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Universal scaling of pT distribution of particles in relativistic nuclear collisions
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With the experimental data from the STAR, PHENIX, and BRAHMS programs on the centrality and rapidity
dependence of the pT spectrum in Au+Au and d+Au collisions, we show that a scaling distribution exists that is
independent of the colliding system, centrality, and rapidity. The parameter for the average transverse momentum
〈pT 〉 increases from peripheral to central d+Au collisions. This increase accounts for the enhancement of particle
production in those collisions. A nonextensive entropy is used to derive the scaling function.
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The distributions of produced particles play a very impor-
tant role in the study of new states of matter produced in
relativistic nuclear collisions. From the relationship between
particle distributions at different centralities and rapidities,
one can see whether there has been a suppression or an
enhancement, thus the dynamical mechanism for that particle
production can be revealed. In earlier works [1], a scaling
distribution for produced pions in Au+Au collisions in the
midrapidity region at energies currently available at the BNL
Relativistic Heavy Ion Collider (RHIC) was found that is
independent of centrality and colliding energy. Similar scaling
behaviors have been found in Refs. [2,3]. The existence
of such scaling behaviors of the spectrum for a species of
particle may be an indication of a universal underlying particle
production mechanism in the collisions. Now, one may ask two
questions: (1) Can the scaling be extended to the noncentral
rapidity region? (2) Can a scaling behavior similar to that
shown in Ref. [1] be found for d+Au collisions at different
centralities and rapidities? If the answers to these two questions
are yes, then one should investigate the difference between
the scaling functions for different colliding systems. In this
paper, we look for the scaling behavior of particle distributions
in Au+Au collisions in the noncentral rapidity region and
in d+Au collisions at different centralities and rapidities
at RHIC energies. The same universal scaling behavior is
found for both Au+Au and d+Au collisions at different
centralities and rapidities. A possible origin for the universal
scaling distribution is given from the principle of maximum
nonextensive entropy.

Generally, the invariant particle distribution E d3N
dp3 for a

given species of particles depends on the collision centrality
β, (pseudo)rapidity y (or η), and the transverse momentum
pT . When we focus on the particle production in a collision
with given centrality in a small rapidity region around y, we
should distinguish two different factors. One is the number
density dN/dy in rapidity, which tells us how many particles
are produced in the region. The other is the probability for a
produced particle having transverse momentum pT . It is this
probability that dictates the shape of the transverse momentum
distributions. In this paper, we are interested only in such a
probability which can be defined as

�(pT , y, β) ≡ 2π E
d3N

dp3

/
dN

dy
, (1)

where dN
dy

= 2π
∫

E d3N
dp3 pT dpT is the multiplicity of particles

produced in a unit rapidity region. So �(pT , y, β) satisfies the
normalization condition

∫
�(pT , y, β)pT dpT = 1 . (2)

In the definition of �, the centrality and rapidity dependence
is written explicitly. Experimental data show a similar shape
of the distributions for different centralities and rapidities.
Because of the similarity in the shape, those distributions of
pions produced in Au+Au collisions in the midrapidity region
at difference centralities have been put together in Ref. [1] to
the same curve by shrinking pT by a factor K and shifting
the distribution by another factor A. Then a scaling variable
is defined as u = pT /〈pT 〉, and the normalized distribution is
obtained as a function �(u) = 〈pT 〉2�(〈pT 〉u, y, β). Here the
average transverse momentum is defined as

〈pT 〉 =
∫

�(pT , y, β)p2
T dpT . (3)

The scaling function reads

�(u) = 2.1 × 104(u2 + 11.65)−4.8

× [1 + 25 exp (−1.864u)] . (4)

The obtained �(u) is universal in the sense that it is
independent of the centrality β at midrapidity in Au+Au
collisions.

Now we extend the discussion to the particle production in
the noncentral rapidity region in Au+Au collisions at 200 GeV.
For this purpose, we work on the experimental data [4] for
negatively charged particles h− at large η with exactly the
same procedures as in Ref. [1] and try to put all the data points
to the curve for the scaling function �(u). It turns out that the
scaling function given by Eq. (4) can also describe the charged
particle production at η = 2.6 and 3.2 for different centralities,
as can be seen in Fig. 1. The shrinking factor for pT is given
in Table I.

The second observation in this paper is that the same scaling
pT distribution can describe the pT distributions of charged
particles produced in d+Au collisions [5] and π0 data [6] in
the central rapidity region at different centralities, as shown in
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TABLE I. Fitted parameter 〈pT 〉 in the scaling distribution for
Au+Au and d+Au collisions at

√
sNN = 200 GeV, for different

centralities and rapidities shown in Figs. 1–3.

Fig. 1 Fig. 2 Fig. 3 (π−)

β(%) η = 2.6 η = 3.2 β(%) PHENIX β(%) y = 3
0–10 0.4340 0.3448 0–20 0.563 0–20 0.3228

10–20 0.4359 0.3452 20–40 0.572 30–50 0.3151
20–40 0.4363 0.3458 40–60 0.601 60–80 0.3108
40–60 0.4366 0.3462 60–88 0.601

Fig. 2. The fitted values of parameter 〈pT 〉 for the PHENIX
data are also tabulated in Table I.

To investigate the rapidity dependence of the distribution
in d+Au collisions, we take the data for π+ and π− at y = 3
for different centrality cuts [7] and try to put the data points
to the obtained scaling curve with exactly the same procedure
as mentioned above. The agreement is quite good, as shown
in Fig. 3. The fitted values of the parameter 〈pT 〉 are also
given in Table I. Then we can conclude that the same scaling
function can describe pion and charged particle production in
both Au+Au and d+Au collisions at different centralities and
rapidities. In this sense, we can say that the obtained scaling
distribution is universal.

To show the degree of agreement between the experimental
data and the fitted results, we define B as the ratio of the data
to the fitted results. For illustration, B, calculated from results
in Fig. 3, as a function of u is shown in Fig. 4. Obviously,
values of B are very close to 1, indicating that the scaling of
the produced pion spectrum is true with high accuracy.

Once we have found a scaling law for the distributions
for Au+Au and d+Au collisions for different centralities and
rapidities, we need to dig out the physical implications behind
the scaling behavior. From the scaling function �(u), one
can see that the only parameter characterizing the normalized
distribution is the average transverse momentum 〈pT 〉 which
depends on the centrality, rapidity, and colliding energy and
system. Once 〈pT 〉 is known, both the soft part with low
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FIG. 1. Scaling distribution �(u) showing the coalescence of four
rapidity bins in the BRAHMS data for h− production at η = 2.6 and
3.2 in Au+Au collisions. The data points are taken from Fig. 1 in
Ref. [4].
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FIG. 2. Scaling distribution �(u) showing the coalescence spec-
tra from the STAR data for charged particle and from PHENIX π0

data production in d+Au collisions at midrapidity. The data points
are taken from Refs. [5,6].

pT and the hard part with high pT are determined from
�(u). Traditionally it was assumed that the bulk of particles
is produced by soft processes which determine 〈pT 〉. If the
soft and hard processes can be separated, as used in the
two-component model [8], and each part has a different
dynamical origin, it is extremely hard to imagine that they can
be united into a single scaling function. Thus, we conclude that
the hard process must contribute considerably to the average
pT and is a coherent part of particle production. In fact, we
have known from the study of particle correlations in central
Au+Au collisions at RHIC energies that the lost energy from
hard partons must heat the medium and increase the mean
transverse momentum.

On the other hand, we have known from experiments that
particle production is suppressed, called jet quenching [9], in
central Au+Au collisions because of the possible formation
of dense hot medium; but it is enhanced in d+Au collisions
because of the Cronin effect [10], possibly because of the pT

broadening from multiple soft collisions before a hard one [11]
or from the recombination of soft partons with those from
showers [12]. One can show that the enhanced production in
d+Au collisions can be accounted for from our fitted results
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FIG. 3. Scaling distribution �(u) showing the coalescence of four
centrality bins in the BRAHMS data for π− production in d+Au
collisions at forward direction. Data points are taken from Ref. [7].
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FIG. 4. Ratio B of the experimental data and fitted results, as
shown in Fig. 3, for pion production as forward direction.

and that the mean transverse momentum 〈pT 〉 increases from
peripheral to central collisions. We can define a new variable
QCP to measure the suppression or enhancement from the
scaling function �(pT , y, β) as

QCP = �(pT , y, β)C
�(pT , y, β)P

= (�(pT /〈pT 〉)/〈pT 〉2)C
(�(pT /〈pT 〉)/〈pT 〉2)P

. (5)

An advantage of this definition of QCP over the traditional RCP

is that it involves only the probability for a produced particle
having certain transverse momentum and is independent of the
total multiplicity. So the overall enhancement in the backward
region (y < 0) in d+Au collisions cannot be shown in QCP. In
calculating the value of QCP, we do not need to use the number
of binary hard collisions, which is model dependent. QCP is
shown in Fig. 5(f) as a function of pT for d+Au collisions at
midrapidity, and it increases slowly to about 1.33. Thus the
production of high pT pions is enhanced by about 30%. This
is in agreement with experimental observations [13]. In this
way, the enhancement or suppression behavior can be shown
clearly in a model-independent way.

Finally, we investigate nucleon-nucleon collisions at
√

s =
200 GeV to see whether the particle spectrum can be described
by the same scaling function. The experimental data on the pT

distribution in the central rapidity region in p+p collisions
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FIG. 5. QCP as a function of pT for d+Au collisions. Centrality
cuts are 0–20% and 40–100%, respectively.
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FIG. 6. Comparison between �(u) from fitting the data and from
the maximum entropy method. The insert gives the ratio between
them. Points are π+ distribution in p+p collisions from Ref. [15].

can be parametrized [14] as

dN

pT dpT

= A(a + pT )−n , (6)

where A, a, and n can be determined from fitting the data. It
is astonishing that this parametrization for pion distribution
in p+p collisions, with the parameters suitably chosen, can
also be put to the scaling curve for �(u) by shrinking
horizontally and shifting vertically. As shown in Fig. 6, the
π+ spectrum in p+p collisions can be fitted to the scaling
function. Then, we come to our final conclusion that the same
scaling function can be used—for different colliding systems
at different centralities and rapidities—to give the probability
for a produced particle having pT once the parameter 〈pT 〉 for
the average transverse momentum is known, thus the scaling
function is universal.

Since �(u) is universal, the centrality and rapidity depen-
dence in �(pT , y, β) is totally encoded in 〈pT 〉. Straightfor-
wardly, we can have

〈
pn

T

〉 ≡
∫

pn
T �(pT , y, β)pT dpT

= 〈pT 〉n
∫ ∞

0
un�(u)u du. (7)

Therefore, the ratio 〈pn
T 〉/〈pT 〉n is a constant independent

of the colliding system, the centrality, and the rapidity. This
consequence can be easily checked experimentally. For n =
2, 3, and 4, the ratio equals to 1.65, 4.08, and 14.39.

We are now in a position to derive an expression for
the particle distribution from some statistical consideration.
One method is from the principle of maximum entropy. The
scaling function is not an exponential form, therefore the
well-known Shannon entropy cannot be used for our purpose.
Instead, as suggested in Ref. [16], a nonextensive entropy may
be used, considering the complex nonlinear interactions and
the possible presence of fractal chaotic behavior in nuclear
collisions, to derive an expression for the particle distribution.
The entropy we will use here is the Tsallis entropy [17] which
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reads for our case

Sq =
(

1 −
∫

�q(pT )pT dpT

) /
(q − 1), (8)

with parameter q as a measure of the nonextensiveness of the
system. The maximum entropy under conditions demanded by
Eqs. (2) and (3) gives, after the same shrinking and shifting as
above,

�(u) = A(a + u)−n, (9)

with n = 1/(1 − q) and a = (n − 3)/2, A = an−2(n − 1)
(n − 2). So there is one parameter q to determine the shape of
the distribution. The functional form of �(u) derived from the
maximum entropy method is very different from that given by
Eq. (4) but is the same as that used in parametrizing the p+p

data. Then one can compare the distributions �(u) from our
fitting procedure and from the maximum entropy. As shown
in Fig. 6, they agree with each other extremely well in a very
wide range of u when n = 13.2. There, in log scale, one can
hardly see any difference between them. A small difference
can be seen if we show a ratio between them in a linear scale.
As can be seen from the insert in Fig. 6, the largest difference

is less than 10%, though the distribution covers six orders of
magnitude in the shown range of u. This agreement indicates
that the produced particle system, including both the soft and
hard particles, may be a nonextensive fractal system, and the
fractal property is independent of the colliding system. The
parameter characterizing the fractal property of the system is
then q = 1 − 1/n = 0.924, not too far from 1.

In summary, a scaling distribution for pions is found for
Au+Au, d+Au, and p+p collisions at RHIC energy. The
scaling distribution is universal, since it does not depend on the
colliding system, centrality, or rapidity. What characterizes the
dynamical difference in the particle production is the value of
the average transverse momentum 〈pT 〉. A simple prediction
which can be checked experimentally is that 〈pn

T 〉/〈pT 〉n is
independent of the colliding system, the colliding central-
ity, and the rapidity. A possible statistical origin for the
scaling distribution of pions is discussed from a nonexten-
sive entropy. Different particles may have different scaling
properties.
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