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We use the Glauber-Gribov multiple scattering formalism and the theory of leading-twist nuclear shadowing to
develop a method for the calculation of leading-twist hard coherent diffraction in hadron-nucleus processes. We
demonstrate that soft multiple rescatterings lead to the factorization breaking of hard diffraction in proton-nucleus
scattering, which is larger than that in hadron-nucleon scattering. For the kinematics encountered at the CERN
Large Hadron Collider (LHC) and at the BNL Relativistic Heavy Ion Collider (RHIC), we compare the hard diffr-
active to electromagnetic (e.m.) mechanisms of hard coherent production of two jets in proton-nucleus scattering.
We study the xIP , β, and A dependence of the ratio of the dijet production cross sections due to the two effects,
R, at the LHC and RHIC kinematics. We demonstrate that in proton-heavy nucleus hard coherent diffraction at
the LHC, R is small, which offers a clean method to study hard photon-proton scattering at energies exceeding
those available at the DESY Hadron Electron Ring Accelerator (HERA) by a factor of ten. In contrast, the use of
lighter nuclei, such as 40Ca, allows the study of the screened nuclear diffractive parton distribution. Moreover, a
comparison of the dijet diffractive production to the heavy-quark-jet diffractive production will estimate the scree-
ned nuclear diffractive gluon PDF, which will be measured in nucleus-nucleus ultraperipheral collisions at the LHC.
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I. INTRODUCTION

In hadron-hadron scattering at high energies, diffractive
processes are characterized by rapid t dependence and by the
absence of detected particles in a certain region of the final
phase space or, in other words, by the presence of the rapidity
gap. When a hard scale is present in diffractive scattering,
such processes are called hard diffraction. The phenomenon
of hard diffraction in proton-antiproton scattering was first
discovered in the pp̄ → pX reaction at the CERN Super
Proton Synchrotron (SPS), when it was observed that the
diffractive final state X with the invariant mass in the range
105 to 190 GeV contained jets with transverse energy between
5 and 13 GeV (the hard scale is given by the jet transverse
momentum) [1]. Later, hard diffraction in proton-antiproton
scattering was studied at the Tevatron in dijet, W, b quark, and
J/� production (see Ref. [2] for a review). The cross section
of each hard diffractive channel constitutes approximately
1% of the contribution of the corresponding channel to the
inclusive pp̄ cross section.

Turning to electron-proton deep inelastic scattering (DIS),
it was one of the surprises of the Hadron Electron Ring
Accelerator (HERA) to observe that hard diffractive events
characterized by a large rapidity gap between the virtual photon
and the proton fragmentation regions constitute about 10% of
the total rate of events [3]. In DIS, the hard scale is provided
by the virtuality of the photon, Q2.
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In the theoretical treatment of soft diffractive processes, the
key role is played by the concept of the “Pomeron,” the Regge
trajectory with vacuum quantum numbers, which provides the
diffractive exchange and determines the high-energy behavior
of elastic and diffractive scattering amplitudes. In the context
of hard diffraction, the notion of Pomeron appears as follows.
The QCD factorization theorem for hard diffraction in DIS
[4] enables one to introduce universal diffractive parton
distribution functions (PDFs), which can relate such processes
as inclusive diffraction, dijet diffractive production, D∗-meson
diffractive production, etc. Making an assumption that the
diffractive PDFs can be factorized into the product of two
terms, representing the Pomeron flux and the Pomeron parton
distributions, one can effectively study the parton content of
the Pomeron, similarly to the parton content of the nucleon in
inclusive DIS [5–9].

A comparison of hard diffraction in proton-antiproton
scattering at the Tevatron to hard diffraction in electron-proton
scattering at the HERA indicates the breakdown of the QCD
factorization: The use of diffractive PDFs extracted from the
HERA measurements significantly overestimates the rates of
hard diffraction at the Tevatron [2,10]. This can be explained
by the absorptive effects associated with multi-Pomeron
exchanges, which make the gap survival very unlikely in the
case of hadronic collisions [11], or by the gradual onset of the
so-called black disk regime for the proton-proton collisions at
small impact parameters [12].

Turning to diffraction in hadron-nucleus and lepton-nucleus
scattering, the situation can be briefly summarized as follows.
Soft coherent (without the nuclear breakup) diffraction in
hadron-nucleus scattering at high energies can be success-
fully described within the framework of the Glauber-Gribov
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approach by taking into account cross section (color) fluctua-
tions in the hadronic projectile [13–16] (see also Sec. II).

In DIS on nuclear targets, nuclear diffractive PDFs at small
values of Bjorken x can be expressed in terms of the nucleon
diffractive PDFs, which are known from the HERA studies
[17]. This approach to nuclear diffractive PDFs and to usual
nuclear parton distribution functions is based on the Gribov’s
connection between the nuclear shadowing correction and the
elementary diffractive cross section, the QCD factorization
theorem for hard diffraction in DIS [4], and the QCD analysis
of HERA data on hard diffraction [5–9] (see Ref. [18] and
references therein and also Sec. II).

In this work, we study hard diffraction in proton-nucleus
collisions. As an example, we derive the expression for the
cross section of the hard coherent diffractive production of two
jets in proton-nucleus scattering. We analyze the suppression
of hard diffraction in proton-nucleus scattering compared
to hard diffraction in proton-proton scattering. A numerical
analysis of the corresponding suppression factor enables us
to quantify the QCD factorization breaking in hard proton-
nucleus diffraction due to the soft screening (absorption).

This article consists of two parts. In Sec. II, we derive
a general expression for the nuclear modifications of hard
diffraction in proton-nucleus scattering. We demonstrate that
because of multiple soft rescatterings, at the energies of the
CERN Large Hadron Collider (LHC) and the BNL Relativistic
Heavy Ion Collider (RHIC), hard diffractive processes such as
the production of two jets, heavy flavors, etc., are suppressed
more strongly than soft inelastic diffraction, which in turn is
expected to be strongly suppressed [13,15,16].

In Sec. III, we compare the contribution of hard coherent
proton-nucleus diffraction into two jets (including heavy-
quark jets) to the e.m. contribution, when the final state
containing two hard jets is produced by the coherent nuclear
Coulomb field. We demonstrate that the e.m. contribution
dominates proton-heavy nucleus (such as 208Pb) scattering
at the LHC, which provides essentially a background-free
method to study very-high-energy γp scattering at the LHC
through ultraperipheral proton-nucleus scattering. We show
that using lighter nuclei, which do not produce such a strong
flux of equivalent photons as 208Pb, one can study screened
nuclear diffractive PDFs. In this case, a comparison of the
dijet diffractive production to the heavy-quark-jet diffractive
production will measure the nuclear screened diffractive gluon
PDF. The latter can be compared to the nuclear diffractive
PDFs, which will be measured in nucleus-nucleus ultraperiph-
eral collisions at the LHC. The conclusion about the dominance
of the hard diffractive mechanism over the e.m. one, when light
nuclei are used, also holds in the RHIC kinematics.

Our results are also valid for the diffraction in resolved
photon-nucleus interactions. Because in this case several other
effects are also important, we will discuss hard diffraction in
γA interactions in a separate publication.

II. SUPPRESSION FACTOR FOR HARD
PROTON-NUCLEUS DIFFRACTION

The derivation of the expression for the amplitude of hard
diffraction in hadron-nucleus scattering combines features of

soft coherent diffraction in hadron-nucleus scattering and hard
coherent diffraction in DIS on nuclear targets. Therefore, we
briefly review coherent soft and hard diffraction below.

A. Soft coherent proton-nucleus diffraction

At high energies, the cross section of soft coherent hadron-
nucleus diffraction (diffraction dissociation), σ hA

DD, can be
economically and reliably calculated using the Glauber-Gribov
multiple scattering formalism [19–21] generalized to include
the so-called cross section (color) fluctuations in the projectile
[13–16],

σ hA
DD =

∫
d2b

( ∫
dσP (σ )|�A(b, σ )|2

−
∣∣∣∣
∫

dσP (σ )�A(b, σ )

∣∣∣∣
2 )

. (1)

In Eq. (1), b is the impact parameter (the two-dimensional
vector connecting the trajectory of the projectile with the center
of the target nucleus); P (σ ) is the probability of finding a
hadronic configuration in the projectile, which interacts with
target nucleons with the cross section σ ; �A is the projectile-
nucleus scattering amplitude in the impact parameter space
[20]

�A

(
b, σ

) = 1 − exp
(− 1

2σTA(b)
)
, (2)

where TA(b) = ∫
dz ρA(b, z) and ρA is the nucleon density

normalized to the number of nucleons A. The energy-
dependence of σ hA

DD is determined by the energy-dependence
of P (σ ), which is implied [16]. Note that in Eq. (2),
we neglected the slope of the elementary hadron-nucleon
scattering amplitude compared to the nuclear size and we
assumed that the elementary scattering amplitude is purely
imaginary, which is a good approximation at the high energies
that we consider in this work.

The function P (σ ) describes the probability that the
incoming hadron interacts with target nucleons with a given
cross section σ . In other words, P (σ ) describes cross section
fluctuations in the energetic projectile. The notion of P (σ ) is
introduced to have a compact phenomenological description
of soft coherent diffraction in hadron-nucleon and hadron-
nucleus scattering. As follows from Eq. (1), ignoring cross
section fluctuation, i.e., setting P (σ ) ∝ δ(σ − σtot), would
result in the unacceptable result that σ hA

DD = 0.
The formalism of cross section fluctuations is based on

the simple picture of diffractive dissociation in the laboratory
reference frame developed by Feinberg and Pomeranchuk
[22] and by Good and Walker [23]. In this picture, the
incoming hadron is represented by a coherent superposition
of eigenstates of the scattering operator. Because different
eigenstates correspond to different σ , the scattered state is
in general different from the incoming state, but it has the
same quantum numbers. This corresponds to the process of
diffractive dissociation.

One should note that the formalism of cross section
fluctuations implicitly uses the assumption of the completness
of the scattering eigenstates and, hence, it is applicable only
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at t ≈ 0. At t �= 0, the diffractive final state can be produced
as a result of some effective interaction or as a result of hard
parton scattering (for sufficiently large t), which has nothing
to do with the cross section fluctuations in the projectile.

The function P (σ ) is different for different projectiles
(protons, pions, photons). For the proton, P (σ ) has a narrow
dispersion around σ = σtot, where σtot is the total proton-
nucleon cross section. Therefore, one can Taylor-expand the
integrand in Eq. (1) around σtot and keep only the first two
nonvanishing terms

σ hA
DD ≈ ωσσ 2

tot

4

∫
d2bT 2

A(b)e−σtotTA(b). (3)

In Eq. (3), ωσ is the energy-dependent parameter, which is
proportional to the proton-proton diffractive dissociation cross
section and which controls the magnitude of cross section
fluctuations

ωσ =
∫

dσσ 2P (σ )

[
∫

dσσP (σ )]2
− 1. (4)

Equation (1) can be interpreted as follows. The incoming
proton diffractively dissociates on the front face of the target
nucleus. The corresponding scattering amplitude squared is
proportional to ωσσ 2

totT
2
A(b). On the way through the nucleus,

the produced diffractive state interacts with all nucleons of
the target and becomes partially absorbed (suppressed). The
corresponding soft suppression factor can be read off from
Eq. (3),

T
pA

soft = exp (−σtotTA(b)) . (5)

Note that because we have assumed that the dispersion of P (σ )
around σ = σtot is small, the soft suppression factor depends
only on σtot.

B. Hard coherent diffraction in DIS on nuclear targets

Inclusive and coherent DIS on nuclear targets measure
usual and diffractive nuclear PDFs, respectively. The theory
of leading twist nuclear shadowing of usual and diffractive
nuclear PDFs is based on the Gribov’s relation between nuclear
shadowing and diffraction [21,24], Collins’ factorization
theorem for hard diffraction in DIS [4], and the QCD analysis
of the HERA data on hard diffraction in DIS on hydrogen [5–9]
(see Ref. [18] for the review and references).

According to this approach, the nuclear shadowing cor-
rection, δfj/A, to the nuclear PDF of the flavor j, fj/A =
Af j/N − δfj/A, is expressed in terms of the proton diffractive

PDF f
D(4)
j/N [17,24] ,

δxfj/A

(
x,Q2

0

) = 8π�e

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

×
∫ x0

x

dxIPβf
D(4)
j/N

(
x,Q2

0, xIP, t = 0
)

× ρA(b, z1)ρA(b, z2)eixIPmN (z1−z2)

× e
− 1−iη

2 σ
j

eff (x,Q2
0)

∫ z2
z1

dz′ρA(b,z′)
]
. (6)

In Eq. (6), x and Q2
0 are the Bjorken variables; xIP is the

target longitudinal momentum fraction loss or the longitudinal
momentum fraction carried by the diffractive exchange (the
“Pomeron”); β = x/xIP; x0 = 0.1; σ

j

eff is the effective
rescattering cross section of the intermediate diffractive state;
and η is the ratio of the real to the imaginary parts of
the elementary diffractive amplitude. In the present analysis,
η = π/2(αIP(0) − 1) = 0.185 [8,9].

It is important to mention that since the t dependence
of the nuclear form factor is much steeper than that of the
nucleon diffractive structure function, it is a good approx-
imation to use f

D(4)
j/N (x,Q2

0, xIP, tmin) [tmin ≈ −(xIPmN )2]

instead of f
D(4)
j/N (x,Q2

0, xIP, t) in Eq. (6). Moreover, in the
considered range of Bjorken x, tmin is small enough so that
f

D(4)
j/N (x,Q2

0, xIP, tmin) and f
D(4)
j/N (x,Q2

0, xIP, t = 0) practically
coincide.

As follows from Eq. (6), σ
j

eff determines the nuclear
correction to δfj/A due to the interaction with two and more
nucleons (the interaction associated with the rescattering of the
intermediate diffractive state). This cross section is defined
in terms of the nucleon diffractive (f D(4)

j/N ) and usual (fj/N )
PDFs [18,24],

σ
j

eff

(
x,Q2

0

) = 16π

xfj/N

(
x,Q2

0

)
×

∫ x0

x

dxIPβf
D(4)
j/N

(
β,Q2

0, xIP, t = 0
)
. (7)

Figure 1 presents σ
j

eff for gluons and ū quarks as a function
of x at Q2

0 = 4 GeV2. We used the recent QCD analysis of
H1 data on hard diffraction at HERA [8,9] and CTEQ5M fit
to inclusive PDFs [25].

Also, because Eq. (7) involves the nucleon diffractive
PDFs at t = 0, one must make an assumption about the
t dependence of the nucleon diffractive PDFs. Experimentally,
the t dependence of the diffractive cross section is found to be
practically constant as a function of β, while the contribution
of the gluon diffractive PDF increases strongly with a decrease
of β [8,9]. Hence, in this work, we assume that all PDFs have
the same exponential t dependence,

f
D(4)
j/N

(
β,Q2

0, xIP, t
) = e−Bdiff |t |f D(4)

j/N

(
β,Q2

0, xIP, t = 0
)
, (8)
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FIG. 1. The effective cross section σ
j

eff of Eq. (7) for ū quarks and
gluons at Q2

0 = 4 GeV2.
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FIG. 2. The ratio of the nuclear to nucleon
PDFs, fj/A/(Afj/N ), for 40Ca and 208Pb at Q2 =
4, 10, and 100 GeV2 as a function of Bjorken x

[see Eq. (6)]. The solid curve corresponds to ū

quarks; the dotted curve corresponds to gluons.

where Bdiff = 6 GeV−2 is taken from the recent H1
measurement with the leading proton spectrometer [9].

Figure 2 presents an example of our calculation of nuclear
shadowing for nuclear PDFs of 40Ca and 208Pb as a function
of Q2 and Bjorken x. The solid curve corresponds to the
ratio fj/A/(Afj/N ) for ū quarks; the dotted curve corresponds
to gluons. The lower set of curves corresponds to Q2 =
Q2

0 = 4 GeV2. In addition to the nuclear shadowing given by
Eq. (6), we have introduced an enhancement (antishadowing)
of nuclear gluon PDF on the interval 0.03 � x � 0.2, which is
modeled by requiring the conservation of the momentum sum
rule (see, e.g., Ref. [18]). The two other sets of predictions
for Q2 = 10 GeV2 and Q2 = 100 GeV2 are obtained
by next-to-leading order (NLO) Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations.

We would like to point out that the numerical analysis of
nuclear shadowing presented in this work differs from our
earlier analyses (see, e.g., Ref. [18]), because we now use
the most recent H1 fits to nuclear diffractive PDFs and a
different value of Bdiff [see Eq. (8)]. However, the changes
in the predicted nuclear shadowing are not large. The ratio
fj/A/(Afj/N ) for ū quarks in Fig. 2 is very similar to our
earlier result [18]. In the gluon channel, the ratio fj/A/(Afj/N )
in Fig. 2 is similar to the lower-gluon-shadowing scenario of
Ref. [18].

Next we turn to nuclear diffractive PDF. In the Glauber-
Gribov approach, the nuclear diffractive PDF of the flavor
j, f

D(3)
j/A , is expressed in terms of the proton diffractive PDF

f
D(4)
j/N as follows [17],

xf
D(3)
j/A

(
x,Q2

0, xIP
)

= 4πβf
D(4)
j/N

(
x,Q2

0, xIP, t = 0
) ∫

d2b

×
∣∣∣∣
∫ ∞

−∞
dzeixIPmNze−σ

j

eff (x,Q2
0)/2

∫ ∞
z

dz′ρA(b,z′)ρA(b, z)

∣∣∣∣
2

≈ 16πf
D(4)
j/N

(
x,Q2

0, xIP, t = 0
)

×
∫

d2b

(
1 − e−σ

j

eff (x,Q2
0)/2TA(b)

σ
j

eff

(
x,Q2

0

)
)2

. (9)

The last line is an approximation valid at small xIP, when the
effect of the coherence length [the factor exp(ixIPmNz)] can
be neglected. In the opposite limit of large xIP, xIP � 0.05,
the dominant contribution to the nuclear diffractive structure
function is given by the impulse approximation, i.e., by

Eq. (9), where σ
j

eff is set to zero. In Eq. (9), the
superscripts (3) and (4) denote the dependence on three and
four variables, respectively. Note that similarly to Eq. (3),
we neglected the slope and the real part of the elementary
diffractive amplitude in Eq. (9).

One can quantify nuclear diffractive PDFs by introducing
the probability of diffraction for a given parton flavor j, P

j

diff
[24],

P
j

diff =
∫ x0

x
dxIPxf

D(3)
j

(
x,Q2

0, xIP
)

xfj

(
x,Q2

0

) . (10)

An example of the evaluation of the probability of hard
diffraction in DIS according to Eq. (10) is presented in Fig. 3,
where P

j

diff is plotted at fixed Q2
0 = 4 GeV2 as a function of

Bjorken x. The left panel corresponds to DIS on 40Ca; the right
panel corresponds to DIS on 208Pb. For comparison, the results
for DIS on hydrogen are also given by thin curves. The solid
curves correspond to the ū-quark channel; the dotted curves
correspond to the gluon channel.

We would like to point out the following two features of
P

j

diff presented in Fig. 3. First, the difference between the
quark and the gluon channels is very small. While the quark
and gluon diffractive and usual nuclear PDFs are different,
their difference cancels to a large extent in the ratio P

j

diff
(the cancelation is larger for heavier nuclei). Second, even
for such a heavy nucleus as 208Pb, P

j

diff � 0.36, which should
be compared to the asymptotic (A → ∞ and σ

j

eff → ∞) upper
limit P

j

diff = 0.5. An examination shows that while close to
the center of the nucleus (b ≈ 0), the probability of diffraction
is very close to 1/2, and the contribution of the nuclear edge
significantly dilutes P

j

diff .
Equation (9) can be interpreted as follows. The incoming

virtual photon fluctuates into its hard diffractive component a
long time before the photon interacts with the target (we ignore
the effect of the finite coherent length). The hard diffractive
component elastically rescatters on the target nucleus, which
gives the suppression factor [1 − exp( − 1

2σ
j

eff(x,Q2
0)TA(b)]2,

and emerges as the final hard diffractive state.
One should note that the approximate expression for f

D(3)
j/A

[the last line in Eq. (9)] corresponds to the first term in Eq. (3)
because the elastic contribution to DIS is absent (suppressed
by the smallness of αe.m.). Therefore, the analogy between
Eqs. (3) and (9) enables us to introduce the attenuation factor
characterizing the suppression of hard coherent diffraction in
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FIG. 3. The probability of hard diffraction
in DIS, P

j

diff [see Eq. (10)]. The left panel
corresponds to DIS on 40Ca; the right panel
corresponds to DIS on 208Pb. For comparison,
the results for DIS on hydrogen are given by
thin curves. The solid curves correspond to the
ū-quark channel; the dotted curves correspond
to the gluon channel.

DIS on nuclear targets due to nuclear shadowing,

T
γ ∗A

hard = exp
(−σ

j

eff

(
x,Q2

0

)
TA(b)

)
. (11)

The graphical representation of Eq. (9), when only the
interaction with one and two nucleons of the target is retained,
is shown in Fig. 4. The right graph helps explain why T

γ ∗A
hard

is driven by σ
j

eff . As seen from the graph, the strength of the
hard rescattering is defined by the XN → XN cross section
summed over all X. This cross section is nothing but the ratio
of the γ ∗N → XN to the γ ∗N → X cross sections summed
over X, which corresponds exactly to σ

j

eff defined by Eq. (7).
It is important to emphasize that, in general, the calculation

of T
γ ∗A

hard is model independent only for the interaction with one
or two nucleons. For the interaction with N � 3 nucleons, we
implicitly used the so-called quasi-eikonal approximation in
Eq. (11), which assumes that the diffractively produced state
elastically rescatters on the nucleons. This approximation is
equivalent to the observation of the small dispersion of P (σ )
used in the derivation of Eq. (3).

C. Hard coherent proton-nucleus diffraction

As an example of hard coherent diffractive processes on
heavy nuclear targets, we consider the hard coherent diffractive
production of two jets in the reaction p + A → 2 jets +
X + A. In this process, A denotes the nucleus, X denotes the
soft diffractive component, and the invariant mass of the jets
provides the hard scale.

The cross section of the p+A → 2 jets+X+A reaction can
be readily obtained by generalizing the well-known expression
for the dijet inclusive cross section in hadron-hadron scattering
[26] and by introducing the new quantity, the screened nuclear

γ∗ γ∗

X
XX

A A A A

FIG. 4. Feynman graphs representing the first two terms of
the multiple scattering series (9) for the nuclear diffractive parton
distribution f

D(3)
j/A .

diffractive PDFs f̃
D(3)
j/A ,

d3σp+A→2 jets+X+A

dx1dp
2
T dxIP

∝
∑

i,j,

k,l=q,q̄,g

fi/p

(
x1,Q

2
eff

)
f̃

D(3)
j/A

(
x2,Q

2
eff, xIP

)

×
∑

|M(ij → kl)|2 1

1 + δkl

, (12)

where fi/p are the usual proton PDFs;
∑ |M(ij → kl)|2 are

the invariant matrix elements for two-to-two parton scattering
given in Table 7.1 of [26]; x1 and x2 are the light-cone
momentum fractions of the proton and the nucleus active
quarks, respectively; pT is the transverse momentum of each
of the final jets; and Qeff is the effective hard scale of the
process. For the simplification of our analysis, we consider
only the case of 90◦ hard parton scattering in the center of
mass, which constrains x1 (as a function of x2 = βxIP) and
Q2

eff ,

x1 = 4p2
T

βxIPs
, Q2

eff = 4p2
T , (13)

where
√

s is the proton-nucleon invariant energy. The term
“screened PDF” means that this parton distribution contains
certain soft suppression effects; i.e., the screened PDF is
suppressed compared to the analogous PDF extracted from
hard processes.

The derivation of the expression for the screened nuclear

diffractive PDFs, f̃
D(3)
j/A , is carried out similarly to the deriva-

tion of Eq. (3) [see also Fig. 5],

f̃
D(3)
j/A

(
x,Q2

0, xIP
) ≈ 4πf̃

D(4)
j/N

(
x,Q2

0, xIP, t = 0
)

×
∫

d2bT 2
A(b)e−(σtot(s)+σ

j

eff (x,Q2
0))TA(b),

(14)

where f̃
D(4)
j/N is the screened diffractive PDF of the nucleon,

which enters the QCD description of the p+p → 2 jets+X+p

reaction; σtot is the total proton-nucleon cross section; and
σ

j

eff is the effective rescattering cross section of Eq. (7). In
Eq. (14), we neglected the slope and the real part of the
elementary p + N → 2 jets + X + N scattering amplitude
and a small longitudinal momentum transfer in the p + N →
2 jets + X + N vertex.
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FIG. 5. Feynman graphs representing the first two terms of the
multiple scattering series for the p + A → 2 jets + X + A scattering
amplitude.

It is important to emphasize that in the case of hard
coherent proton-nucleus diffraction, the nuclear suppression
factor, T

pA
hard, is a product of the soft and hard suppression

factors introduced previously,

T
pA

hard = T
pA

softT
γ ∗A

hard . (15)

This can be understood from Fig. 5, which represents the single
and double scattering contributions to the p+A → 2 jets+X+
A scattering amplitude. The rescattering cross section of the
middle graph is σtot; the rescattering cross section of the right
graph is σ

j

eff (we assume that all diffractive intermediate states
correspond to the same rescattering cross section). Therefore,
the resulting nuclear attenuation, which results from the sum
of the middle and right graphs, is driven by the σtot +σ

j

eff cross
section.

Equation (14) can be interpreted in two complimentary
ways. On the one hand, one can start from soft diffractive
dissociation of protons on heavy nuclei [see Eq. (3)]. Because
we are interested in the hard diffractive component of the
diffractive dissociation cross section, one must take into
account the additional suppression of nuclear diffractive PDFs
given by T

γ ∗A
hard . As a result, one arrives at Eq. (15). On the

other hand, one can start from the expression for inclusive
diffraction of protons on nuclei, which is proportional to
the nuclear diffractive PDFs (9). Because the final diffractive
state contains a soft component, which is partially absorbed by
the nucleus, one should take into account this suppression by
introducing the factor T

pA
soft, which represents the probability

of the absence of soft inelastic interactions at a given impact
parameter b.

We quantify the suppression of the nuclear screened

diffractive PDFs f̃
D(3)
j/A compared to the nucleon screened

diffractive PDFs f̃
D(3)
j/N by introducing the factor λj ,

λj (x,Q2) ≡ f̃
D(3)
j/A (β,Q2, xIP)

f̃
D(3)
j/N (β,Q2, xIP)

= 4π
f̃

D(4)
j/N

(
x,Q2

0, xIP, t = 0
)

f̃
D(3)
j/N (β,Q2, xIP)

×
∫

d2bT 2
A(b)e−(σtot(s)+σ

j

eff (x,Q2))TA(b)

= Bdiff(4π )
∫

d2bT 2
A(b)

× exp
[−(σtot(s) + σ

j

eff(x,Q2))TA(b)
]
, (16)

where in the last line we introduced the slope of the
t dependence of the screened diffractive PDFs,

f̃
D(4)
j/N (β,Q2, xIP, t) = exp(−Bdiff|t |)f̃ D(4)

j/N (β,Q2, xIP, t = 0).

(17)

Note also that f̃
D(3)
j/N (β,Q2, xIP) ≡ ∫

dtf̃
D(4)
j/N (β,Q2, xIP, t).

Certain features of Eq. (16) deserve a discussion. First,
while the diffractive PDFs depend separately on β and xIP,
the suppression factor λj depends only on their product x =
βxIP in our approach. Second, at the LHC energies, where σtot

is of the order of 100 mb, the dependence of λj on σ
j

eff is
rather weak. Therefore, we expect that λj is rather similar for
different parton flavors j . In addition, because the slope Bdiff

is independent on the hard scale Q2 in our approach, λj has
very weak dependence on Q2, which enters only through the
Q2 dependence of σ

j

eff .
In our numerical analysis of Eq. (16), we used the following

input. The slope of the t dependence of f̃
D(4)
j/N was taken from

the recent H1 measurement of hard inclusive diffraction in DIS
on hydrogen, Bdiff = 6 GeV−2 [9].

The total proton-nucleon scattering cross section σtot was
taken from [27]

σtot(s) = 21.7 s0.0808 + 56.08 s−0.4525. (18)

The effective cross section σ
j

eff was evaluated using
Eq. (7) and the recent QCD fits to the H1 measurement of
hard inclusive diffraction on hydrogen [8,9] (see Fig. 1).

For the nucleon density ρA, the two-parameter Fermi model
was used [28].
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FIG. 6. The suppression factor λj of
Eq. (16) as a function of Bjorken x at Q2 =
4 GeV2 in the LHC (

√
s = 8.8 TeV) and RHIC

(
√

s = 200 GeV) kinematics. The solid curves
correspond to the ū quark; the dotted curves
correspond to the gluons.
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FIG. 7. The suppression factor λj of Eq. (16) as a function of the atomic number at x = 10−3 and at Q2 = 4 GeV2 in the LHC (
√

s ≈
9 TeV) and RHIC (

√
s = 200 GeV) kinematics. The labeling of the curves is the same as in Fig. 6.

Figures 6 and 7 present the results of our calculations of
λj in the LHC and RHIC kinematics. The LHC kinematics
corresponds to

√
s ≈ 9 TeV per nucleon for proton-nucleus

collisions [29]; the RHIC kinematics corresponds to
√

s =
200 GeV. Figure 6 gives λj as a function of Bjorken x at
Q2 = 4 GeV2. The solid curves correspond to the ū quark; the
dotted curves correspond to the gluons. Despite the fact that λj

is of the order of unity at the LHC and of the order of several
units at the RHIC energies, the corresponding suppression of
hard diffraction is very large because, in the absence of the
suppression, nuclear diffractive PDFs are enhanced compared
to the nucleon diffractive PDFs by the factor f

D(3)
j/A /f

D(3)
j/N ∝

A4/3.
Figure 7 presents the A dependence of λj at x = 10−3

and at Q2 = 4 GeV2, i.e., at fixed σ
j

eff . As seen from Fig. 7,
the A dependence of λj is rather slow. A simple fit gives that
λj ∝ A0.28 at the LHC and RHIC.

III. HARD DIFFRACTION AND ULTRAPERIPHERAL
PROTON-NUCLEUS COLLISIONS

In proton-heavy nucleus (208Pb, for example) collisions,
most of the diffractive events (∼80%) will be generated by the
scattering of the proton off the coherent nuclear Coulomb field
at large impact parameters, p+A → p+γ +A → X+A [16]
(see Fig. 8).

These ultraperipheral proton-nucleus collisions open a
possibility for studies of hard photon-proton interactions at
extremely high energies and allow one to probe the gluon
density in the proton at the values of Bjorken x, which are a
factor of ten smaller (for the same virtuality) than those probed
at HERA [30–32].

γ
Xp

A

A

FIG. 8. The ultraperipheral p + A → X + A scattering.

In this section, we estimate the ratio of the jet production
in hard coherent proton-heavy nucleus diffraction (p + A →
2 jets + X + A) to the production of hard jets by the photon-
proton interaction, where the photon is coherently produced by
the elastically recoiled nucleus, p+A → p+γ +A → 2 jets+
X+A. This corresponds to the situation when the generic final
state X in Fig. 8 contains a hard two-jet component and a soft
remaining part X.

Qualitatively, we expect that the ratio of the hard dijet
production due to these two mechanisms will be rather small
because of the following two suppression effects.

First, hard diffractive dijet production is suppressed by
the factor discussed in Sec. II. Second, the shapes of the
parton distribution in the photon and in the screened nuclear
diffractive PDFs are rather different. In the photon case, the
dominant contribution to the photon PDFs comes from β ∼ 1
corresponding to the kinematics where a pair of jets is at the
rapidities close to the gap. On the other hand, in the screened
nuclear diffractive PDFs at large virtualities, which are relevant
for the measurements at the LHC, the main contribution comes
from small β (see Fig. 3 of [17]).

Using the definition of the suppression factor λj (16), the
hard coherent proton-nucleus diffractive dijet cross section can
be written as [see Eq. (12)]

d3σp+A→2 jets+X+A

dx1dp
2
T dxIP

∝ rh

∑
i,j,

k,l=q,q̄,g

fi/p

(
x1,Q

2
eff

)
λj

(
βxIP,Q2

eff

)

× f
D(3)
j/N

(
β,Q2

eff, xIP
)∑

|M(ij → kl)|2 1

1 + δkl

. (19)

In the second line of Eq. (19), we introduced an additional
suppression factor rh,

f̃
D(3)
j/N = rhf

D(3)
j/N , (20)

which, according to the discussion in Sec. I, takes into account
the significant factorization breaking in hard hadron-hadron
diffraction.
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In our numerical analysis, we used the following model for
the suppression factor rh,

rh = 0.75

N (s)
= 0.75

(∫ 0.1

1.5/s

dxIP

∫ 0

−∞
dtfIP/p(xIP, t)

)−1

. (21)

This expression is based on the phenomenological model of
Ref. [10], which describes the suppression of diffraction at the
Tevatron (

√
s = 546 and 1800 GeV) by rescaling the Pomeron

flux, fIP/p(xIP, t), by the factor N (s). In Eq. (21), the Pomeron
flux is given by the following expression

fIP/p(xIP, t) = 1

x1+2ε+2α′t
IP

β2
IPpp(t)

16π
, (22)

where ε = 0.1, α′ = 0.25 GeV−2, and βIPpp(t) is the IPpp form
factor [10].

We also introduced the additional factor 0.75 in Eq. (21)
to phenomenologically take into account the observation that
the effects of factorization breaking should be larger in the
elementary diffractive PDFs at t = 0 [see Eq. (16)] than in the
t-integrated diffractive PDFs [see Eq. (21)].

The application of Eq. (21) at the RHIC and LHC energies
gives

rh = 1

4.2
, RHIC,

rh = 1

16.0
, LHC.

(23)

Note that as follows from the definition (21), the suppression
factor rh is assumed to be xIP independent.

Next we discuss the hard coherent dijet production in
proton-nucleus scattering via the e.m. mechanism, when the
nucleus coherently emits a quasi-real photon that interacts
with the proton and diffractively produces two hard jets,
p + A → p + γ + A → 2 jets + X + A (see Fig. 8). The
corresponding cross section can be written as a sum of the
resolved and direct photon contributions (the separation into
the resolved and direct components is only meaningful in the
leading-order calculation),

d3σ
p+A→2 jets+X+A
e.m.

dx1dp
2
T dxIP

∝ re.m.

∑
i,j,

k,l=q,q̄,g

fi/p

(
x1,Q

2
eff

)n(xIP)

xIP
fj/γ

(
β,Q2

eff

)

×
∑

|M(ij → kl)|2 1

1 + δkl

+
∑

i,j,

k,l=q,q̄,g

fi/p

(
x1,Q

2
eff

)

× n(xIP)

xIP
δ(β − 1)

∑
|M(iγ → kl)|2 1

1 + δkl

, (24)

where n(xIP) is the flux of equivalent photons [30] expressed
in terms of xIP instead of the photon energy ω (note the
factor 1/xIP coming from the 1/ω in the spectrum of the
equivalent photons), fj/γ is the PDF of the real photon,∑ |M(iγ → kl)|2 are invariant matrix elements for the
direct photon-parton scattering (see Table 7.9 in [26]), and
re.m. is a phenomenological factor describing the factorization

breaking for the resolved (hadron-like) component of the
real photon. The exact value of re.m. is uncertain: It ranges
from re.m. = 0.34 [33] to re.m. ≈ 1 with large errors [34].
Because our analysis is a simple leading-order estimate, we
conservatively take re.m. = 0.5.

The flux of equivalent photons approximately equals [30]

n(xIP) ≈ 2Z2αe.m.

π
ln

(
γ

RAxIPplab

)
, (25)

where Z is the nuclear charge, γ is the Lorentz factor
(γ ≈ 3000 for proton-Pb scattering at the LHC [29]),
RA = 1.145A1/3 fm is the effective nuclear radius, and plab is
the momentum of the nucleus in the laboratory frame (plab ≈
2.75 TeV for proton-Pb scattering at the LHC). In practice,
we used a more precise formula for the flux of the equivalent
photons, which reduces the result of Eq. (25) by 11% [35].

We are now ready to estimate the ratio of the hard
diffractive dijet cross sections corresponding to the hard and
e.m. mechanisms, R,

R(β, xIP, pT ) = d3σp+A→2 jets+X+A

dx1dp
2
T dxIP

/
d3σ

p+A→2 jets+X+A
e.m.

dx1dp
2
T dxIP

,

(26)

where the involved cross section are given by Eqs. (12) and (24)
with the equal coefficients of proportionality. In the simplified
kinematics that we use, at given pT and xIP, the ratio R depends
only on β.

We considered two cases: The dijet production summed
over gluon and quark jets and the production of two heavy-
quark jets (c and b quarks). The resulting ratios R at pT =
5 GeV and xIP = 10−4, 10−3, and 10−2 as functions of β are
presented in Fig. 9. The left panel corresponds to quark and
gluon jets; the right panel corresponds to heavy-quark jets.

The results presented in Fig. 9 deserve a detailed discussion.
The dependence of the ratio R on xIP is not too strong and can
be explained as follows. The main contribution to the xIP de-
pendence of R at fixed β comes from the changing of x1. As xIP

is decreased, x1 is increased, which diminishes the role played
by the gluons in the projectile. As explained subsequently, it
is the gluon contribution that increases R. Hence, R decreases
with decreasing xIP. Note that the dependence of diffractive
PDFs on xIP, f

D(3)
j/N (β, xIP,Q2

eff) ∝ 1/x1+2ε
IP [see Eq. (22)], is

similar to the 1/xIP ln(1/xIP) behavior of the e.m. cross section.
Therefore, these two factors weakly affect the xIP dependence
of R.

The dependence of R on β is much faster and reflects
different shapes of the proton diffractive PDFs and PDFs of
the real photon. While the proton diffractive PDFs times β

are flat in the β → 0 limit, the photon PDFs times β grow.
This explains why R approaches zero when β is small. In the
opposite limit, β → 1, diffractive PDFs vanish and the e.m.
contribution wins over due to the nonvanishing direct photon
contribution: R → 0 as β → 1.

In Fig. 9, the ratio R at its peak is much larger for the
production of quark and gluon jets than for the production
of heavy-quark jets. An examination shows that this effect is
due to the large gluon diffractive PDF, which in tandem with
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FIG. 9. The suppression of hard diffractive dijet (quark and gluon jets) production compared to e.m. coherent dijet production in proton-Pb
scattering at the LHC. The suppression factor R of Eq. (26) at pT = 5 GeV and xIP = 10−4, 10−3, and 10−2 as a function of β. The left panel
corresponds to quark and gluon jets; the right panel corresponds to heavy-quark jets.

the large gg → gg hard parton invariant matrix element [26]
works to increase R in the presence of the gluon jets.

We used the following input in our numerical analysis
of the ratio R. We used the LO parametrization of the real
photon PDFs from Ref. [36]. We have also checked that the
use of a different parametrization [37] leads to rather similar
predictions.

For the nucleon diffractive PDFs, we used the recent
QCD fit to the H1 data on hard inclusive diffraction in DIS
on hydrogen [8,9]. The suppression factor λj , which enters
Eq. (26) at the scale Q2 = Q2

eff = 4p2
T = 100 GeV2,

was evaluated using Eq. (16) with σ
j

eff(x,Q2) at the same
Q2 = Q2

eff = 100 GeV2 scale [see Eq. (7)].
The δ function for the direct photon contribution was

numerically modeled in the simple form

δ(β − 1) = 1

π

ε

(β − 1)2 + ε2
, with ε = 0.01. (27)

It is instructive to examine how our predictions for the
suppression factor R change when the heavy nucleus of 208Pb is
replaced by a lighter nucleus of 40Ca. Note that, for proton-Ca
scattering at the LHC,

√
s = 9.9 TeV and γ ≈ 3700 [29]. We

expect that the ratio R will significantly increase because of

the reduction of the flux of the equivalent photons [the flux is
proportional Z2 (25)].

Figure 10 presents the ratio R for 40Ca. The labeling of
the curves is the same as in Fig. 9. As can be seen from the
comparison of Figs. 10 and 9, the ratio R increases by the
factor ≈ 7–10, when going from 208Pb to 40Ca.

Besides the LHC, the RHIC also has a potential to measure
hard diffraction in proton-nucleus scattering. We consider a
typical example of the corresponding RHIC kinematics with
250 GeV protons scattering on 100 GeV/per nucleon nuclei
(the corresponding

√
s ≈ 320 GeV and the Lorentz dilation

factor is γ ≈ 100). Producing sufficiently high diffractive
masses, e.g., M2

X = 500 GeV2, one accesses the typical
kinematics of hard diffraction, xIP = 5 × 10−3 and β > 0.3.
Note also that the suppression of hard diffraction at the RHIC
is approximately four times smaller than at the LHC [see
Eq. (23)].

We studied the suppression factor R of Eq. (26) in the
considered RHIC kinematics at pT = 5 GeV. The resulting
values of R as a function of β are presented in Fig. 11. The
solid curves correspond to quark and gluon jets; the dotted
curves correspond to heavy-quark jets.

0

 0.2

 0.4

 0.6

 0.8

 1

0  0.2  0.4  0.6  0.8 1

R

β

Ca-40, LHC
Quark and gluon jets

xP=0.0001
xP=0.001
xP=0.01

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

0
0

 0.2  0.4  0.6  0.8 1

R

β

Ca-40, LHC
Heavy-quark jets

xP=0.0001
xP=0.001
xP=0.01

FIG. 10. The suppression factor R of Eq. (26) for proton-40Ca scattering at the LHC. The labeling of the curves is the same as in Fig. 9.
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As seen from Fig. 11, the factor R at the RHIC is larger than
that at the LHC. This is mostly a consequence of the decrease
of the flux of equivalent photons when going from the LHC to
the RHIC kinematics.

IV. CONCLUSIONS

Using the Glauber-Gribov multiple scattering formalism
and the leading twist theory of nuclear shadowing, we devel-
oped a method for the calculation of coherent hard diffraction
processes off nuclei. We showed that soft multiple rescatterings
lead to the factorization breaking of hard diffraction in
proton-nucleus scattering, which is larger than the well-
known factorization breaking of diffraction in hadron-nucleon
scattering.

On the basis of these results, we compare the hard
diffractive to e.m. mechanisms of hard coherent production
of two jets in proton-nucleus scattering. We study the xIP, β,

and A dependence of the ratio of the dijet production cross
sections due to the two effects, R, at the LHC and RHIC
kinematics. We separately study the case when the final jets
consist of quarks and gluons and the case when the final jets
consist of heavy (c and b) quarks.

Our results can be summarized as follows. For proton-208Pb
scattering at the LHC, hard diffraction is suppressed compared
to the e.m. contribution, especially at xIP = 10−4 and large β,
e.g., β > 0.8 (see Fig. 9). The suppression is very strong for the
production of heavy-quark jets (see the right panel of Fig. 9).
The physical reason for the suppression is the strong coherent
Coulomb field of 208Pb, which enhances the e.m. mechanism
of hard diffraction.

Replacing 208Pb by 40Ca, the hard diffractive mechanism
becomes compatible with the e.m. one in the case of the

production of quark and gluons jets (see the left panel of
Fig. 10). However, like in the case of 208Pb, the production of
heavy-quark jets is dominated by the e.m. mechanism (see the
right panel of Fig. 10).

As a result of the smaller Lorentz dilation factor γ at the
RHIC, the factor R at the RHIC kinematics is larger than that
at the LHC kinematics.

Our results suggest the following experimental strate-
gies. First, the use of heavy nuclei in pA scattering at
the LHC will provide a clean method to study hard real
photon-proton scattering at energies exceeding the HERA
energies by a factor of ten. Second, taking lighter nuclei
and choosing the appropriate kinematics, where the e.m.
contribution can be controlled, one can effectively study the
factorization breaking in nuclear diffractive PDFs. Third, in
the same kinematics, a comparison of the dijet diffractive
production to the heavy-quark-jet diffractive production will
measure the nuclear screened diffractive gluon PDF. It can
be compared to the nuclear diffractive PDFs, which will be
measured in nucleus-nucleus ultraperipheral collisions at the
LHC.
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