSz

(r) is defined as

hSz
(r) =

[
1 − 9

(
J 2

J

(
ki
F

)
ki
F

)2]−1/2

, Sz = ±1,

= 1, Sz = 0. (28)

From the minimization of the two-body cluster energy, we get
a set of coupled and uncoupled differential equations that are
the same as presented in Ref. [28].
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B. Magnetic susceptibility

The magnetic susceptibility χ , which characterizes the
response of a system to the magnetic field, is defined by

χ =
(

∂M

∂H

)
H=0

, (29)

where M is the magnetization of the system per unit volume
and H is the magnetic field. By some simplification, the
magnetic susceptibility can be written as

χ = µ2ρ(
∂2E
∂δ2

)
δ=0

, (30)

where µ is the magnetic moment of the neutron and δ is the
spin-polarization parameter, which is defined as

δ = ρ(1) − ρ(2)

ρ
· (31)

Usually, one is interested in calculating the ratio of χ to the
magnetic susceptibility for a degenerate free Fermi gas (χF ).
The susceptibility χF can be straightforwardly obtained from
Eq. (30) by using the total energy per particle of a free Fermi
gas,

χF = µ2m

h̄2π2
kF , (32)

where kF = (3π2ρ)1/3 is the Fermi momentum. After a little
algebra one finds

χ

χF

= 2

3

EF(
∂2E
∂δ2

)
δ=0

, (33)

where EF = h̄2k2
F /2m is the Fermi energy.

III. RESULTS

In Fig. 1, we have shown the energy per particle for various
values of spin polarization of neutron matter as a function of
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FIG. 1. The energy per particle vs density (ρ) for different values
of the spin polarization (δ) of the neutron matter.
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FIG. 2. Comparison between our results for the energy per
particle of neutron matter and those of BGLS [41], APR [42], and
EHMMP [43] calculations with the AV18 potential.

density. As can be seen from this figure, the energy of neutron
matter becomes repulsive by increasing the polarization for all
relevant densities. According to this result, the spontaneous
phase transition to a ferromagnetic state in neutron matter
does not occur. If such a transition existed a crossing of the
energies of different polarizations would be observed at some
density, indicating that the ground state of the system would
be ferromagnetic from that density on. As is shown in Fig. 1,
there is no crossing point. The existence of a crossing point
becomes less favorable as density increases. For the energy
of neutron matter, we have also made a comparison between
our results and the results of other many-body methods with
the AV18 potential, as shown in Fig. 2. The BGLS calculations
are based on the Brueckner-Hartree-Fock approximation both
for continuous choice (BHFC) and standard choice (BHFG)
[41]. The APR results have been obtained by using the
variational chain summation (VCS) method [42] and the
EHMMP calculations have been carried out by using the lowest
order Brueckner (LOB) technique [43]. We see that our results
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FIG. 3. Our results (full curves) for the energy difference of
polarized and unpolarized cases vs quadratic spin polarization (δ) for
different values of the density (ρ) of the neutron matter. The results
of ZLS [25] (dashed curves) are also presented for comparison.
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FIG. 4. Our results (full curve) for the parameter a(ρ) as a
function of the density (ρ). The results of ZLS [25] (dashed curve)
are also given for comparison.

are in agreement with those of others, especially with the APR
and EHMMP calculations.

For neutron matter, we have also considered the dependence
of energy on the spin polarization δ. Let us examine this
dependency in quadratic spin-polarization form for different
densities as shown in Fig. 3. As can be seen from this
figure, the energy per particle increases as the polarization
increases and the minimum value of energy occurs at δ = 0
for all densities. This indicates that the ground state of
neutron matter is paramagnetic. In Fig. 3, the results of
ZLS calculations using the Brueckner-Hartree-Fock theory
with the AV18 potential [25] are also given for comparison.
There is an agreement between our results and those of ZLS,
especially at low densities. From Fig. 3, it is also seen that the
variation of the energy of neutron matter versus δ2 is nearly
linear. Therefore, one can characterize this dependency in the
following analytical form:

E(ρ, δ) = E(ρ, 0) + a(ρ)δ2· (34)

The density-dependent parameter a(ρ) can be interpreted
as a measure of the energy required to produce a net spin
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FIG. 5. Same as Fig. 4, but for the magnetic susceptibility (χ/χF ).

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

300

350

400

450

500

550

P
re

ss
ur

e(
M

ev
 fm

-3
)

 ρ (fm -3 )

  δ = 0.0
  δ = 0.25
  δ = 0.42
  δ = 0.66
  δ = 1.0

FIG. 6. The equation of state of neutron matter for different values
of the spin polarization (δ).

alignment in the direction of the magnetic field, and its value
can be determined as the slope of each line in Fig. 3, for the
corresponding density,

a(ρ) = ∂E(ρ, δ)

∂δ2
· (35)

In Fig. 4, the parameter a(ρ) is shown as a function of the
density and as can be seen the value of this parameter increases
by increasing the density. In turn this indicates that the energy
required to align spins in the same direction increases. One
can infer again from this result that a phase transition to a
ferromagnetic state is not to be expected from our calculation.
The parameter a(ρ) obtained by ZLS [25] is also shown in
Fig. 4 for comparison.

In Fig. 5, we have plotted the ratio χ/χF versus density. As
can be seen from Fig. 5, this ratio changes continuously for all
densities. Therefore, the ferromagnetic phase transition does
not occur. For comparison, we have also shown the results of
ZLS [25] in this figure.
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FIG. 7. The velocity of sound in units of c vs density (ρ) for
different values of the spin polarization (δ).
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FIG. 8. Same as Fig. 4, but for the Landau parameter G0.

The equation of state of polarized neutron matter, P (ρ, δ),
can be simply obtained by using

P (ρ, δ) = ρ2 ∂E(ρ, δ)

∂ρ
. (36)

In Fig. 6, we have presented the pressure of neutron matter
as a function of density ρ at different polarizations. We
see that the equation of state becomes stiffer by increasing
the polarization. We also see that, with increasing density,
the difference between the equations of state at different
polarization becomes more appreciable. To check the causality
condition for our equations of state, we have calculated the
velocity of sound, vs , as shown in Fig. 7. It is seen that the
velocity of sound increases with both increasing polarization
and density, but it is always less than the velocity of light in
vacuum (c). Therefore, all calculated equations of state obey
the causality condition.

As is known, the Landau parameter G0 describes the spin-
density fluctuation in the effective interaction. It is simply
related to the magnetic susceptibility by the relation

χ

χF

= m∗

1 + G0
, (37)

where m∗ is the effective mass. A magnetic instability would
require G0 < −1. Our results for the Landau parameter have
been presented in Fig. 8. It is seen that the value of G0 is
always positive and monotonically increasing up to highest
density and does not show any magnetic instability for the

neutron matter. In Fig. 8, the results of ZLS calculations [25]
are also given for comparison.

IV. SUMMARY AND CONCLUSIONS

The properties of neutron matter are of primary importance
in the study of neutron stars and, in particular, strongly magne-
tized ones (i.e., pulsars). It is therefore important to calculate
the properties of polarized neutron matter by using an efficient
and sufficiently accurate method. We have recently computed
various properties of neutron matter using the lowest order
constrained variational scheme. To make our results more
general, we used this method for polarized neutron matter.
The energy per particle for various values of spin polarization
of neutron matter was computed as a function of density and
was shown to become repulsive as a result of increasing the
polarization. In addition, we considered the dependence of
the energy of neutron matter on the spin polarization and
found it to increase with the spin polarization for all densities.
This dependence was represented by a quadratic formula with
the coefficient of the quadratic term a(ρ) determined as a
function of the density. This parameter, too, was shown to
increase monotonically with density. Magnetic susceptibility,
which characterizes the response of the system to the magnetic
field, was calculated for the system under consideration. We
have also computed the equation of state of neutron matter
at different polarizations. Our results for higher values of
polarization show a stiff equation of state. The velocity of
sound was computed to check the causality condition of the
equation of state and it was shown that it is always lower than
the velocity of light in vacuum. We have also investigated
the Landau parameter G0, showing that the value of G0

is always positive and monotonically increasing up to high
densities. Finally, our results showed no phase transition to
the ferromagnetic state. We have also compared the results of
our calculations for the properties of neutron matter with other
calculations.

ACKNOWLEDGMENTS

This work has been supported by the Research Institute
for Astronomy and Astrophysics of Maragha and the Shiraz
University Research Council.

[1] S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs and
Neutron Stars (Wiley, New York, 1983).

[2] F. Pacini, Nature (London) 216, 567 (1967).
[3] T. Gold, Nature (London) 218, 731 (1968).
[4] D. H. Brownell and J. Callaway, Nuovo Cimento B 60, 169

(1969).
[5] M. J. Rice, Phys. Lett. A29, 637 (1969).
[6] J. W. Clark and N. C. Chao, Lett. Nuovo Cimento 2, 185 (1969).
[7] J. W. Clark, Phys. Rev. Lett. 23, 1463 (1969).
[8] S. D. Silverstein, Phys. Rev. Lett. 23, 139 (1969).
[9] E. Østgaard, Nucl. Phys. A154, 202 (1970).

[10] J. M. Pearson and G. Saunier, Phys. Rev. Lett. 24, 325 (1970).

[11] V. R. Pandharipande, V. K. Garde, and J. K. Srivastava, Phys.
Lett. B38, 485 (1972).

[12] S. O. Backman and C. G. Kallman, Phys. Lett. B43, 263
(1973).

[13] P. Haensel, Phys. Rev. C 11, 1822 (1975).
[14] A. D. Jackson, E. Krotscheck, D. E. Meltzer, and R. A. Smith,

Nucl. Phys. A386, 125 (1982).
[15] M. Kutschera and W. Wojcik, Phys. Lett. B223, 11 (1989).
[16] S. Marcos, R. Niembro, M. L. Quelle, and J. Navarro, Phys. Lett.

B271, 277 (1991).
[17] P. Bernardos, S. Marcos, R. Niembro, and M. L. Quelle, Phys.

Lett., B356, 175 (1995).

045804-5



G. H. BORDBAR AND M. BIGDELI PHYSICAL REVIEW C 75, 045804 (2007)

[18] A. Vidaurre, J. Navarro, and J. Bernabeu, Astron. Astrophys.
135, 361 (1984).

[19] M. Kutschera and W. Wojcik, Phys. Lett. B325, 271 (1994).
[20] S. Fantoni, A. Sarsa, and K. E. Schmidt, Phys. Rev. Lett. 87,

181101 (2001).
[21] I. Vidana, A. Polls, and A. Ramos, Phys. Rev. C 65, 035804

(2002).
[22] I. Vidana and I. Bombaci, Phys. Rev. C 66, 045801 (2002).
[23] W. Zuo, U. Lombardo, and C. W. Shen, in Quark-Gluon Plasma

and Heavy Ion Collisions, edited by W. M. Alberico, M. Nardi,
and M. P. Lombardo (World Scientific, Singapore, 2002), p. 192.

[24] A. A. Isayev and J. Yang, Phys. Rev. C 69, 025801 (2004).
[25] W. Zuo, U. Lombardo, and C. W. Shen, nucl-th/0204056;

W. Zuo, C. W. Shen, and U. Lombardo, Phys. Rev. C 67, 037301
(2003).

[26] J. Navarro, E. S. Hernandez, and D. Vautherin, Phys. Rev. C 60,
045801 (1999).

[27] G. H. Bordbar and M. Modarres, J. Phys. G 23, 1631 (1997).
[28] G. H. Bordbar and M. Modarres, Phys. Rev. C 57, 714 (1998).
[29] M. Modarres and G. H. Bordbar, Phys. Rev. C 58, 2781

(1998).
[30] G. H. Bordbar, Int. J. Mod. Phys. A 18, 3629 (2003).

[31] G. H. Bordbar, S. M. Zebarjad, M. R. Vahdani, and M. Bigdeli,
Int. J. Mod. Phys. B 23, 3379 (2005).

[32] M. Modarres and J. M. Irvine, J. Phys. G 5, 511 (1979); 5, 7
(1979).

[33] C. Howes, R. F. Bishop, and J. M. Irvine, J. Phys. G 4, 89 (1978);
4, 11 (1979).

[34] J. C. Owen, R. F. Bishop, and J. M. Irvine, Nucl. Phys. A277,
45 (1977).

[35] C. Howes, R. F. Bishop, and J. M. Irvine, J. Phys. G 4, 123
(1978).

[36] R. F. Bishop, C. Howes, J. M. Irvine, and M. Modarres, J. Phys.
G 4, 1709 (1978).

[37] M. Modarres, J. Phys. G 19, 1349 (1993).
[38] M. Modarres, J. Phys. G 21, 351 (1995).
[39] M. Modarres, J. Phys. G 23, 923 (1997).
[40] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[41] M. Baldo, G. Giansiracusa, U. Lombardo, and H. Q. Song, Phys.

Lett. B473, 1 (2000).
[42] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev.

C 58, 1804 (1998).
[43] L. Engvik et al., Nucl. Phys. A627, 85 (1997).

045804-6


