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We argue that multiparticle production in high energy hadron and nuclear collisions can be considered as
proceeding through the production of gluons in the background classical field. In this approach we derive the
gluon spectrum immediately after the collision and find that at high energies it is parametrically enhanced by
ln(1/x) with respect to the quasiclassical result (x is the Bjorken variable). We show that the produced gluon
spectrum becomes thermal (in three dimensions) with an effective temperature determined by the saturation
momentum Qs, T = cQs/2π during the time ∼ 1/T ; we estimate c = √

2π/2 � 1.2. Although this result by
itself does not imply that the gluon spectrum will remain thermal at later times, it has an interesting applications
to heavy ion collisions. In particular, we discuss the possibility of Bose-Einstein condensation of the produced
gluon pairs and estimate the viscosity of the produced gluon system.
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I. INTRODUCTION

Recently, it was suggested that a fast thermalization in
heavy-ion collisions can occur through the gluon radiation
off rapidly decelerating nuclei [1]. In that paper two of us have
pointed out that a pulse of strong chromoelectric field produces
Schwinger-like [2] radiation with a thermal spectrum. We also
discussed an analogy between the Schwinger mechanism and
the Hawking-Unruh radiation and its application to heavy-ion
collisions (see also [3–5]). The macroscopic approach of [1]
led to a number of intriguing but qualitative results. In the
present paper we would like to reconcile the macroscopic
approach of [1] with the microscopic one based on the QCD
parton model.

The main goal of this paper is to give a picture of the
thermalization stage of the process of multiparticle production
in heavy ion collisions at high energy in the framework of
the color glass condensate (CGC) approach to high density
QCD [6–8]. The CGC approach is based on two principle
ideas. The first one is the structure of the parton cascade at high
energy which is shown in Fig. 1. The main contribution to the
high energy scattering is given by a parton fluctuation in which
all partons are strongly ordered in time. Let ẑ be the beam
direction in the rest frame of the target. The typical lifetime
of this fluctuation at high energy of the projectile ε is large
and is proportional to ε/m2, where m is the virtuality of the
fluctuation. In terms of the light-cone variables k± = εi ± kzi

the life-time of the ith parton is of the order of ti ≡ x+i =
1/k−

i = k+
i /k2

i⊥, where ki⊥ is the transverse momentum of
the ith parton. Introducing the rapidity yi of the parton we can
rewrite the lifetime as ti = (1/ki⊥) · eyi .

The interaction with the target of the size R destroys the
coherence of the parton wave function of the projectile. The
typical time, which is needed for this, is of the order of �t ∼ R

and is much smaller than the lifetime of all faster partons in
the fluctuation: �t � ti . Therefore, this interaction cannot
change the momentum distribution of the fast parton in the
projectile wave function. The influence of the target mostly

manifests itself in the loss of coherence for majority of the
partons; changes in momenta occur only for a few very slow
(“wee”) partons. The “wee” parton part of the wave function
together with the interaction with the target could be factorized
out while the energy dependence and distributions of the fast
partons should not depend on the properties of the target. (In
the following discussion we will assume that the interaction
happens at time t = 0.) Such picture follows from the parton
model and is based on rather general properties of field theories
(see, e.g., Ref. [9]); it has been proven in QCD for the BFKL
emission [10].

The CGC approach adds a very essential new idea to the
parton cascade picture. Since all partons with rapidity larger
than y (see Fig. 1) live longer than the parton with rapidity y,
for a dense system such as a nucleus they can be considered
as the source of the classical field that emits a gluon with
rapidity y [6]. We are going to explore this idea to evaluate
the parton wave function at the time t = 0 (see Fig. 1), or
to say better just after the interaction, when the coherence of
the wave function has been destroyed (see Sec. II). Moreover,
we will argue in Sec. II that the dominant source of parton
production is the longitudinal background field; we will also
elucidate the origin of this field.

We then use the same background field approximation to
follow the parton system at later times. In Sec. III we will
argue that the produced parton spectrum assumes the three-
dimensional thermal form (in a co-moving frame, of course)
over the time ∼1/Qs , where Qs is the saturation scale which
is a new dimensional parameter that characterizes the partonic
wave function at t = 0 [6–8]. We confirm the result of [1]
that the effective temperature is approximately T = Qs/(2π ).
At later times, the partons will interact with each other and
these interactions finally could create a thermalized system
of partons in the true “thermodynamical” sense (for example,
with temperature related to the density by equation of state),
but the consideration of this late kinetic equilibration stage is
beyond the scope of this paper. We would like to note only
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FIG. 1. The time structure of the parton cascade for a fast particle
(nucleus) in the target rest frame. Note, that ordering of the high
energy gluons in rapidity y is equivalent to their ordering in the
space-time rapidity η = (1/2)ln(x+/x−). In the target rest frame,
the target’s rapidity is η = 0, while that of the fast projectile is
η = Y > 0. The relation between the light-cone coordinates of the
fastest gluon in the cascade is therefore x+ = x−e2Y , while for the
slowest one x+ � x−.

that a three-dimensional thermal shape of parton distributions
should make a true kinetic equilibration easier.

In this paper we will use also two other key properties of a
dense partonic system in QCD:

The first one is the appearance of a new scale (saturation
momentum Qs) [6–8] which characterizes the mean transverse
momentum of partons in the parton cascade. This momentum is
proportional to the density of partons (gluons) in the projectile
at fixed rapidity, namely, Q2

s ∝ xG(x,Qs)/πR2 where xG is
the number of gluons with fixed Bjorken x = exp( − y) and R

is the transverse size of the projectile. This scale increases with
rapidity since xG ∝ (1/x)λ in the region of low x. It means
that the smaller is the value of Qs the faster is the parton.
Therefore, the parton with rapidity y in Fig. 1 has a mean
transverse momentum which is much larger than the transverse
momentum of all partons moving faster than it; thus it can be
considered as a probe for the system of fast partons, similar to
the deep inelastic probe. This observation allows us to consider
the production of a parton as a process of emission by the
frozen system of faster partons; averaging over the quantum
numbers of incoming hadrons can be done after calculating the
cross section. The typical configuration of the emitter is such
that the transverse sizes are much larger (transverse momenta
are much smaller) than the typical transverse sizes for the
emitted parton (transverse momentum of emitted parton).

The second main idea behind the CGC approach is that the
quantum emission in each stage of the process should give the
same result as the emission by the classical field. This idea is
the cornerstone of the Wilson renormalization group approach
in JIMWLK formalism (see Ref. [11]).

This paper is organized as follows. In Sec. II we explain
the origin of the longitudinal fields in high energy hadron and
nuclear collisions. We then consider the motion of a gluon
in the external longitudinal color field. The imaginary part
of the gluon propagator in an external field is related to the
cross section for the inclusive gluon production, Eq. (11). We
calculate the gluon propagator for an arbitrary external field
in Sec. II D using the WKB approximation. In Sec. III we use
the derived formulas to calculate the imaginary part of the
gluon propagator. Depending on the value of the adiabaticity
parameter γ , see Eq. (37), we obtain the gluon spectrum at
early times Eq. (50) and at later times Eq. (54). These are

the main results of our paper. Equation (50) coincides with
the McLerran-Venugopalan formula [6] for gluon emission by
dense randomly distributed two-dimensional color charges.
The corresponding saturation scale is given by Eq. (49).
Equation (54) implies that at later times gluon distribution
is thermal with the temperature determined by the saturation
scale Eq. (60). Assuming the validity of k⊥ factorization, in
Sec. V we generalize our formalism to the case of heavy
ion collisions. In Sec. VI we consider multiple gluon pair
production. Since the gluon spectrum at later times is thermal
we apply well-known formalism of statistical physics to
calculate the thermal properties of the produced gluon system.
In particular, we observe the phenomenon of Bose-Einstein
condensation which may solve the longstanding puzzle of
multiple soft gluon production. We discuss and summarize
our results in Sec. VII.

II. HIGH ENERGY PARTICLE PRODUCTION BY
EXTERNAL FIELDS

A. Transverse and longitudinal fields of the CGC

The potential of a charge moving with constant velocity v

along the z-axis is given by a particular case of the Lienard-
Weichert potential (see, e.g., [12])

A± = 1 ± v√
2

g/4π√
1
2 [x+(1 − v) − x−(1 + v)]2 + (1 − v2)x2

⊥
,

(1)
�A⊥ = 0, (2)

where we introduced the light-cone potential Aµ = (A+,

A−, �A⊥) with A± = (A0 ± Az)/
√

2. If the particle is fast,
then v → 1 and the potential takes form

A+ =
√

2g/4π√
2x2− + (1 − v2)x2

⊥
, (3)

A− = �A⊥ = 0. (4)

The corresponding fields read

�E⊥ = g

4π

(1 − v2)�x⊥(
2x2− + (1 − v2)x2

⊥
)3/2 , (5)

�H = �v × �E. (6)

Dirac equation in the background field Eqs. (3) and (4) was
solved in Ref. [13] with an assumption that the fast particle
moves freely from x+ = −∞ to x+ = ∞. In this case the
potentials (3) and (4) generate purely transverse mutually
orthogonal electric and magnetic fields. The action for such
a plane wave background vanishes. This implies that there
is no pair production in a single monochromatic plane wave
background [2].

The initial conditions in our case are different. As explained
in the caption of Fig. 1, for any gluon in the cascade it holds
that x+ � x− or, equivalently, z � 0. In other words, in
the target rest frame, all gluons move in the same positive
z direction. Therefore, the potential A+ exists only in the
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positive half-plane z � 0. In other words we have to solve
the pair production problem with the initial condition which
explicitly depends on both light-cone coordinates x+ and x−.
In Sec. II C we show that such an initial condition generates
the longitudinal chromoelectric field Ez in addition to the
transverse fields mentioned above [see Eqs. (34)–(36) and
below]. The existence of longitudinal fields in the color glass
condensate has been pointed out previously in Ref. [14]. In
Refs. [3,4,15,16] the pair production mechanism in heavy-ion
collisions by nonperturbative fields has been discussed.

The longitudinal field Ez is not only generated in a high
energy collision, but it gives a leading contribution to the pair
production amplitude as we are now going to demonstrate.
Consider a system of fast charges located at coordinates �xi

randomly distributed in the transverse area of typical size R⊥.
Let us calculate a field created by all these charges at the point
xµ. Assuming for simplicity a continuous distribution of the
charge, in the leading order in the coupling we have

A+(x) =
∫

d3x

4π

ρ(�x ′
, t − |�x − �x ′|)
|�x − �x ′|

=
∫

d2x ′
⊥dx ′

−
4π

×
√

2ρ
(
x ′

−, x ′
⊥, x+ + x ′

− − (x⊥−x ′
⊥)2

2(x−−x ′−)

)
x− − x ′− + (x⊥−x ′

⊥)2

2(x−−x ′−)

. (7)

Typical partons having rapidities y and y ′ such that y ′ > y

have x−’s satisfying x− � x ′
−. Also, the typical transverse size

of a parton decreases down the cascade as x⊥ ∼ 1/Qs(y) since
Qs(y) is an exponentially increasing function of y. Therefore
the transverse sizes satisfy x ′

⊥ � x⊥ which implies that the
field A(x) does not depend on the transverse size of the parton
x⊥:

A+(x) ≈
∫

d2x ′
⊥dx ′

−
4π

√
2ρ

(
x ′

−, x ′
⊥, x+ + x ′

− − (x ′
⊥)2

2x−

)
x− + (x ′

⊥)2

2x−

. (8)

Equation (8) implies that at high energies the transverse
fields experienced by the partons are small compared to the
longitudinal ones:

| �E⊥| = | �H⊥| � Ez. (9)

We need to consider the result of Eq. (9) with some caution
since E⊥ is still enhanced at very small values of x−, see
Eq. (3). However in the Lagrangian L = (E2 − H 2)/2
the transverse fields indeed give a very small contribution
proportional to E2

⊥ − H 2
⊥ ≈ E2

zQ
2
s (y ′)/Q2

s (y) � E2
z .

The pair production probability is proportional to the
imaginary part of the effective Lagrangian evaluated by
considering the quantum fluctuations in the background of
the external color fields. Therefore, we expect that the pair
production will be dominated by the longitudinal color fields;
we will check this by an explicit calculation below.

time0

t’yt’tyt

Sources  of classical fields

time

Sources  of classical fields

x
x
x

ty t’y
t’t

(G−>2G) t − ktp

p
t

kt

y

φΓ

φ

T

P

y

= 

FIG. 2. Inclusive gluon production at rapidity y in the target
rest frame. Crosses mark gluons which are on mass shell. ϕT and
ϕP denote the gluon densities for the target and the projectile,
respectively. The pair of gluons produced at rapidity y at time ty
in the amplitude and t ′

y in the complex conjugated one is shown by a
bold line.

B. Particle production in the background field

Inclusive production of a gluon with rapidity y in a gluon
cascade shown in Fig. 2 can be considered as a production
of a gluon in a constant background field. Indeed, for this
gluon all other gluons with larger rapidities are effectively
frozen and constitute a constant classical field Ez. Therefore,
the splitting of a fast gluon into two gluons at rapidity y at
the time ty (t ′y in the complex conjugated amplitude) can be
considered as a process of a gluon pair production by the field
�E. As shown in Fig. 2 both gluons propagate in the classical
background field. Interaction with the target takes much shorter
time than the gluon emission ty − t ′y � t − t ′. Therefore, the
only dynamical role of the interaction with the target is to
break the coherence of the nuclear wave function and to allow
an inclusive measurement. This is the reason why we can
present the inclusive cross section in a factorized form, namely,
dσ/dy ∝ ϕP (ty − t ′y) · ϕT (t − t ′), where ϕP is the probability
to find a gluon in the projectile. Calculating this probability
we could neglect the fact that one gluon interacts with the
target because of the short interaction time. The unintegrated
distribution ϕT is thus the probability for a gluon to interact
with the target. Clearly, this simple factorization formula is
just another representation for the well-known kt -factorization
formula which holds in high density QCD, at least for the
interaction of a nucleus with a virtual photon or hadron targets,
[17] and which has the form (see Refs. [7,18–24])

ε
dσ

d3p
= 4πNc

N2
c − 1

1

p2
⊥

×
∫

dk2
⊥ αSϕP

(
Y − y, k2

⊥
)
ϕT

(
y, (p − k)2

⊥
)
. (10)
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In our approach it is convenient to write this formula in a
different way

ε
dσ

d3p
=

∫
d2k⊥�2(G → 2G) Im D(Y − y, �p⊥ − �k⊥)

× Im D(Y − y, �k⊥)ϕT (y, �p⊥ − �k⊥), (11)

where

�2(G → 2G) = αs

4πNc

N2
c − 1

(12)

and Im D(y, kt ) is the imaginary part of the gluon propagator
in the strong classical field.

Let us consider a target with the transverse size R much
smaller than 1/Qs(y) where Qs is the saturation momentum.
For example, consider the virtual photon target with virtuality
Q2 � Q2

s (y). In this case we can neglect the dependence on
kt in ϕT in Eq. (11) and write

dσ

dyd2p⊥
= ϕP (Y − y, p⊥)ϕT (y, p⊥) (13)

with

ϕP (Y − y, p⊥) =
∫

d2k⊥�2(G → 2G)

× Im D(Y − y, �p⊥ − �k⊥) Im D(Y − y, �p⊥).

(14)

The dependence on k⊥ is absorbed in the dependence
of the classical fields on the transverse coordinate. In the
first approximation we consider the classical fields being
independent of the transverse coordinate. It means that the
gluon propagator is proportional to δ(2)(�k⊥) and Eq. (14) can
be rewritten as

ϕP (Y − y, p⊥) = �2(G → 2G) Im D(Y − y, �p⊥)

× Im D(Y − y, �p⊥). (15)

The factor 1/p2
⊥ is included in our definition of D(Y −y, �p⊥);

it must be reproduced for the values of p⊥ at which the
perturbation theory is valid.

C. Equation of motion in the background field

Now we can concentrate our efforts on the calculation of ϕP

which describes the production of the gluon pair in the strong
and constant field. This problem has been investigated in detail
both in QED and QCD (see review [25] and references therein)
and can be solved by using the background field method. Let
us assume that gluon fields have the structure

Gµ = Aµ + Wµ, (16)

where Aµ is a classical background field and Wµ is a quantum
fluctuation. The QCD Lagrangian can be expanded around this
classical field and it has the following general structure [26]:

L[A + W ] = L[A] + ∂L[A]

∂Aµ

Wµ + 1

2

∂2L[A]

∂Aµ∂Aν

WµWν. (17)

Since the second term is equal to zero due to equation of motion
for the classical field, our Lagrangian has a quadratic form as
far as the quantum field dependence is concerned. In the case
of SU(2) an explicit calculation (see Appendix A) leads to the
equation of motion for the quantum field Wµ:

(−(∂λ − igAλ)2δµν + 2igFµν[A])Wµ = 0, (18)

where we used the gauge condition DµAµ = 0. The field
configuration discussed in Sec. II A satisfies this condition
since ∂µAµ = ∂−A+(x−) = 0 and A2

µ = 0.
The tensor Fµν[A] for the longitudinal electrical fields is

Fµν =




0 0 0 Ez

0 0 0 0

0 0 0 0

−Ez 0 0 0


 , (19)

where Ez = −∂−A+. The components of Eq. (18) look as
follows:

µ = 0 : −(∂λ − igAλ)2W0 + igEzW3 = 0, (20)

µ = 3 : −(∂λ − igAλ)2W3 − igEzW0 = 0. (21)

Introducing W± = W0 ± iW3 we can rewrite Eqs. (20) and
(21) in the form

−((∂λ − igAλ)2 ± 2gEz)W± = 0. (22)

D. Calculation of a gluon propagator in the background field

We now turn to solving the Eq. (22). Although A+ is a
function of only x− Eq. (22) cannot be solved by separation
of variables since the initial condition depends on both x+ and
x− as has been discussed in Sec. II A. We can only separate
the x⊥ dependence. Thus, we are looking for the solution in
the form Wσ = e−iS−ip⊥·x⊥ , where σ = ±1. Working in the
WKB approximation |∂+S∂−S| � |∂+∂−S| [27,28] we reduce
Eq. (22) to

−2∂+S(∂−S − gA+(x−)) + p2
⊥ + 2gσEz = 0, x+ � x−,

(23)

where ∂+ = ∂
∂x−

and ∂− = ∂
∂x+

. Equation (22) is a Hamilton-
Jacobi equation for motion of a charged particle in the
background field A+ = A+(x−). The only difference from the
classical mechanics is the appearance of the spin-dependent
term in the right hand side of Eq. (23).

In the Hamilton-Jacobi formalism the action S is considered
along the true trajectories (satisfying Hamilton equations). It is
a function of the coordinate x of the final point of the trajectory.
The action along the true trajectories can be found using the
method of characteristics. This method was suggested for this
class of problems in [7,29] (for a mathematical review see,
e.g., [30]).
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1. Solution with σ = 0

In the spinless case σ = 0, characteristics of Eq. (23)
are given by the solution of the following set of ordinary
differential equations valid at x+ � x−:

dx−
dt

= −2p−, (24)

dx+
dt

= −2(p+ − gA+(x−)), (25)

dS

dt
= −2p+p− − 2p−(p+ − gA+), (26)

dp−
dt

= 0, (27)

dp+
dt

= −2p−gA′
+(x−), (28)

where t is a parameter along the characteristics and we
introduced the canonical momenta p± as

p− = −∂−S, p+ = −∂+S. (29)

Instead of one of Eqs. (24)–(27) we can use the following
equation stemming from Eqs. (23) and (29):

−2p−(p+ + eA+(x−)) + p2
⊥ = 0. (30)

We will use Eq. (30) in place of Eq. (27).
We can use x− as a parameter along the characteristics and

rewrite Eqs. (25), (26), and (28) in the following way:

dx+
dx−

= p+ + gA+(x−)

p−
, (31)

dS

dx−
= 2p+ + gA+(x−), (32)

dp+
dx−

= −gA′
+(x−). (33)

Using Eq. (30) the system (31)–(33) can be easily integrated
with the following result:

p+ = −gA+(x−) + gA+(x+) + p0
+, (34)

x− = p2
⊥

2

∫
dx+

(p0+ + gA+(x+))2 , (35)

S = −
∫

gA+(x−)dx− +
∫

dx+
p2

⊥
p0+ + gA+(x+)

. (36)

Equation (35) coincides with the equation of motion of a
classical test particle of mass p⊥ in the external field A+(x+).
In other words, the test particles effectively move under the
action of the longitudinal electric field Ez = −A′

+(x+).
Equation (36) gives the action of the test particle along

the trajectory (35). Its imaginary part arises from the pole
in the integrand of the second term in the right-hand side of
Eq. (36). Integration around the pole in the plain of complex
x+ yields the imaginary part. It can be calculated replacing
the denominator in the first integral in Eq. (36) by Im (p0

+ +
gA+)−1 = ±(iπ/2)δ(p0

+ + gA+) according to the Landau-
Cutkosky cutting rule. Additional factor of 1/2 arises due to

>

>

x-+x

+xx-

x-

+x

FIG. 3. Motion of a particle in the constant background field in the
light-cone coordinates. Using Eq. (35) one can derive the trajectory

of the particle x+x− = − p2
⊥

2(eE)2 (for simplicity we set p0
+ = 0). At

x+< 0 the particle moves freely along the light cone x− = 0 until
the point x− = x+ = 0 at which it tunnels along the line x− = x+
(Euclidean path, shown by dashed line) to a real trajectory at x+ > 0.
At this point particles move along x+ > x− branch of the parabola,
while antiparticles along the x+< x− branch.

the condition x+ � x−. Define

τ = x+ω,A+(τ ) = −E0

ω
f (τ ), γ = p0

+ω

gE0
, (37)

where ω is a typical frequency of the external field and E(τ =
0) = E0. With these definitions we obtain

Im S = Im
∫

p2
⊥

gE0

dτ

γ − f (τ )
= p2

⊥
2gE0

π

f ′(f −1(γ ))
. (38)

The imaginary part of the action (38) corresponds to the pair
production. In Fig. 3 we show a geometrical interpretation of
pair production in the constant background field.

The physical meaning of the adiabaticity parameter γ

introduced in Eq. (37) is clear: γ = 0 for the static field,
while γ � 1 for rapidly oscillating one. Since gE0 � k2

i,+ and
ω = ki,− we have the following estimate:

γ � p+
ki,+

. (39)

This estimate for γ is the quintessence of a qualitative
discussions in Sec. II. Namely, it means that for t = 0 the
emission of the gluons is determined by small values of
γ or, in other words, by constant electric fields, in which
A+(x+) = E0x+.

2. σ = ±1 case

In the case of σ = ±1 Eq. (23) cannot be integrated in
general. Equations (31) and (32) remain valid in this case. In
place of Eq. (32) we obtain

dp+
dx−

= −gA′
+(x−) − 4gσ

p2
⊥

(p+ − gA+(x−))E′
z(x−), (40)
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while in place of Eq. (30) we have

−2p−(p+ + eA+(x−)) + p2
⊥ + 2gσEz = 0. (41)

Equation (40) can be integrated to yield p+ = p+(x−, x+).
However, substitution of p+ into Eq. (31) gives an ordinary dif-
ferential equation which cannot be integrated for an arbitrary
field A+(x−).

We can still investigate the pair production in the two most
important cases of constant and rapidly decreasing fields.

(i) If Ez = const then Eq. (40) reduces to Eq. (33). Equation
(41) then implies that the solution to Eq. (23) with
σ = ±1 is given by Eq. (38) with shifted transverse
momentum p2

⊥ → p2
⊥ + 2gσEz. This can be seen of

course directly in Eq. (23).
(ii) For large x− Ez decreases at least as 1/x

3/2
− and can be

dropped in Eqs. (40) and (41) bringing us back to the
spinless case (38).

In both cases sum over spins yields an additional factor of
2 in front of Eq. (38).

III. TIME EVOLUTION OF THE CGC WAVE FUNCTION

A. Model for A+(x−)

The A+(x−) potential in Eq. (8) can in principle be
calculated by integrating over the transverse positions �x⊥i of
the highly energetic partons. However, in the present paper we
will restrict ourselves to a simple model which describes both
the small and large x− behavior of the background field. As
was discussed in the introduction, at t = 0 Ez = E0 = const
which implies that A− = −E0x−.

There are two important effects determining the late-time
behavior of the chromoelectric field. First, the produced gluons
start to interact which results in the increase of the gluons’
k− momentum and hence the field frequency ω. We discuss
this effect in detail in the following subsection. Second, the
produced color pairs screen the original color field. The
invariant mass of the pair provides the mass gap in the
excitation spectrum. Therefore, we expect the exponential
falloff of the field amplitude. This can be incorporated in a
simple model

A+(x−) = E0

ω
(1 − e−ωx− ). (42)

For this model we can derive the following expression for the
imaginary part of the action, see Eq. (38):

∑
σ

Im S = πp2
⊥

gE0(1 + γ )
. (43)

The model potential in Eq. (42) as well as the simple answer
of Eq. (43) is, of course, a simplification of the real situation.
However, it is easy to see that this model incorporates the
main properties of the parton cascade that we have discussed.

In Eq. (8) the density of the color charge can be approximated
by

ρ

(
x ′

−, x ′
⊥, x+ + x ′

− − (x ′
⊥)2

2x−

)

= c

∫
d2k⊥ei�k⊥·�x ′

⊥δ(x ′
− − ω−1)δ

(
k2
⊥ − Q2

s

)
, (44)

where c is a constant. Note that before the interaction x−
was negligible since x− ∼ 1/k+. However, right after the
interaction its typical value becomes of the order of x− ∼
ω−1 ∼ Q−1

s which follows from the uncertainty principle
�k+x− ∼ 1 and Eq. (52) [or Eq. (56)]. In writing Eq. (44) we
also took into account the fact that most of the gluons have
transverse momenta of the order of k⊥ ∼ Qs . The density
given by Eq. (44) generates A+(x−) according to Eq. (8) in the
form

A+(x−) = c′
∫

d2x ′
⊥dx ′

−
4π

2x−δ(x ′
− − ω−1)J0(x ′

⊥Qs)

2x2− + x ′2
⊥

= c′x−K0(x−Qs), (45)

where c′ is another constant. One can see that Eq. (45)
reproduces the main property of the model potential of
Eq. (42). Namely, A+(x−) ∼ x− (up to a logarithm) as x− → 0
and A+(x−) ∼ exp(−Qsx−) as x− � 1. Therefore, we believe
that the model potential of Eq. (42) reflects the main properties
of the structure of the parton cascade in high density QCD
(CGC). It is worthwhile mentioning that the mass gap turns
out to be of the order of the saturation momentum and this
looks very natural in the CGC approach.

B. Gluon spectrum at t = 0

To calculate the gluon spectrum we have to calculate the
imaginary part of the action S as explained in Sec. II B. First,
we will calculate the spectrum of produced particles at initial
time x+ = 0 and then, in the next section, we will consider
later-time particle production.

It follows from Eq. (43) that in the constant field (γ = 0)

∑
σ

Im Sσ = πp2
⊥

gE0
. (46)

This equation solves the problem of finding the propagator
of a gluon with transverse momentum p⊥ in the strong constant
classical field. In the WKB approach we can guarantee only
the exponential suppression for Im D(Y − y, p⊥) and

Im D(Y − y, p⊥) ∝ e−2
∑

σ Im Sσ = SP

αs

e
− 2πp2⊥

gE0 . (47)

Note that the dependence on the spin σ canceled out.
Substituting Eq. (47) into Eq. (14) we obtain

ϕ(Y − y, p⊥) = SP

4πNc

N2
c − 1

e
− 2πp2⊥

gE0 . (48)

The coefficient in front of the exponent in Eq. (48) was chosen
based on the physical meaning of function ϕP (see Ref. [33]).
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SP in Eq. (48) is the transverse area of the projectile and αs is
the running QCD coupling.

Equation (48) allows us to introduce the saturation scale
which is defined to be the mean momentum of the produced
gluons:

Q2
s = gE0

2π
. (49)

Using this new variable the unintegrated gluon distribution
function becomes

ϕP (p⊥) ∝ SP

πNc

N2
c − 1

e
− p2⊥

Q2
s . (50)

This equation gives the CGC parton density which coincides
with the formula suggested by McLerran and Venugopalan in
Ref. [6] (see Ref. [35] for more detailed calculation of CGC
parton density), and which illustrates the main property of the
CGC approach: the entire dependence on rapidity and impact
parameter enters only through the saturation scale Q2

s (y, b).
Therefore, our simple picture leads to the CGC initial

condition at t = 0. In the next section we wish to discuss
how the system can develop after losing coherence due to the
interaction in the final state.

C. Thermalization by a pulse of the chromoelectric field.

After losing coherence at t = 0 the fast gluons start
to interact [4]. A fast ith gluon in the cascade changes its
longitudinal momentum and energy according to Newton law

dkiz

dt
= gEz ∼ Q2

s ,
dε

dt
= 0. (51)

The second equation states that the energy of a gluon
propagating in the constant background field, which exists at
t = 0, does not change. Equations (51) imply that during the
time of the order of 1/Qs the longitudinal momentum changes
its value by ∼Qs . This results in a variation of both k+

i and k−
i

by the same value

�k+
i � �k−

i ∼ Qs. (52)

Since k+
i � Qs , for k+ it is a small relative change, and can

be neglected. However, the initially (at t = 0) small value of
k−
i = k2

⊥/k+
i � Qs increases in a strong field up to the hard

scale Qs .
The classical fields will depend on time with the typical

frequency of k−. Therefore, the interaction among the fast
partons leads to oscillation of the classical fields with a typical
frequency ω ≈ Qs . However, since the values of k+

i for the
fast partons are still larger than Qs we observe that all slow
partons (with rapidity y in Figs. 1 and 2) stem from the classical
emission of the fast partons.

We now turn to the derivation of the gluon spectrum at
later times. It was suggested in [1] that at later times particles
are produced by a pulse of the longitudinal chromoelectric
field. Indeed, the third equation in Eq. (37) implies that
the adiabaticity parameter increases with ω. Thus, at later
times γ � 1. It follows from Eq. (43) that in the case of

exponentially decreasing field (and only in that case) the final
spectrum is thermal. The imaginary part of the action reads

∑
σ

Im S = 2πp0
−

ω
,

where we used p0
+ = p2

⊥/(2p0
−) which is true for the real

particles.
For the imaginary part of the gluon propagator we thus

obtain

Im D(Y − y, p⊥) = SP

αs

e−2
∑

σ Im Sσ = SP

αs

e− 4πp0−
ω . (53)

The unintegrated gluon distribution is

ϕ(Y − y, p⊥) = SP

4πNc

N2
c − 1

e− 4πp0−
ω = SP

4πNc

N2
c − 1

e− p0−
T . (54)

Equation (54) implies that at later times the gluon spectrum is
thermal with the temperature

T = ω

4π
. (55)

D. Thermalization time

The initial state of the heavy ion is characterized by the dis-
tribution of gluons (50) with the typical transverse momentum
Qs proportional to the strength of the chromoelectric field,
Eq. (49). Since we have assumed that Qs is the only relevant
scale, the effective temperature T and thermalization time ttherm

(over which the spectrum acquires the thermal shape) must be
related to Qs . To estimate them we will use the following
two observations: (i) Due to momentum conservation the p+
momentum gained by the emitted particle is equal to the p+
momentum lost by the field; (ii) The dominant contribution to
the integral of Eq. (38) comes from times τ ∼ γ . The value of
the adiabaticity parameter γ ∼ 1 marks the transition between
the gaussian and the thermal distributions. In other words,

�p+ = p+(x−) − p0
+ = −ω, (56)

τ = ωx− ∼ 1. (57)

Equation (33) implies the following estimate:

�p+ ∼ −gE0

ω
, (58)

where in the last equation we used Eq. (57). Then from
Eqs. (56) and (58) we estimate the typical frequency of the
field

ω = √
gE0. (59)

Let us now substitute the definitions of the saturation scale
(49) and the temperature (55) into Eq. (59). The result is

T � 1

2
√

2π
Qs. (60)

The characteristic time over which the field changes is

t � 1

ω
� 1√

2πQs

, (61)
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time

y

time
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Sources of classical fields

Sources of classical fields

probe

probe

FIG. 4. The time structure of the deep inelastic scattering in
color glass condensate: the upper figure describes the quasiclassical
McLerran-Venugopalan approach while the lower one corresponds
to the approach developed in this paper.

and the thermalization time is

ttherm � 1

T
. (62)

In the kinematical range of RHIC for the collisions of heavy
nuclei Qs � 1–1.5 GeV [33]. This translates to T � 200–
300 MeV and ttherm � 0.6–1 fm.

IV. NUCLEAR GLUON DISTRIBUTIONS

To understand better the approximation that we suggest
in this paper we consider here the process of deep inelastic
scattering off the nuclear target assuming that the nucleus is so
heavy that we can treat it as a source of the classical field [6].
Let us assume that the probe is not a virtual photon but is rather
a graviton or other particle that can interact with a gluon. For
such a probe we have two different way of interaction with the
target. In the first one the probe decays into two gluons and
one of them belongs to the classical field of the target (see the
upper figure in Fig. 4). The second process goes in two steps:
the first is the decay of the probe into two quantum gluons and
in the second stage these two gluons interact with the classical
field as it is shown in low picture in Fig. 4.

For the first process we have McLerran-Venugopalan
formula [6], namely, the distribution of produced gluons in
the coordinate space looks as

dNMV

d2x⊥dy
∝ 1

ᾱs

(
1 − e− 1

4 x2
⊥Q2

s (x)ln(x2
⊥Q2

s (x))
)
. (63)

The second process leads to a formula that at first glance has
a quite different form namely [31]

dNLLA

d2x⊥dy
∝ ln(1/x)

(
1 − e− 1

4 x2
⊥Q2

s (x)ln(x2
⊥Q2

s (x))
)
. (64)

Equation (64) is written in the so-called leading logarith-
mic log(1/x) approximation (LLA) of perturbative QCD in
which we consider only contributions that are proportional to
(ᾱs ln(1/x))n such that ᾱs ln(1/x) ∼ 1 while ᾱs � 1. Since in

LLA ln(1/x) ∼ 1/ᾱs one may conclude that Eq. (64) gives
a contribution of the same order as Eq. (63). However, it has
been shown in Ref. [32] that in the saturation region where
1
4x2

⊥Q2
s (x) � 1 Eq. (64) can be rewritten as follows:

dNLLA

d2x⊥dy
∝ 1

ᾱs

ln
(
x2

⊥Q2
s (x)

)(
1 − e− 1

4 x2
⊥Q2

s (x)ln(x2
⊥Q2

s (x))
)
.

(65)

One can see that in the saturation region the contribution of
Eq. (65) which corresponds to our approach is parametrically
larger than the quasiclassical McLerran-Venugopalan result
of Eq. (63). It is well known that in the wide region of the
kinematic variables the mean field approximation to color
glass condensate leads to the geometrical scaling behavior;
namely, all experimental observables turn out to be functions
of one variable ζ = ln(x2

⊥Q2
s (x)), in which we have the

nonlinear equation. Even without discussing the exact form of
this equation one can see that Eq. (63) is the initial condition
for such an equation while Eq. (65) gives its first iteration. The
equation itself [11] is based on the idea that each emitted
gluon with large longitudinal momentum could be treated
simultaneously as a quantum and as a classical field. Equation
(65) is a good illustration of this principle since the quantum
emission of gluons leads to a result with dN/d2x⊥dy ∝ 1/αs .

V. ION-ION COLLISIONS

For ion-ion collisions we intend to use the kt factorization
approach expressed by Eq. (10). This equation has not been
proven for CGC; nevertheless, we still think that it provides a
reasonable starting point, for the following reasons. First, the
factorization has been proven for large values of transverse
momenta [38] (see also reviews in Ref. [39]). Second,
Eq. (10) is the correct formula for the inclusive production in
the case of the BFKL emission (see Ref. [19] and references
therein). This fact is very important in understanding why this
relation could be valid even in the CGC region. Indeed, the
BFKL equation has its own, intrinsic scale of hardness: the
mean transverse momentum of gluons which increases as a
function of energy. This fact is common for the BFKL and CGC
emissions, especially if we recall that the BFKL approach is
the low parton density limit of the CGC. However, the rigorous
proof of Eq. (10) is still lacking. The theoretical situation as
well as physical arguments for such factorization have been
outlined in Ref. [40] and we cannot add more at the moment.

For the ion-ion collision we thus use the following equation:

ε
dσ

d3p
= dσ

dyd2pt

= 4πNc

N2
c − 1

1

p2
⊥

×
∫

dk2
⊥αSϕA

(
Y − y, k2

⊥
)
ϕB

(
y, (p − k)2

⊥
)
,

(66)

where ϕ is given by Eq. (54) and subscripts A and B refer to
the mass numbers of the nuclei. This factorization formula can
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FIG. 5. Inclusive production in the collision of the nucleus A with
the nucleus B. Crosses mark the on-mass-shell gluons.

be rewritten in the form of Eq. (11), namely,

dσ

dyd2p⊥
= 4πNc

N2
c − 1

∫
d2k⊥Im DA(Y − y, �p⊥ − �k⊥)

× Im DA(Y − y, �p⊥) Im DB(y, �p⊥ − �k⊥)

× Im DB(y, �p⊥). (67)

In the first approximation we can integrate over k⊥ assuming
that the classical fields do not depend on the transverse
coordinate. Therefore, we have

dσ

dyd2p⊥
= 4πNc

N2
c − 1

Im DA(Y − y, �p⊥) Im DA(Y − y, �p⊥)

× Im DB(y, �p⊥) Im DB(y, �p⊥). (68)

In Fig. 5 we show that the gluon is moving in the fields EA

and EB in the time interval t − t ′. In fact, by writing Eq. (67)
we assumed that the resulting field is just the sum of these
two fields. It is correct for QED, but not for QCD [6,11,35].
In other words, we assumed that during the time interval t − t ′
both gluons interact with two fields in such a way that the
resulting propagator is equal to

Im D(t − t ′) = Im DA(t − t ′) Im DB(t − t ′). (69)

For t = 0 Eq. (68) leads to

dσ

dyd2p⊥
= SASB

αs

2Nc

N2
c − 1

e

−p2⊥
Q2

s ; (70)

the effective saturation scale in ion-ion collisions thus can
be inferred from Eq. (70) as 1/Q2

s = 1/Q2
s,A + 1/Q2

s,B as
expected.

For t > 1/T Eq. (67) looks differently:

dσ

dyd2p⊥
= SASB

4πNc

N2
c − 1

∫
d2k⊥e

−p−( 1
TA

+ 1
TB

)
. (71)

From Eq. (71) we see that we have the same expression as
in Eq. (54) but with a different temperature. Therefore the
spectrum is given by

dσ

dyd2p⊥
= SASB

αs

π2Nc

2
(
N2

c − 1
)e

− p−
Teff , (72)

with

1

Teff
= 1

TA

+ 1

TB

. (73)

VI. STATISTICAL INTERPRETATION OF MULTIPLE PAIR
PRODUCTION

A. Probability of multiple pair production

It was argued in Refs. [27,41] that the pair production
mechanism allows a statistical interpretation. Consider the
relative probability of single pair production w1(σ, �p) =
exp( − 2 Im S). Assuming that the pairs are produced inde-
pendently, the absolute probability to produce one pair is then
given by

W1(σ, �p) = w1(σ, �p)

(
1 −

∞∑
n=1

wn
1 (σ, �p)

)
; (74)

similar expressions hold for the absolute probabilities to
produce n pairs, Wn = wn

1 (1 − ∑∞
n=1w

n
1 ). Let w0(σ, �p) =

1−∑∞
n=1w

n
1 (σ, �p) be the probability that no pair with quantum

numbers σ, �p is produced. The probability conservation
condition then reads

w0(σ, �p) +
∞∑

n=1

Wn(σ, �p) = w0(σ, �p)
∞∑

n=0

wn
1 (σ, �p)

= w0(σ, �p)

1 − w1(σ, �p)
= 1. (75)

The total probability that the vacuum of a given theory remains
unchanged in a given volume V during time �t is

W0 = |exp(iLV �t)|2 = exp( − 2 ImLV �t). (76)

On the other hand [27,41],

W0 =
∏
σ,�p

w0(σ, �p) = e
∑

σ,�p ln(1−w1(σ,�p)), (77)

where we used Eq. (75). Therefore,

ImLV �t = −1

2

∑
σ,�p

ln(1 − w1(σ, �p))

= −g
V

2(2π )3

∫
d3pln(1 − w1(σ, �p)), (78)

where g = (2σ + 1)(N2
c − 1) is the degeneracy factor for

pairs of particles. The expression on the left hand side of (78)
is nothing but the total production probability in the WKB
approximation

1 − W0 ≈ 2 ImLV �t. (79)

When w1 is given by thermal distribution (53) the right-hand
side Eq. (78) is related to the thermodynamic potential �pairs

of the produced pairs:

�pairs = T g
V

(2π )3

∫
d3pln(1 − w1(σ, �p)). (80)

Since we work in the approximation in which the background
field does not depend on the transverse coordinates the
particles produced in a given pair are correlated exactly back-
to-back. Therefore, the thermodynamic potential for single
particles � is just twice the one for the pairs.
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B. Bose-Einstein condensation

For the reasons which will become clear shortly, let us
introduce a new notation W/T = 2 Im S. W takes the
following values at early and later times:

W/T =

 p2

⊥
/

Q2
s , t � ttherm

p−/T , t � ttherm.

(81)

The number of the produced pairs is equal to [42]

N = −∂�(µ)

∂µ

∣∣∣∣
µ=0

= ∂

∂µ

VT

(2π )3 g

∫
d3pln(1 − e(µ−W)/T )

∣∣∣∣
µ=0

(82)

= gV

(2π )2

∫
dp2

⊥dpz

1

eW/T − 1
, (83)

where we absorbed the additional degeneracy factor 2 in the
definition of g.

At t = 0 it follows from Eq. (81) that the integral in Eq. (83)
logarithmically diverges in the infrared region in agreement
with perturbative QCD. However, the total emitted energy is
finite

E =
∫

εdNε = V g

(2π )2 �pzQ
3
s gE0

√
π

2
ζ (3/2), (84)

where we have restricted ourselves to the central rapidity
region where ε = p⊥ = √

2p− = √
2p+, pz = 0. We can

estimate �pz ≈ gE0t . Also during the longitudinal expansion
V ∼ t . Therefore, during the early stages after the collision
the energy flows from the field to the soft particles as E ∼ t2.

The gluon number becomes finite as soon as t > 0. Indeed,
when t changes from 0 to ttherm it follows from Eq. (81) that
n = dlnW/dlnp⊥ decreases from 2 to 1. We have

N = 2V g

(2π )2

∫
dp⊥dpz

p⊥
e(p⊥/�)n − 1

= V g

(2π )2 gEt�2F (n),

(85)

where � varies from Qs at t = 0 to T at t = ttherm and

F (n) =
∫ ∞

0

dzz

ezn − 1
, F (1) = π2

6
. (86)

The distribution in Eq. (86) at n = 1 has the form of a
Bose-Einstein distribution with a vanishing chemical potential,
µ = 0. We thus expect the Bose-Einstein condensation
of gluons to occur at temperatures lower than the critical
temperature T0. For the sake of simplicity let us assume that t

is close to ttherm so that n � 1 and � � T . To calculate T0 let
us note that Eq. (85) cannot be used for counting the number
of particles which carry zero transverse momentum p⊥ = 0 at
T < T0 [42], where T0 is defined as

T0 =
(

3(2π )2N

V ggEtπ2

)1/2

. (87)

The number of particles with zero momentum (in the conden-
sate) equals

N (p⊥ = 0) = N

[
1 −

(
T

T0

)2
]

, (88)

whence N is the total (finite) number of particles.
The critical temperature decreases with time. Let us

estimate its value at t = ttherm. Using Eqs. (49) and (62) we get
gE0ttherm ∼ 1. Assume V = SAt where SA is the transverse
cross sectional area of the nucleus (for simplicity we assume
a central collision). Then

T0 � T0(ttherm) =
(

12N

gS

)1/2

. (89)

The total number of hadrons produced at y = 0 at RHIC is
about N ∼ 1000. Using SA = π (7 fm)2 and g = 2 · 3 · 8 we
obtain T0(ttherm) ≈ 260 MeV. Therefore, just after the system
is thermalized, a significant fraction of gluons may form a
Bose-Einstein condensate.

The Bose-Einstein condensation of soft gluons in high
energy QCD leads to a remarkable consequence. Recall that
the typical correlation length inside the high energy hadron is
rather small λc � 1/Qs . This implies that the gluon emission
with long wavelengths λ = 1/p⊥ > λc is suppressed because
it decouples from the hadron wave function, similarly to the
decoupling of a large wavelength signal from a small antenna.
Therefore, one is led to predict a deficit of soft gluons at high
energies, in a stark contradiction with the experimental data.
The phenomenon of Bose-Einstein condensation solves this
puzzle since it allows piling up of soft gluons.

C. Viscosity of the parton system

We have argued in Secs. III C and III D that at t > ttherm

the produced partons have 3D thermal distributions with an
effective temperature T . The number of produced particles
per unit volume is large n ∼ 1/αs since they were part of
the classical fields in the initial wave functions before the
collision. This observation is an important argument in support
of the hydrodynamical description of the parton system at later
times [43].

The typical transverse momentum of a parton is 〈p⊥〉 ∼
T . Recall that the temperature T is proportional to the
saturation scale Qs(y) which is an exponential function of
rapidity. Therefore, the temperature varies with rapidity. As
a consequence, the average value of transverse momentum
〈p⊥〉 significantly varies between different rapidity layers. The
difference in the transverse momentum distributions along the
longitudinal axis of rapidity amounts to the shear viscosity.1

The shear viscosity can be estimated as (we keep only
parametric dependence while omitting all numerical factors)

η

n
= 〈p⊥〉λ ∼ Qs

nσ
, (90)

1We would like to thank Ben Svetitsky for bringing our attention to
this consequence of our approach.
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where σ ∼ αs/Q
2
s is the scattering cross section for a parton

in the classical background field. The number of particles per
unit volume is

n ∼ xG

SALz

, (91)

where Lz ∼ 1/Qs is the longitudinal extent of the system.
Using Q2

s ∼ αsxG/SA we then estimate

η

n
∼ 1. (92)

This estimate implies the parametric smallness of viscosity
which comes about as a consequence of high occupation
number of gluons in the initial wave function. In contrast,
in pQCD the shear viscosity is parametrically enhanced
η/n ∼ 1/αs

2 [44].

VII. DISCUSSION AND SUMMARY OF THE RESULTS

In this paper we have developed an approach to particle
production based on the principle idea of CGC: the gluon with
a rapidity y0 can be considered as emitted by the classical fields
that are composed of all faster partons with y > y0. We showed
that in such an approach the gluons at the moment of collision
are emitted by the classical longitudinal fields (Ez), which are
created by fast particles during very short time ∼1/ε after the
collision (ε is the particle energy in the laboratory frame). We
found the relation (49) between the momentum scale of dense
partonic system Qs and the strength of the classical field Ez.
The inclusive distribution at t = 0 is given by Eq. (50) and
turns out to be the same as has been expected in the CGC
approach (McLerran-Venugopalan model) [6].

At later times t � 1/
√

2πQs , one has to consider the time
dependence of the classical fields. We followed through the
evolution of the system assuming that the main source of the
produced gluons is still the classical field created by faster
partons. It turns out that the momentum distribution of the
produced gluons has a three-dimensional thermal spectrum
given by Eq. (54) with T = (1/4

√
2π )Qs(y) for the collision

of two identical nuclei at midrapidity. Therefore, the CGC
approach led to a thermal spectrum of emitted gluons with an
effective temperature which depends on the rapidity of emitted
gluons.

It was argued in Ref. [45] that the perturbative dynamics
may not be adequate for the description of the late-time
processes in a high-energy heavy-ion collisions as it does
not lead to the thermalization as anticipated on general
grounds. In the present paper we circumvent that result by
suggesting a nonperturbative mechanism of thermalization.
The nonperturbative nature of the obtained results can be
clearly seen in Eq. (38) which exhibits nonanalytic dependence
on the coupling g.

The dependence of temperature on rapidity may trigger
instability of the gluon system (see for example [47,48]
and references therein) and speed up thermalization process.
Perhaps at late times the instability driven thermalization can
compete with pair production by strong fields discussed in this
paper. This problem warrants further investigation.

Another problem left beyond the scope of the present paper
is understanding at what time the hydrodynamic description
becomes valid. It seems reasonable to assume that for
times later than ttherm � 1/T we could apply the viscous
hydrodynamic description. Indeed, we showed that for these
times we have a 3D thermal distributions in each slice of
rapidity which is a precondition for using the hydrodynamic
approach. On the other hand, the average transverse momenta
〈pt 〉 � T are quite different in the two neighboring slices in
rapidity due to the dependence of T on rapidity. Therefore,
we can expect a considerable difference in parton momentum
distributions in different rapidity slices which amounts to
viscosity. We have argued that the CGC initial conditions
lead to the parametrically small shear viscosity η ∼ O(1) as
opposed to the perturbative result, η ∼ O(1/αs

2). It should be
mentioned that matching the CGC energy-momentum tensor
with that of an almost perfect fluid yielded similar results [49].

Although we performed our calculations for the SU(2)
gauge theory, we believe that all the qualitative features of the
derived results will remain valid for the realistic color group
SU(3) as well. Calculations of the pair production effect in a
constant chromoelectric field of SU(3) have been recently done
in Refs. [50,51]. Unlike SU(2) there are two Casimir operators
in SU(3) which yield a more complicated dependence of the
pair production effect on E.

A new related general approach to particle production in
field theories coupled to strong external sources has been
recently formulated in Ref. [52] where the particular example
of λφ3 theory has been discussed. It may yield new insights
into the problem of particle production problem in QCD as
well.

It is interesting to note that calculation of inclusive e+e−
production in QED can be done in exactly the same way as
was followed to calculate the gluon production in this paper.
Indeed, a fast moving system in QED is characterized by large
transverse fields which lead to bremsstrahlung production of
photons which is a classical process. There is also production
of e+e− pairs which is a typical quantum process. The QED
variant of the CGC approach states that at high energies the
inclusive production is dominated by the emission of e+e−
pairs in the classical photon field and not by the quantum
emission of virtual photons.
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APPENDIX: EQUATION OF MOTION OF A VECTOR
PARTICLE IN AN EXTERNAL FIELD IN SU(2)

Let Aµ = A3
µ be the background classical field. We are

looking for the equations of motion of the vector particle Wµ =
(A1

µ + iA2
µ)/

√
2 in the background field Aµ. The Lagrangian

is

L = −1

4

3∑
i=1

(
F i

µν

)2
. (A1)

Using the identity∑
i=1,2

(
F i

µν

)2 = 2|DµWν − DνWµ|2 = [(
∂µA1

ν − ∂νA
1
µ

)
+ g

(
A3

µA2
ν − A3

νA
2
µ

)]2 + [(
∂µA2

ν − ∂νA
2
µ

)
− g

(
A3

µA1
ν − A3

νA
1
µ

)]2
, (A2)

and expanding the three-component of the strength tensor

(
F 3

µν

)2 = (
∂µA3

ν − ∂νA
3
µ

)2

+ 2g
(
∂µA3

ν − ∂νA
3
µ

)
2iW ∗

µWν + O
(
W 4

µ

)
(A3)

we obtain

L = − 1
4 (∂µAν − ∂νAµ)2 − ig(∂µAν − ∂νAµ)W ∗

µWν

− 1
2 |DµWν − DνWµ|2, (A4)

where Dµ = ∂µ+igAµ. The corresponding equation of motion
is [−D2

λδµν + DµDν + 2igFµν

]
Wν = 0. (A5)

Assuming DµWµ = 0 we have

∂2
µWν − 2igAµ∂µWν − ig(∂µAµ)Wν

− g2A2
µWν + 2gEσWν = 0, (A6)

which is equivalent to Eq. (18).
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