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Testing axial and electromagnetic nucleon form factors in time-like regions in the processes
p̄ + n → π− + �− + �+ and p̄ + p → π0 + �− + �+, � = e, µ
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In the frame of a phenomenological approach based on Compton-like Feynman amplitudes, we study the
annihilation channel in antiproton nucleon collisions with production of a single charged or neutral pion and a
lepton-antilepton pair. These reactions allow us to access nucleon and axial electromagnetic form factors in the
time-like region and offer a unique possibility to study the kinematical region below the two-nucleon threshold.
The differential cross section in an experimental setup where the pion is fully detected is given with explicit
dependence on the relevant nucleon form factors. The possibility of measuring a heavy charged pion in the
annihilation channel is also discussed.
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I. INTRODUCTION

In this paper we study the annihilation reactions p̄ + n →
π− + �− + �+ and p̄ + p → π0 + �− + �+, � = e, µ,

which is the crossed process of pion electroproduction on
a nucleon N : e− + N → e− + N + π . It contains the
same information on the nucleon from factors in a different
kinematical region. This process is also related to the pion
scattering process π + N → N + �− + �+, which was first
studied in Ref. [1]. In this work it was already pointed out
that the p̄ + p annihilation process with pion production,
under study here, renders possible the determination of the
nucleon electromagnetic form factors in the unphysical region,
which is otherwise unreachable in the annihilation reaction
p̄ + p → e+ + e−. In Ref, [2] a general expression for
the cross section was derived and numerical estimations were
given in the kinematical region near threshold. In this paper we
extend the formalism in two directions. We take into account
a larger set of diagrams that can contribute and give special
emphasis to the possibility of accessing the axial nucleon form
factors in the time-like region. For the annihilation process
p̄ + N → �+ + �− + π0,−, with � = e or µ, we will consider
two reactions:

p̄(p1) + p(p2) → π0(qπ ) + �+(p+) + �−(p−) (1)

and

p̄(p1) + n(p2) → π−(qπ ) + �+(p+) + �−(p−), (2)

where the notation of the particle four-momenta is indicated
in brackets. Interest in these processes lies in the possibility of
accessing nucleon and axial form factors (FFs) in the time-like
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region. The expected values of the total cross sections at
energies of a few GeV drop with the lepton pair invariant
mass, q2, but they are of the order of several nb and up to
mb below threshold. Therefore these reactions are especially
interesting as they will be measurable in the near future
at hadron colliders (or at lepton colliders for the crossed
reactions). The present work aims to evaluate the differential
cross section for experimental conditions achievable at the
future FAIR facility [3].

A. Electromagnetic (vector) form factor

The structure of the proton and the nucleon is of great
interest since it explores the quantum field theory of the
strong interaction, quantum chromodynamics (QCD), in a
region where the interaction between the constituents of quarks
and gluons cannot be treated as a perturbation. Its properties
have been explored in many observables. For example, the
electromagnetic form factors of the proton and the nucleon
are measured in elastic electron-nucleon scattering with a
space-like four-momentum transfer q2 < 0 via the process
e + p → e + p [4]. For a momentum transfer of −1 < q2 <

0 GeV2, the electromagnetic form factors are well known for
both the neutron and the proton [5].

Interest in the form factors of the nucleon for the region of
q2 < − 1 GeV2 has recently been renewed by a measurement
of the ratio of the electric form factor over the magnetic
from factor, µpGE/GM , at TJNAF in a q2 range up to
−5.8 GeV2. The method of polarization transfer [6] was
employed for the first time at high values of q2 by using
a longitudinally polarized electron beam and measuring the
polarization of the recoil proton [7]. The experiments gave the
surprising new result that the ratio µpGE/GM decreases from
unity substantially for high q2 values, exhibiting eventually
even a zero-crossing around q2 ≈ −8 GeV2. This new
result contrasts with the data obtained from a Rosenbluth
separation fit of unpolarized measurements [8], which give
a ratio of µpGE/GM ≈ 1. The present understanding of this
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discrepancy is that the analysis of the unpolarized data lacks
important corrections stemming from neglected higher order
radiative corrections [9] or electromagnetic processes such as
two-photon exchange [10].

The situation of the experimental determination of the
electromagnetic form factors in the time-like domain (i.e.,
q2 > 0) is quite different. Existing data have explored the
two basic processes: e− +e+ → p+ p̄ and p+ p̄ → e− +e+.
The precision of the cross-section data in the time-like region
is much lower and a determination of the individual electric
and magnetic form factors has not been done with sufficient
precision.

For both processes there is a threshold in q2 for producing
the two nucleons at rest or annihilation of the two nucleons
at rest, which amounts to q2 > (mp + mp̄)2 = 4m2

p. In the
region of 0 < q2 < 4m2

p (sometimes called the “unphysical
region”) there are no data available. Nonetheless, this q2

interval is of great interest since the intermediate virtual
photon as well as the p̄p pair can couple to vector meson
and p̄p resonances, respectively, and thereby enhance the form
factors substantially [11,12]. This mechanism has been used to
explain the large cross section in the time-like region above the
threshold q2 > 4m2

p. Another possibility for explaining this
large cross section above threshold has been proposed recently
by showing that the large cross section in the annihilation
process p̄ + p → e+ + e− can be related to the p̄p scattering
length [13].

The work presented here is focused on a possibility of
extracting the electromagnetic form factors of the nucleon
in the “unphysical region” and above by using the process
p̄ + p → π + e+ + e−, as has been proposed earlier [1,2].
The measurement of the cross section of this reaction will be
accessible at the future FAIR facility at GSI.

B. Axial form factor

In addition, we explore here also the new idea of accessing
the axial vector current of the nucleon. The axial form
factors in the space-like region are measured in nuclear
β decay, in neutrino scattering, in muon capture, and in pion
electroproduction (e + p → e + n + π+). A review of the
present status of the axial structure of the nucleon in the
space-like region is given in Ref. [14]. The first methods
represent a rather direct measurement in the sense that the
axial coupling of the weak charged currents is used to measure
the axial form factor. The extraction of the axial form factor
from pion electroproduction in the space-like region is possible
because of the application of a chiral Ward identity referred
to as the Adler-Gilman relation [15]. A recent review on the
theoretical development can be found in Ref. [16]. Corrections
to O(p4) have been calculated in the framework of chiral
perturbation theory (ChPT) in Ref. [17]. There are no data
available on the axial form factor in the time-like region. A
direct measurement would be possible by studying the weak
neutral or charged current in the annihilation of p̄p. Such a
measurement is not accessible with present-day experimental
techniques. However, an application of the Adler-Gilman
relation to the matrix element of the crossed channel of

p(p2)

p̄(−p1) π0(qπ)

�−(p−)

� + (p+)

γ∗(q)

−p1 + qπ

p(p2)

p̄(−p1)

�+(p+)

�−(p−)

π0(qπ)

γ∗(q)

p2 − qπ

(a) (b)

FIG. 1. Feynman diagrams for the reaction p̄ + p → π0 + �+ +
�−.

pion electroproduction, namely p̄ + n → π− + e+ + e−,
renders the possibility of accessing the axial current also
in the time-like region around and below threshold. Despite
the theoretical uncertainties—namely, the applicability range
of the Adler-Gilman relation, which is strict only at the π

threshold, and the treatment of the off-shell nucleon between
the π vertex and the virtual photon vertex—the measurement
of the cross section in p̄ +n → π− + e+ + e− at low energies
would render the first estimation of the axial form factor in the
time-like region. The measurement of the cross section of this
reaction will also be accessible at the future FAIR facility at
GSI.

C. Approach

Our approach is based on Compton-type annihilation Feyn-
man amplitudes and aims to establish the matrix element of
processes (1) and (2). The main uncertainty in our description
in terms of Green functions of mesons and nucleons (and
their expected partners) is related to the model-dependent
description of hadron FFs and to the modeling of excited
hadronic states.

The paper is organized as follows: The formalism is
developed in Sec. II and some of the kinematical constraints for
the considered reactions are discussed in Sec. III. Section IV
contains a discussion on nucleon FFs and of our choices of
parametrization, for electromagnetic as well as for axial FFs.
In Sec. V the numerical results for the differential cross section
of the considered processes will be presented. In Sec. VI we
discuss the results and summarize the perspectives opened by
the experimental study of these reactions, including possible
manifestation of heavy (radial) excited π states.

II. FORMALISM

Let us consider reactions (1) and (2) and calculate the
corresponding matrix elements in the framework of a phe-
nomenological approach based on Compton-like Feynman
amplitudes. The Feynman diagrams for reaction (1) are shown
in Figs. 1(a) and 1(b) for pair emission from the proton
and from the antiproton, respectively. For reaction (2), the
corresponding Feynman diagrams are shown in Figs. 2(a),
2(b), and 2(c) for pair emission from the charged pion, from
the antiproton, and from the neutron, respectively.
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FIG. 2. Feynman diagrams for the reaction p̄ + n → π− + �+ +
�−.

As previously discussed in Ref. [2], no free nucleons are
involved in the electromagnetic vertices of pions and nucleons,
as one of the hadrons is virtual, and rigorously speaking,
the form factors involved should be modified by taking into
account off-mass-shell effects. However, we will use the
expression for electromagnetic current involving on-mass-
shell hadrons. A discussion of the errors and the consequences
of such approximation is given below.

The vertices γ ∗N̄N̄
∗ → γ ∗N̄N̄ and γ ∗ππ → γ ∗ππ∗

contain information on the electromagnetic FFs of protons,
neutrons, and pions (with the FFs of antiprotons differing by
sign from proton FFs, owing to charge symmetry require-
ments). Nucleon FFs can be expressed in terms of Dirac and
Pauli FFs, F

p,n

1,2 (q2), which enter in the expression of the
electromagnetic current:

〈N (p′)|�µ(q)N |N (p)〉

= ū(p′)
[
FN

1 (q2)γµ + FN
2 (q2)

4M
(q̂γµ − γµq̂)

]
u(p),

N = n, p, (3)

where M is the nucleon mass, q is the four-momentum of
the virtual photon, and q̂ = qνγν . The nucleon FFs in the
kinematical region of interest for the present work are largely
unexplored. The assumptions and the parametrizations used
for FFs in the numerical applications are detailed in the
following.

The pion electromagnetic FF, Fπ (q2), is also introduced in
the standard way. The corresponding current has the form

Jπ
µ = (q1 + q2)µFπ

(
q2

π

)
, (4)

with q1 and q2 the ingoing and outgoing charged pion
momenta, and qπ = q1 −q2. Special attention must be devoted
to the pion-nucleon interaction in the vertices πNN̄ , which are

parametrized as

v̄(p1)γ5u(p2)gπNN(s) and v̄(p1 − q)γ5u(p2)gπNN
(
m2

π

)
,

(5)

with s = (p1 + p2)2. The vertex of the πNN interaction is
related to the general axial vector current matrix element:

〈N (p′)|Aµ

j (0)|N (p)〉
= ū(p′)

[
GA(q2)γµ + qµ

2M
GP (q2) + i

σµν

2M
GT (q2)

]

× γ5
τj

2
u(p), (6)

where qµ = p′
µ − pµ,GA(q2) is the axial nucleon FF,

GP (q2) is the induced pseudoscalar FF, and GT (q2) is the
induced pseudotensor FF. In the chiral limit, the requirement
of conservation of the axial current leads to the relation

4M2GA(q2) + q2GP (q2) = 0, (7)

which shows that GP (q2) has a pole at small q2. Indeed,
assuming that the axial current interacts with the nucleon
through the conversion to the pion interaction, one obtains

GP (q2) = −4MfπgπNN(q2)

q2
. (8)

Comparing Eqs. (7) and (8) one obtains the Goldberger-
Treiman relation

GA

fπ

= gπNN

M
. (9)

We suggest a generalization of this relation in the form

g(s) = gπN̄N (s) = MGA(s)

fπ

,

GA(0) = 1.2673 ± 0.0035,

(10)

where g(s) and g(m2
π ) are the pion-nucleon coupling constants

for pions off and on the mass shell. This assumption can be
justified by the fact that fπ is weakly dependent on q2 and it
is in agreement with the ChPT expansion at small q2 [16].
Therefore measuring the gπN̄N (s) coupling constant gives
information on the axial and induced pseudoscalar FFs of the
nucleon in the chiral limit (neglecting the pion mass).

The matrix element is expressed in terms of the hadronic
H and leptonic J currents:

Mi = 4πα

q2
Hi

µJµ(q), H i
µ = v̄(p1)Oi

µu(p2),

J µ(q) = v̄(p+)γµu(p−),

(11)

where the index i = 0,− refers to π0 and π−, respectively.
The cross section for the case of unpolarized particles has a
standard form [if we take the nucleon target (proton or neutron)
to be at rest in the laboratory frame]:

dσ i = 1

16PM

∑
|Mi |2d�, P 2 = E2 − M2, (12)
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C. ADAMUŠČÍN et al. PHYSICAL REVIEW C 75, 045205 (2007)

where E (P ) is the energy (the modulus of the momentum)
and d� is the phase space volume given by

d� = 1

(2π )5

d3p+
2ε+

d3p−
2ε−

d3qπ

2Eπ

× δ4(p1 + p2 − p+ − p− − qπ ). (13)

The phase space volume can be written as

d� = d3qπ

2Eπ

d�q

d4q

(2π )5
δ4(p1 + p2 − q − qπ ),

with

d�q = d3p+
2ε+

d3p−
2ε−

δ4(q − p+ − p−).

Considering an experimental setup where the pion four-
momentum is fully measured, we can perform the integration
on the phase space volume of the lepton pair:
∫

d�q

∑
Jµ(q)J ∗

ν (q) = −2π

3
(q2 + 2µ2)β�(q2 − 4µ2)

×
(

gµν − qµqν

q2

)
, (14)

where � is the usual step function, µ is the lepton mass, and
β =

√
1 − (4µ2/q2).

The cross section can be expressed in the form

dσ i = α2

6sπr

β(q2 + 2µ2)

(q2)2 Di d3qπ

2πEπ

, (15)

with

s = (qπ + q)2 = 2M(M + E), r =
√

1 − (4M2/s),

(16)

and

Di =
(

gµν − qµqν

q2

)
1

4
Tr(p̂1 − M)Oi

µ(p̂2 + M)
(
Oi

ν

)∗
,

i = 0,−. (17)

Using Feynman rules we can write (see Figs. 1 and 2)

O−
µ = �p

µ(q)
p̂1 − q̂ − M

(p1 − q)2 − M2
γ5g

(
m2

π

)

− γ5
p̂2 − q̂ + M

(p2 − q)2 − M2
�n

µ(q)g
(
m2

π

)

+ (2qπ + q)µ
s − m2

π

g(s)Fπ (q2)γ5, (18)

O0
µ = �p

µ(q)
p̂1 − q̂ − M

(p1 − q)2 − M2
γ5g

(
m2

π

)

− γ5
p̂2 − q̂ + M

(p2 − q)2 − M2
�p

µ(q)g
(
m2

π

)
. (19)

Note that the hadronic current J 0
µ = v̄(p1)O0

µu(p2) is
conserved (J 0

µqµ = 0), but J−
µ = v̄(p1)O−

µ u(p2) is not

conserved:

qµJ −
µ = [( − F

p

1 (q2) + Fn
1 (q2)

)
g
(
m2

π

) + g(s)Fπ (q2)
]

× v̄(p1)γ5u(p2) = Cv̄(p1)γ5u(p2). (20)

Therefore, to provide gauge invariance, it is necessary to add
to O−

µ a contact term with the appropriate structure [Eq. (20)].
The explicit expressions for D0 and D− are given in the
Appendix.

Selecting the coefficients that depend on pion energy in Di ,
Eq. (17), we can perform an analytical integration on the pion
energy. In the limit of small lepton pair invariant mass, q2,
after integration on pion energy, the differential cross section
with respect to q2 becomes

(q2)2 dσ

dq2

∣∣∣∣
q2�M2

� α2
[
g(s) − g

(
m2

π

)]2

24πr
. (21)

Equation (21) contains one of the most important results of this
work, as it shows that the measurement of the cross section at
small q2 allows one to experimentally determine the off-mass-
shell pion-nucleon coupling constant.

Writing the differential cross section in the form

dσ

dq2 = (q2 + 2µ2)β

(q2)2

[
c

q2
+ R(q2)

]
, (22)

with c and R(0) finite functions of s, and integrating over the
lepton invariant mass, we find

σtot =
∫ s

4µ2

dσ

dq2 dq2 = c(s)

5µ2
+ R(0, s)

(
log

s

µ2
− 5

3

)

+
∫ s

0

dq2

q2
[R(q2, s) − R(0, s)]. (23)

The first term in the right-hand side of Eq. (23) is divergent
for massless leptons, and it induces a rise of the cross section
(especially in the case of electron-positron pair). However,
it is very hard to experimentally achieve such kinematics
(q2 → 4µ2). The total cross section can be integrated within
the experimental limits of detection of the particles. Such
(partial) total cross section will be calculated in the following.

III. KINEMATICS

In the laboratory system, useful relations can be derived
among the kinematical variables that characterize the reaction.
The allowed kinematical region at a fixed incident total energy
s can be illustrated as a function of different useful variables.

One can find the following relation between q2, the invariant
mass of the lepton pair, and the pion energy:

q2 = (p1 + p2 − qπ )2 = 2M2 + m2
π + 2M(E − Eπ )

− 2p1qπ = s + m2
π − 2EπM − 2p1qπ , (24)

with

2p1qπ = 2EπE − 2
√

E2
π − m2

πP cos θπ , (25)
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FIG. 3. (Color online) (Left) The kinematical limit for q2 for cos θπ = −1 and for cos θπ = 1 in the lab system as a function of the pion
energy for different values of the beam energy: E = 2 GeV (dotted line), E = 7 GeV (dashed line), and E = 15 GeV (solid line). The allowed
kinematical region lies below the curves. (Right) Kinematical limit for the pion energy Eπ as a function of the pion angle (lab system) for
E = 2 GeV (dotted line), E = 7 GeV (dashed line), and E = 15 GeV (solid line) for the minimum value of q2 � m2

π .

where θπ = 1	p1	qπ is the angle between the antiproton and the
pion momenta (in the laboratory frame).

The limit −1 � cos θπ � 1 translates into maximal and
minimal values for the pion energy. The allowed kinematical
region is shown in Fig. 3 (left) for three values of the beam
energy: E = 2, 7, and 15 GeV. To this constraint, one
should add the minimal thresholds q2 � 4m2

� and Eπ � mπ .
For the minimal value of q2 � m2

π , one can plot the
dependence of the pion energy on θπ [Fig. 3 (right)] for
different values of the beam energy. As the energy increases
the kinematically allowed region becomes wider. At backward
angles the maximum pion energy becomes larger at small s

values. For larger values of q2, Eπ is smaller.
For fixed values of the lepton pair invariant mass, the pion

energy can take values in the region

Emin
π

M
= s − q2

s(1 + r)
� Eπ

M
� s − q2

s(1 − r)
= Emax

π

M
, (26)

if we neglect the pion mass.
We can write the phase space volume of the produced pion

(neglecting terms �m2
π/m2

N ) in three (equivalent) forms:

d3qi

2πEπ

= dq2δ[q2 − 2Eπ (E + M − P cos θπ )]

×EπdEπd cos θπ

= EπdEπd cos θπ (27a)

= M
dq2

sr
dEπ (27b)

= q2M2dq2d cos θπ

s2(1 − r cos θπ )2 . (27c)

IV. AXIAL AND ELECTROMAGNETIC FORM FACTORS

Experimental measurements on FFs are the object of
ongoing programs in several world facilities. Hadron FFs are

measured in the space-like (SL) region through elastic electron
hadron scattering and in the time-like (TL) region through
annihilation reactions. It has been only recently possible to
use polarization techniques. The availability of high-intensity,
high-energy polarized beams allows these measurements to be
extended to large-q2 regions and the achievement of very high
precision.

The theoretical effort for a complete description of the
nucleon structure should be extended to a unified picture that
applies to the full kinematical region (SL and TL) [18]. Few
phenomenological models developed for the SL region can
be successfully extended to the TL region [19]. A tentative
extrapolation of a TL model to the SL region has also been
done, and constraints have been found from the few available
data [12].

In the TL region, data for electromagnetic FFs exist over
the NN threshold, up to 18 GeV2 [20], but a precise separation
of the electric and magnetic contributions has not yet been
possible, owing to the low statistics. Moreover, FFs are com-
plex quantities, and polarization experiments are necessary
to determine their relative phase. Presently only the moduli
of FFs are available, under the hypothesis |GN

E |2 = |GN
M |2

or GN
E = 0. These data have been obtained in the reactions

e+ + e− ↔ p̄ + p (see Ref. [21] and references therein) and,
more recently, by the radiative return method [22], in the region
over the kinematical threshold s > 3.52 GeV2. The possible
existence of an NN̄ resonance under threshold has also been
predicted as an explanation of the fact that TL FFs are larger
than SL ones at corresponding |q2| values. To give quantitative
predictions, for the cross section of processes (1) and (2), it is
necessary to know the value of FFs in the unphysical region.
As data are not available, such estimation can be only done
in the framework of models based, for example, on Vector
Meson Dominance (VMD) or on dispersion relations, which
predict several discontinuities from meson resonances. Not all
nucleon models give expressions for FFs that can be extended
to the TL region, and not all nucleon models give a satisfactory
description of all four nucleon FFs.
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FIG. 4. (Color online) Nucleon electromagnetic FFs in the time-like region: proton electric FF (a), proton magnetic FF (b), neutron electric
FF (c), and neutron magnetic FF (d). Data are from Ref. [22] and predictions of the model [23] (solid line) and from pQCD (dashed line).

Following Ref. [19], in the present calculation we use two
models for electromagnetic FFs. The first was a model based
on Ref. [23], which first predicted the behavior of the proton
electric FF as found from recent polarization experiments [7]
and recently extended to the TL region. This model, as with
all VMD-inspired models, has poles in the unphysical region,
in correspondence with the meson resonances that are taken
into account. To have a smooth parametrization, we also
considered a model inspired by the perturbative QCD (pQCD)
prescription (corrected by dispersion relations [24]), which
reproduces the experimental data in the TL region but does
not show discontinuities and can be considered an “average”
expectation:

∣∣GN
E

∣∣ = ∣∣GN
M

∣∣ = A(N )

q4
(

ln2 q2

�2 + π2
) , q2 > �2, (28)

where � = 0.3 GeV is the QCD scale parameter and A is fitted
to the data. This parametrization is taken to be the same for the
proton and the neutron. The best fit is obtained with parameters
A(p) = 98 GeV4 for the proton and A(n) = 134 GeV4 for the
neutron, which reflects the fact that, in the TL region, neutron
FFs are systematically larger than those for the proton. In
principle, this parametrization holds only for very large q2

values, but, in practice, it reproduces the existing data quite
well in the whole physical region. Evidently, it is meaningless
at small q2 (q2 < �2), and it has poor normalization properties
for q2 → 0.

Usually the data are shown in terms of the Sachs FFs,
electric GN

E , and magnetic GN
M , which are related to the Pauli

and Dirac FFs by the following relations:

GN
E = FN

1 + FN
2 , GN

M = FN
1 + τFN

2 , τ = q2/(4M2).

They correspond in a nonrelativistic limit or (in the Breit
frame) to the Fourier transform of the charge density (electric
form factor GE) and magnetization distribution (magnetic
form factor GM ) of the proton.

The behavior of these FFs compared with the existing
experimental data is shown in Fig. 4. For the neutron, the
first and still unique measurement in the TL region was done
at Frascati by the FENICE Collaboration [25].

For the pion FF, a reasonable description exists in the
kinematical region of interest here; for a recent discussion
see Ref. [26]. For the sake of simplicity, we use here a ρ-
meson-saturated monopole-like parametrization, which takes

FIG. 5. (Color online) Proton axial FF from VMD-inspired model
(solid line) and from a dipole extrapolation (dashed line).
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FIG. 6. (Color online) (Left) Double differential cross section for the reaction p̄ +p → π0 +�+ +�− as a function of q2 and Eπ , using FFs
from Ref. [23] for the nucleon and Eq. (31) for the axial FF. (Right) Same quantity as in the left plot but for the reaction p̄+n → π− +�+ +�−.
The kinematical constraints in the (Eπ, q2)-plane shown in Fig. 3 are visible here.

a Breit Wigner form in the TL region:

Fπ (q2) = m2
ρ

m2
ρ − q2 − imρ�ρ

. (29)

Data on axial FFs in the TL region do not exist, and they
suffer in the SL region from a model-dependent derivation. In
the SL region, the nucleon axial FF, GA(q2), for the transition
W ∗ + p → n (where W ∗ is the virtual W boson), can be
described by the following simple formula [27]:

GA(q2) = GA(0)(1 − q2/m2
A)−n (30)

with mA = 1.06 GeV, if n = 2. A simple analytical
continuation of this prescription to the the TL region presents
a pole in the unphysical region. Therefore we used a “mirror”
parametrization from the SL region:

FF (TL)(|q2|) = FF (SL)(|q2|).

Such a prescription is, in principle, valid only at very large q2,
since it obeys asymptotic analytical properties of FFs [18].

For comparison, another parametrization (inspired from
Ref. [23]) is also used [28]:

GSL
A (q2) = d(q2)GA(0)

[
1 − α + α

m2
A

m2
A − q2

]
. (31)

Here the parameter α = 1.893 ± 0.02 has been fitted to the
available data, in the SL region, by averaging the dispersion
from the model-dependent extraction of the data themselves,
mA � 1.235 GeV is the mass of a light axial meson, and
d(q2) = (1 − γ q2)−2 is the function describing the internal
core of the nucleon. We take γ as a fixed parameter, from the
fit of nucleon electromagnetic form factors: γ � 0.25 GeV−2.
Let us note however that this value is not good from a t-channel
point of view, because it gives a pole in the physical region,
t0 = 1

γ
= 4 GeV−2. To extend the expression (31) to the

TL region, following Ref. [23], we add a phase to the dipole
term. Moreover, the complex nature of the axial FF is ensured

FIG. 7. (Color online) (Left) Double differential cross section for the reaction p̄ + p → π0 + �+ + �− as a function of q2 and Eπ , using
pQCD-inspired nucleon FFs and dipole axial FFs. (Right) Same quantity as in the left plot but for the reaction p̄ + n → π− + �+ + �−.
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FIG. 8. (Color online) (Left) Differential cross section for the process p̄ + p → π0 + �+ + �− as a function of q2, with FFs from Ref. [23]
for the nucleon and Eq. (31) for the axial FF (solid line) and with FFs from pQCD-inspired nucleon FFs and dipole axial FFs (dashed line).
(Right) Same quantity as in the left plot but for the reaction p̄ + n → π− + �+ + �−.

by adding a width to the axial meson, and we replace the
propagator as in Eq. (29).

The expression for the TL axial FF therefore becomes

GA(q2) = d(q2)GA(0)

[
1 − α + α

m2
A

m2
A − q2 − imA�A

]
,

(32)

with d(q2) = (1 − γ eiδq2)−2, where �A = 0.140 GeV and
δ = 0.925.

The two models for GA used in the calculation of the
cross section are shown in Fig. 5 and differ by one order of
magnitude. Moreover, an enhancement is expected from Eq.
(32), in correspondance to the mass of the axial meson.

V. RESULTS

The differential and integrated cross sections were cal-
culated for several values of the antiproton energy and the
different choices of FFs just described.

The differential cross sections, Eq. (15), as a function of Eπ

and q2, Eq. (27a), are shown in Figs. 6 and 7 for the reactions
p̄ + p → π0 + �+ + �− and p̄ + n → π− + �+ + �− at
E = 7 GeV. As one can see from the figures, the differential
cross sections are large and measurable in a wide range of
the considered variables. It is reasonable to assume that the
region up to q2 = 7 GeV2, at least, will be accessible by the
experiments at FAIR.

The discontinuities in the small-q2 regions are smoothed
out by the steps chosen to histogram the variables. However,
depending on the resolution and the reconstruction efficiency,
it will be experimentally possible to identify the meson and
nucleon resonances.

The differential cross section as a function of q2 can be
obtained after integrating on the pion energy, Eq. (15), with
the help of Eq. (27b):

dσ i

dq2 = α2

6sπr

β(q2 + 2µ2)

(q2)2

M

sr

∫ Eπmax

Eπmin

DidEπ, (33)

where the integration on the hadronic term is detailed in the
Appendix. The result of the calculation is shown in Fig. 8. For
charged pion production, the presence of the axial FF is the

FIG. 9. (Color online) (Left) Total cross section for the process p̄ + p → π0 + �+ + �− as a function of qmin for different values of
s and different FFs: dotted (solid) line for E = 7 (12) GeV, nucleon FFs from Ref. [23] and axial FF from Eq. (31); dash-dotted (dashed)
line for E = 7 (12) GeV, pQCD-inspired nucleon FFs and dipole axial FFs. (Right) Same quantity as in the left plot but for the process
p̄ + n → π− + �+ + �−.

045205-8



TESTING AXIAL AND ELECTROMAGNETIC NUCLEON . . . PHYSICAL REVIEW C 75, 045205 (2007)

reason for the larger cross section as compared to the neutral
pion case. For both reactions, again, the present calculation
gives an integrated cross section of the order of several µb in
the unphysical region for both choices of FFs.

The q2 dependence is driven by the choice of FFs. For the
pQCD-like FFs, the behavior is smooth and similar for both
protons and neutrons. For the FFs from Ref. [23], the resonant
behavior owing to ρ, ω, and φ poles appears in the figures.
The partial total cross section, integrated over q2, Eq. (23), is
shown in Fig. 9, as a function of qmin � 4µ2 for two different
values of s, s = 2 and 5 GeV2. Evidently, the calculations
for the VMD FFs [23] have been done beyond the resonance
region, as a result of the divergence of the integrals at the
meson poles.

Let us estimate the uncertainties inherent to our model
assumptions. The off-mass-shell effects were previously dis-
cussed for these particular reactions in Ref. [2]. A considerable
theoretical effort has been devoted to this problem in the
past (see Ref. [29] and references therein), and it was shown
that indeed off-mass-shell effects can be large and lead to an
increase in FFs. In the region of virtuality, p2 � 0.5 GeV2,
it was calculated that off-mass-shell effects modify FFs at
the level of 3%. The Q2 dependence of FFs is not changed
significantly, when one of the particles goes off shell. It is
interesting to note that the ratio of electric to magnetic nucleon
FFs is rather insensitive to off-shell effects. Moreover, ChPT
arguments [30] support a smooth behavior of FFs as a function
of the degree of nucleon virtuality δ ∼ |p2−M2

M2 |2 � 2, which
does not exceed 10%. For the present kinematics the virtuality
involved varies in the interval 2mπ/M < δ < 2 − 2mπ/M . In
the case of detection of soft pions in the laboratory frame,
errors arising from off-shell effects will decrease to 3–5%.
These considerations support an estimation on the precision of
our model at the level of 10%.

In the intermediate state, in principle, the � resonance
or other resonances can be excited. The calculation of the
contribution of the � resonance is largely model dependent
and will be the object of specific considerations.

VI. CONCLUSION AND PERSPECTIVES

The differential cross section for the processes p̄ + n →
π− + �− + �+ and p̄+p → π0+�−+�+ has been calculated in
the kinematical range that will be accessible in the near future
at FAIR. The main interest of these reactions is related to the
possibility of measuring nucleon electromagnetic and axial
FFs in the time-like and the unphysical regions. As previously
pointed out [1,2], varying the momentum of the emitted pion
allows one to scan the q2 region of interest, keeping the beam
energy fixed.

In Ref. [2] it was also noticed that, in the lepton invariant
mass squared distribution, a divergent term was present:

dσ

dq2 � [2Fv
1 (q2) + Fπ (q2)]2

(q2)2 , q2 → 0, (34)

where in our notation the right-hand side of Eq. (34) cor-
responds to C2/(q2)2. It was argued that the singularity at

q2 → 0 cancels because 2Fv
1 (0) = 1 and Fπ (0) = −1.

This compensation takes place if gπN̄N (s) = gπN̄N (m2
π ) holds,

which is verified for annihilation at rest. In the present work,
one cannot rely on such an assumption and the validity of this
relation has to be verified experimentally.

The detailed measurement of the double differential cross
section, as a function of q2 and Eπ , in principle allows us to
extract all nucleon FFs that are involved in the considered
reactions. A precise simulation of the different processes
involving the production of a pion will be necessary along
with a study of the best kinematical conditions to minimize
background contribution. In particular, the reaction p̄ + p →
π0+π0 has been identified as a potential source of background
in the e+e−-spectrum because of its Dalitz decay, π0 →
e+e−γ .

The assumption about the validity of a generalized form
of the Goldberger-Treiman relation, which allows the pseu-
doscalar gπNN coupling constant to be related to the axial
nucleon FF, can be experimentally verified for small invariant
mass of the lepton pair. In the process of π− production,
it is in principle possible to study heavy negatively charged
pions, as the π ′ resonance of mass M ′ = 1300 MeV, which is
interpreted as a radial excitation of pion. The matrix element
for the excitation of a resonant state for the virtual charged
pion in the intermediate state, Mres, can be written as follows:

Mres = 4πα

q2

gπNN̄

s − M ′2 + iM′�′ v̄(p1)γ5u(p2)λ(q2)

×
(

qµ − q2

qqπ

qπµ

)
Jµ. (35)

The corresponding cross section is

dσres = α2

12rπ

|λ(q2)gπNN̄ |2
(s − M ′2)2 + M ′2�′2

d3qπ

2πEπ

, (36)

where λ(q2) is the transition from factors for the vertex π ′πγ ∗.
We do not consider processes involving vector mesons, � res-
onances, and higher excited nucleon states. Their contribution
can be estimated in frame of models and will be the object of
further considerations.

In case of multipion production, the quantity s1 = (p1 +
p2 − q)2 − m2

π becomes positive. By varying s1 at fixed beam
energy, by changing q2 and θπ , it is in principle possible to
identify and study other mechanisms, such as the excitation of
heavy pion resonances, π ′, or the possible presence of a NN̄

“quasi-deuteron” state under the kinematical threshold for pp̄

annihilation in two leptons. The study of multipion production
will be the subject of a forthcoming publication.
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C. ADAMUŠČÍN et al. PHYSICAL REVIEW C 75, 045205 (2007)

APPENDIX

In this appendix we give the explicit expression of the
coefficients entering in the calculation of the cross section,
as well as useful integrals.

Let us define q2-dependent terms, which contain FFs and
the necessary constants:

fa(s) = Fπ (q2)GπNN̄ (s), fiN (q2) = g
(
m2

π

)
FN

i (q2),

i = 1, 2, N = n, p,

C(s) = fa(s) − f1p(q2) + f1n(q2),

and the quantity

X = p1qπ

p2qπ

= (s − q2)/(2MEπ ) − 1. (A1)

Let us write the expressions for the hadronic part of the
matrix element (17): For the process p + p̄ → �+ + �− + π0

D0 = ∣∣f2p

∣∣2
[
E − M

M
− 1

2

(
1 − q2

4M2

)
(1 − X)2

X

]

+ ∣∣f1p − f2p

∣∣2 (X + 1)2

X
. (A2)

For the process n + p̄ → �+ + �− + π−

D− = 1

4

[∑
i

Ci,i |fi |2 + 2
∑

j,k;j < k

Cj,kRe(fjf
∗
k )

+ 2|C|2s
q2

]
, i, j,

k = 1p, 2p, 1n, 2n, a. (A3)

The explicit expressions of the coefficients are

C1p,1p = 4X, C2p,2p = s

M2

(
1 + q2

2s
X

)
,

C1p,2p = −3 (1 + X) , Ca,a = 2q2

s
− 4,

C1n,1n = 4
1

X
, C2n,2n = s

M2

(
1 + q2

2sX

)
,

C1n,2n = −3

(
1 + 1

X

)
, Ca,1p = 2,

Ca,2p =
(

1 − q2

s

)
(1 + X) , C1p,1n = 4,

C1p,2n =
(

1

X
− 2X − 1

)
,

C2p,2n =
(

2 + 2

X
− q2

2M2
+ X

)
,

C2p,1n =
(

X − 2

X
− 1

)
, Ca,1n = −2,

Ca,2n = −
(

1 − q2

s

) (
1 + 1

X

)
.

(A4)

The structure of Di allows us to select the terms that depend on
the pion energy. It is straightforward to perform an analytical
integration on the pion energy by using the following integrals:

∫ Emax
π

Eπ
min

dEπ

M
= r(s − q2)

2M2
= rb, b = s − q2

2M2
; (A5)

∫ Emax
π

Eπ
min

dEπ

M
X =

∫ Emax
π

Eπ
min

dEπ

M

1

X
= s − q2

2M2

[
ln

1 + r

1 − r
− r

]

= b(� − r), (A6)

with r given in Eq. (16) and � = ln[(1+ r)/(1− r)]. The result
of the integration on the pion energy is the following: For the
process p + p̄ → �+ + �− + π0

∫ Emax
π

Eπ
min

D0 dEπ

M
= b

{
2
∣∣f1p − f2p

∣∣2
� + ∣∣f2p

∣∣2

×
[
E − M

M
r +

(
1 − q2

4M2

)
(2r − �)

]}

(A7)

and for the process p + p̄ → �+ + �− + π0

∫ Emax
π

Eπ
min

D− dEπ

M
= b

4

[∑
i

Ki,i |fi |2 + 2
∑

j,k;j<k

Kj,k

× Re(fjf
∗
k ) + |C|2 2rs

q2

]
, (A8)

where

K1p,1p = 4 (� − r) , K2p,2p = s

M2

(
r + q2

2s
(� − r)

)
,

K1p,2p = −3�, Ka,a =
(

2q2

s
− 4

)
r,

K1n,1n = 4 (� − r) , K2n,2n = s

M2

(
r + q2

2s
(� − r)

)
,

K1n,2n = −3�, Ka,1p = 2r, Ka,2p =
(

1 − q2

s

)
�,

K1p,1n = 4r, K1p,2n = −�,

K2p,2n =
[

3� −
(

1 + q2

2M2

)
r

]
, K2p,1n = −�,

Ka,1n = −2r, Ka,2n = −
(

1 − q2

s

)
�. (A9)
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