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We systematically analyze total reaction cross sections of carbon isotopes with N = 6–16 on a 12C target for
wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant
generated from a phenomenological mean-field potential, which reasonably well reproduces the ground-state
properties for most of the even N isotopes. We need separate studies not only for odd nuclei but also for 16C
and 22C to improve their wave functions. The density of the carbon isotope is constructed by eliminating the
effect of the center-of-mass motion. For the calculations of the cross sections, we take two schemes, the Glauber
approximation and the eikonal model using a global optical potential. Both the reaction models successfully
reproduce low and high incident energy data on the cross sections of 12C, 13C, and 16C on 12C. The calculated
reaction cross sections of 15C are found to be considerably smaller than the empirical values observed at low
energy. We find a consistent parametrization of the nucleon-nucleon scattering amplitude, differently from
previous ones. Finally, we predict the total reaction cross section of 22C on 12C.
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I. INTRODUCTION

The structure of carbon isotopes has recently attracted much
attention as experimental information accumulated toward its
neutron dripline. The topics discussed include, for example, the
subshell closure of N = 14 and N = 16 and the anomalously
small E2 transition strength observed in 16C [1,2]. These issues
are closely related to the competition of 0d5/2 and 1s1/2 neutron
orbits. In fact, they play a predominant role in determining the
ground-state structure of the carbon isotope with N > 8.

The momentum distribution of a 15C fragment in the
breakup of 16C suggests that the last neutrons in 16C occupy
both the 0d5/2 and 1s1/2 orbits [3], which is consistent with
recent 14C+n+n three-body calculations [4,5]. The 1s1/2 orbit
plays a vital role in forming a one-neutron halo structure
of 19C [6,7]. If the subshell closure of N = 14 is a good
approximation in the carbon isotopes, the 0d5/2 orbits are fully
occupied in the nucleus 20C. Adding one more neutron to 20C
leads to no particle-bound system, but 22C, getting one more
neutron, becomes bound. 22C is thus a Borromean nucleus.
The structure of 22C has recently been studied by two (W.H.
and Y.S.) of the present authors in the three-body model of
20C + n+n [8].

A molecular picture in 14C is investigated in the framework
of three α particles plus two neutrons [9]. The deformation
of the carbon isotopes is also discussed to have a strong N

dependence [10,11]. The properties of the carbon isotopes are
reviewed in Ref. [12] based on the mean-field and shell-model
configuration mixing models.

How do such nuclear structures affect reaction data?
Nowadays, the data on total reaction or interaction cross
sections have accumulated particularly for light nuclei. In the
case of the carbon isotopes, for example, the interaction cross
section has been measured up to 20C around 700∼960A MeV
incident energy [13]. Because these cross sections reflect the

size of nuclei, it is interesting to analyze the cross sections in
a systematic manner.

The purpose of the present study is a systematic analysis
of the total reaction cross sections of carbon isotopes on a
12C target using two reaction models which enable us to go
beyond a folding model; the Glauber model [14] and the
eikonal approximation [15,16] with the use of nucleon-12C
optical potentials. This study is also motivated by an ongoing
measurement of the reaction cross section of 22C [17]. Such a
measurement looks quite challenging because the production
rate of 22C is expected to be small. We will perform a simple,
consistent, ad hoc parameter-free analysis. The systematics
will offer an interesting interplay between nuclear structure
models and the reaction models.

The input parameters on nucleon-nucleon scatterings
needed in the Glauber calculation is carefully assessed using
available 12C+12C reaction cross-section data. The wave
function of a carbon isotope is first generated from a Slater
determinant whose nucleon orbits are built from phenomeno-
logical mean-field potentials, and the corresponding neutron
and proton densities, with its center-of-mass (c.m.) motion
being taken into account properly, are constructed for the
calculation of the total reaction cross section. The asymptotic
form of the wave function is carefully described by the use of
empirical nucleon separation energies as it is important for the
cross section calculation, particularly for a spatially extended
system. A comparison with experimental cross sections will
immediately reveal a successful or unsuccessful case. To
resolve the discrepancy between theory and experiment, one
has to go beyond the simple mean-field model and two types
of dynamical models are performed to obtain an improved
density. One is a core+n model for an odd N nucleus, and the
other is a core+n+n model for 16C and 22C.

The organization of the present article is as follows: The
reaction models for a calculation of reaction cross sections
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between nuclei are presented in the next section. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. The reaction cross section of 12C+12C
is tested by these formulas in a wide range of incident
energy. In Sec. III the phenomenological mean-field potential
is prescribed for generating the Slater determinant, and the
c.m. motion is removed to obtain the intrinsic density that
is used in the reaction calculation. The mean radius of the
matter distribution is compared to the empirical value. The
nuclear structure model is extended to the dynamical model
in Sec. IV. A core+n model is applied to the odd N isotopes
in Sec. IV A, where the difference in the densities between
the dynamical model and the Slater determinant is discussed.
The binding energy and the matter size of 22C are studied in the
three-body model of 20C+n+n in Sect. IV B and the densities
of the core+n+n model are presented in Sec. IV C. Section V
presents the results of reaction cross section calculations; the
cases of 12−20C in Sec. V A and the 22C+12C reaction in
Sec. V B. Summary is drawn in Sec. VI. A method of
calculation of two-particle distribution functions is given in
Appendix.

II. MODEL FOR A REACTION CROSS-SECTION
CALCULATION

In this section, we describe our reaction models for
analyzing reaction cross sections between nuclei. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. These methods are complementary to
each other for a 12C target, but only the former can be applied
for a proton target in general when a proton-nucleus optical
potential is not available. With these calculations in two ways,
we can find a reliable parametrization of the NN interaction
for a wide energy range, which is important to proceed to the
case of a proton target in our future work.

A. Glauber formalism

The reaction cross section for a projectile-target collision is
calculated by integrating the reaction probability with respect
to the impact parameter b;

σR =
∫

db(1 − |eiχ(b)|2), (1)

where the phase-shift function χ is expressed, in the Glauber
model [14], through the NN profile function �NN by

eiχ(b) = 〈�0�0|
∏
i∈P

∏
j∈T

[1 − �NN(si − tj + b)]|�0�0〉.

(2)

Here �0 (�0) is the intrinsic wave function of the projectile
(target) with its c.m. part being removed, si is the two-
dimensional vector of the projectile’s single-particle coordi-
nate, ri , measured from the projectile’s c.m. coordinate, and ti
is defined for the target nucleus in a similar way. The profile

function �NN is usually parameterized in the form;

�NN(b) = 1 − iα

4πβ
σ tot

NNexp

(
− b2

2β

)
, (3)

where σ tot
NN is the total cross section for NN collisions, α the

ratio of the real to the imaginary part of the NN scattering
amplitude, and β the slope parameter of the NN elastic
differential cross section.

As seen in Eq. (2), the calculation of the phase-shift function
requires a multidimensional integration. The importance of
including such higher-order terms has been known for many
years [18]. Though the integration can be performed using the
Monte Carlo technique even for sophisticated wave functions
[19], it is fairly involved in general, so it is often approximately
evaluated in the optical limit approximation (OLA) using the
intrinsic densities of the projectile (target) nuclei, ρP (ρT), as
follows:

eiχOLA(b) = exp

[
−

∫∫
drdr′ρP(r)ρT(r′)�NN(s − t + b)

]
.

(4)

Another approximation is proposed in Ref. [20] by two
(B.A.-I. and Y.S.) of the present authors to calculate the
reaction cross sections using the same input as in the OLA. The
essence of the approximation is to consider, as an intermediate
step, a phase shift function for the nucleon-nucleus scattering.
With the introduction of the profile function �NT for the
nucleon-target (NT) scattering, the phase-shift function of
OLA, Eq. (4), is replaced by χ̄ as

eiχ̄ (b) = 〈�0|
∏
i∈P

{1 − �NT (si + b)}|�0〉

≈ exp

[
−

∫
drρP(r)�NT (s + b)

]
. (5)

We here adopt two methods to calculate the �NT : One is to
calculate the �NT using an appropriate optical potential as
shown in the next subsection. The other is to use the Glauber
theory as

�NT (b) = 1 − 〈�0|
∏
j∈T

[1 − �NN(b − tj )]|�0〉

≈ 1 − exp

[
−

∫
dr′ρT(r′)�NN(b − t)

]
. (6)

Substituting this expression into Eq. (5) leads us to

eiχ̄(b) = exp

(
−

∫
drρP(r)

×
{

1 − exp

[
−

∫
dr′ρT(r′)�NN(s − t + b)

]})
. (7)

This formula is found to give better results than those of
the OLA [20,21]. Though only the leading term in the
cumulant expansion is taken into account to derive Eq. (7), this
approximation includes higher-order corrections which Eq. (4)
does not contain [21]. Because the role of the projectile and the
target is interchangeable in the calculation of the reaction cross
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FIG. 1. Reaction cross sections of 12C on a 12C target calculated
with the parameters of Refs. [22,23]. The experimental data are taken
from Refs. [24–31] for the reaction cross section σR and from Ref. [13]
for the interaction cross section σI.

section, it may be possible to symmetrize Eq. (7) as follows:

eiχ̄ (b) = exp

(
− 1

2

∫
drρP(r)

×
{

1 − exp

[
−

∫
dr′ρT(r′)�NN(s − t + b)

]})

× exp

(
− 1

2

∫
dr′ρT(r′)

×
{

1 − exp

[
−

∫
drρP(r)�NN(t − s + b)

]})
. (8)

This approximation is called NTG hereafter, which stands for
the NT profile function in the Glauber model.

The parameters of �NN are taken from Refs. [22,23]. In
the latter case [23] the parameters are given for the pp and
pn collisions separately, but here we use the mean values
because the target nucleus is 12C whose proton and neutron
densities are virtually the same to good accuracy. In Fig. 1 we
compare the numerical results obtained using these parameters
with the experimental data of 12C+12C total reaction cross
sections. Here the intrinsic density of 12C is obtained from the
procedure that will be explained in the next section. It is found
that both the parameters give quite different cross sections at
100∼300A MeV. Apparently the cross sections obtained with
the parameters of Ref. [23] are too large, whereas those with
the parameters of Ref. [22] tend to be a little smaller than
experiment.

The NN profile function could be subject to change from
that of the free space especially at lower energies because of
the effects due to the Pauli blocking and the Fermi motion of
the nucleons [32]. Warner et al. studied the in-medium effect
on the reaction cross section by modifying the free σ tot

NN [33].
Takechi et al. have recently reported that taking into account
the Fermi motion leads to a significant change in the σ tot

NN
values, which is vital to reproduce the reaction cross sections
at lower energies [34].

Here we take a simpler route: First, we note that the total
elastic cross section σ el

NN of the NN collision is given by

σ el
NN = 1 + α2

16πβ

(
σ tot

NN

)2
(9)

for the profile function of Eq. (3) [35]. Then, for E<

300A MeV where only the elastic scattering is energetically
possible as the pion production threshold is closed, we expect
that the relation of σ el

NN = σ tot
NN should hold from the unitarity

of the NN collision. Employing the parameters of Ref. [23]
yields σ el

NN = 17, 7, and 3 mb at E = 100, 150, and 200 MeV,
respectively, which are far smaller than the σ tot

NN values at the
corresponding energies. We, instead, choose the β value for
E < 300A MeV as

β = 1 + α2

16π
σ tot

NN (10)

to satisfy the equality of σ el
NN = σ tot

NN . For E > 300A MeV
where the equality breaks down, the β values are determined
from Eq. (9) using the experimental values of σ el

NN = 1
2 (σ el

pp +
σ el

pn) [36]. Some of the α parameters of Ref. [22] are also
modified to follow the systematics of Ref. [23].

Table I lists the parameters of the NN profile function used
in the present study. The 12C+12C reaction cross sections
calculated using these parameters are displayed by solid (NTG)
and dotted (OLA) lines in Fig. 2. We find that the modified
parameter set reproduces very well the experiment in the whole
energy region. The NTG phase shift function is found to
reproduce the cross section better than the OLA. We thus
conclude that both the calculated density of 12C and the
parameter set of �NN are qualified for a systematic analysis
of the reaction cross section of the carbon isotopes on a 12C
target.

B. Nucleon-nucleus data as a basic input

In this subsection, we briefly present a method developed in
Refs. [14,20] for describing nucleus-nucleus scattering using
an optical potential for the nucleon-nucleus elastic scattering.

TABLE I. Parameters of the NN profile function. E is the
projectile’s incident energy. Some parameters are modified
from the original values of Refs. [22,23]. See the text for
detail.

E (A MeV) σ tot
NN (fm2) α β (fm2)

30 19.6 0.87 0.685
38 14.6 0.89 0.521
40 13.5 0.9 0.486
49 10.4 0.94 0.390
85 6.1 1.37 0.349
94 5.5 1.409 0.327

100 5.295 1.435 0.322
120 4.5 1.359 0.255
150 3.845 1.245 0.195
200 3.45 0.953 0.131
325 3.03 0.305 0.075
425 3.03 0.36 0.078
550 3.62 0.04 0.125
650 4.0 −0.095 0.16
800 4.26 −0.07 0.21

1000 4.32 −0.275 0.21
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FIG. 2. Comparison of the reaction cross sections of 12C on a 12C
target between theory and experiment. The input parameters for �NN

are taken from Table I in the NTG and OLA calculations, while those
for �NT are taken from the global optical potential of Ref. [37] in the
NTO calculation. At energies less than 100A MeV the correction due
to the deviation from the straight-line trajectory, though negligibly
small, is included in the NTO calculation. See the caption of Fig. 1
for the experimental data.

Denoting the NT optical potential by VNT , we define the
corresponding phase shift function χNT as

χNT (b) = − 1

h̄v

∫ ∞

−∞
dzVNT (b + zẑ), (11)

where v is the incident velocity of the NT relative motion.
Now we express the NT profile function as

�NT (b) = 1 − eiχNT (b). (12)

The substitution of Eq. (12) into Eq. (5) yields another formula
to calculate the optical phase shift function. We call this
approximation NTO, which stands for the NT formalism with
the optical potential. Similarly to NTG, the reaction cross
section given by NTO includes higher-order terms that are
missing in the reaction cross section calculated with a folding
model. In the latter model the phase shift function χf is simply
given by

eiχf (b) = exp

[
i

∫
drρP(r)χNT (b + s)

]
. (13)

The needed input for NTO is the projectile’s intrinsic
density and the optical potential VNT at a given energy. As
VNT we use the central part of the global optical potential
EDAD-fit3 (GOP) [37], which is determined by a Dirac
phenomenology. This potential, together with the other EDAD
sets, gives a good fit to p+12C elastic scattering and reaction
cross-section data in the incident energy of 30 MeV to
1 GeV. It should be noted, however, that the EDAD-fit3
potential predicts slightly smaller reaction cross sections than
experiment in the intermediate energy range of 300–400 MeV.
This would be due to the lack of data of p+12C elastic
scattering differential cross section for this energy range. We
ignore the difference between pT and nT interactions in this
study.

The NTO calculation for 12C+12C reaction cross section
is shown by dashed line in Fig. 2. As we see, the agreement
between experiment and theory is good. The underestimation

of the cross section around 300–400A MeV is probably due
to the smaller absorption of the EDAD-fit3 potential as noted
above. An advantage of these calculations is that they are
parameter free. For the energy less than 300A MeV, the
numerical results with NTO as well as with NTG agree with
the data quite well.

At energies less than 100A MeV, the correction due to
the deviation from the straight-line trajectory was studied for
12C+12C case. We used the distance of the closest approach in
Rutherford orbit in place of the asymptotic impact parameter
[38]. This correction is found to be small. It decreases the
reaction cross section by only few percentages at 30A MeV.

For high-energy side, we note that the reaction cross section
calculated using NTO slightly decreases at 900A MeV. This
is due to the fact that the imaginary part of the GOP reaches
its deepest value at 800A MeV and then decreases by a small
amount as the energy increases.

Our results underestimate the data of the total reaction
cross sections at 870A MeV [31]. The numerical results
unexpectedly agree with the data of the interaction cross
sections at 790 and 950A MeV [13], but not with the total
reaction cross section. Because our result is quite close to the
one (σR = 865 ± 1 mb) obtained from a more sophisticated
calculation [19], the approximation that we used must be in
appropriate direction. Possible uncertainties comes from the
parameters of NN scattering amplitude and/or the data of σR

itself. To clarify the situation, a more accurate measurement
of such quantities at high energy will be useful.

If we believe the data of σR at 870A MeV, we need a steep
increase of the cross section from 400A MeV toward higher
energies to reproduce it while the energy dependence of our
results is rather weak. As one can see from Fig. 1, compared
with OLA, the NTG, which resums higher-order corrections
coming from the first cumulant as in Eq. (8), reduces the
magnitude of the cross section for the region of the energy
higher than 200A MeV, and causes a weak energy dependence
for this energy region.

In contrast to our results, a rather strong energy dependence
is obtained by Iida et al. based on the black-sphere picture of
nuclei [39]. These authors reproduce the total reaction cross
section at 870A MeV [31] as well as the data between 100
and 400A MeV due to the steep increase of the cross section.
However, they failed to reproduce the energy dependence of
low energy side, because their picture breaks down for low
energy, less than around 100A MeV.

Other works, for example, Refs. [28,33], deal with 12C+12C
reactions of wide range of incident energy and reproduce the
reaction cross section at 870A MeV. However, in the energy
of 100–400A MeV, their results agree with the old data [28],
the larger ones, not the recent smaller ones [24]. Therefore,
these theoretical results overestimate the cross sections in this
energy region, and the weak energy dependence of their results
leads to reproducing the reaction cross section at 870A MeV.

III. DENSITY WITH A SLATER DETERMINANT

Now we discuss the densities of the carbon isotopes, which
will be applied to the calculation of total reaction cross
sections.
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TABLE II. Neutron configurations for the ground states of the
carbon isotopes. J π is the spin-parity of the ground state.

Nucleus J π Configurations

12C 0+ (0s1/2)2(0p3/2)4

13C 1
2

−
(0s1/2)2(0p3/2)4(0p1/2)1

14C 0+ (0s1/2)2(0p3/2)4(0p1/2)2

15C 1
2

+
(0s1/2)2(0p3/2)4(0p1/2)2(1s1/2)1

16C 0+ (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)2

17C — (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)2(1s1/2)1

— (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)3

18C 0+ (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)4

19C ( 1
2

+
) (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)4(1s1/2)1

20C 0+ (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6

The intrinsic densities of the carbon isotopes are calculated
from a phenomenological mean-field potential. We assume
a Slater determinant for the ground-state wave function of
the carbon isotope. Table II lists the neutron configurations
assumed for the ground states of the carbon isotopes. Some
remarks on the configurations are made below. Though we
assume that the last two neutrons occupy the 0d5/2 orbit
for 16C, its ground state is known to contain (1s1/2)2 and
(0d5/2)2 configurations nearly equally [3,4]. We later take into
account this fact using the 14C+n+n model [5]. We consider
two configurations for 17C, the (0d5/2)2(1s1/2) and (0d5/2)3

configurations. We assume the ground-state spin of 19C to
be 1

2
+

and put the last neutron in the 1s1/2 orbit, following its
one-neutron halo structure. The protons are assumed to occupy
the 0s1/2 and 0p3/2 orbits for all the carbon isotopes.

The single-particle orbits arranged according to Table II are
generated from the following mean-field potential

U (r) = −V0f (r) + V1r
2
0 � · s

1

r

d

dr
f (r) + Vc(r)

1 − τ3

2
,

(14)

with f (r) ={1+exp[(r−R)/a]}−1. The radius and diffuseness
parameters are chosen as R = r0A

1/3 with r0 = 1.25 fm and
a = 0.65 fm. The spin-orbit strength is set to follow the
standard value [40],

V1 = 22 − 14
N − Z

A
τ3 (MeV), (15)

whereas the strength V0 of the central part for neutron or proton
is chosen so as to set the binding energy of the last nucleon
equal to its separation energy, respectively. The asymptotic
form of the single-nucleon wave function is satisfied by
this requirement, which is important for the cross-section
calculation as the surface region determines the range of
reaction probability. Table III lists the V0 values for both
neutron and proton. The Coulomb potential for the proton

orbits is taken as

Vc(r) =




(Z − 1)e2

R

[
3

2
− 1

2

(
r

R

)2]
for r � R

(Z − 1)e2

r
for r > R.

(16)

For the sake of simplicity, the radius parameter R is assumed
to be the same as that of the mean-field potential.

The c.m. motion has to be subtracted appropriately from
the Slater determinant to generate the intrinsic densities. The
neutron or proton intrinsic density is defined as

ρ(r) = 〈�0|
∑

i

δ(r̄i − X − r)Pi |�0〉, (17)

where r̄i is the single-particle coordinate, X is the c.m.
coordinate, and Pi is a projector for neutron or proton.
Denoting the Slater determinant by �, we obtain the neutron

TABLE III. Potential parameters V0 in MeV
in the mean-field model and in the core+n model
which is applied to the odd N isotope. Two sets are
used for 14C: the shallower potential reproduces the
neutron separation energy, whereas the deeper one
is more appropriate to reproduce the size of 14C.
Two sets for 17C correspond to the two different
configurations in Table II.

Nucleus Mean field Core+n

Neutron Proton
neutron

12C 57.83 57.93
13C 41.99 58.42 46.41
14C 45.84 61.60

53.56 61.60
15C 40.09 60.34 50.31
16C 49.28 60.99
17C 40.81 60.72 44.52

39.83 60.72
18C 46.29 63.33
19C 37.84 63.59 40.91
20C 41.27 65.04
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or proton density which contains the effect of the c.m. motion
as

ρ̃(r) = 〈�|
∑

i

δ(r̄i − r)Pi |�〉 =
∑
nljm

|ψnljm(r)|2, (18)

where the sum extends over the occupied neutron or proton
orbits depending on Pi . When the orbit with a certain nlj is
not fully occupied, the average over m is taken in the above
summation, that is 
m indicates �j/(2j + 1)

∑j

m=−j with �j

being the number of neutrons occupying the nlj orbit. If the
Slater determinant is approximated as a product of the intrinsic
wave function �0 and the c.m. part �cm(X),

� = �0�cm(X), (19)

where

�cm(X) =
(

2Aν

π

)3/4

exp(−AνX2) (20)

with a suitable oscillator parameter ν, it is easy to show that∫
dreik · rρ(r) = exp

(
k2

8Aν

) ∫
dreik · rρ̃(r). (21)

Because the Fourier transform of ρ̃ is easily obtained, the above
formula enables us to calculate the intrinsic density ρ through
an inverse Fourier transformation of the right-hand side of
Eq. (21).

The separability of Eq. (19) is in general not valid but holds
exactly for such a case that the Slater determinant is built
from the lowest configuration of the harmonic-oscillator shell
model. We test the validity of separability by calculating the
following overlap

o(ν) = 1

A

∑
nljm

∣∣〈ψHO
nljm(ν)

∣∣ψnljm
〉∣∣2

, (22)

where ψHO
nljm(ν) is the harmonic-oscillator single-particle wave

function with the oscillator parameter ν, and the sum of nljm
is taken over both the occupied neutron and proton orbits. We
search for such ν that maximizes o(ν). The values of ν and
o(ν) determined in this way are listed in Table IV. We find
that o(ν) is close to unity, larger than 0.98 for even N isotopes,
so that the intrinsic density may be calculated with use of
Eq. (21). The o(ν) value for odd N nuclei decreases to about
0.95. The separability for this case is not as good as for even N

case, but the separability assumption may still be acceptable.
Figure 3(a) displays the root-mean-square (rms) radii of

neutron, proton and matter distributions assuming a pointlike
nucleon. Corresponding to the large proton separation energies
of the carbon isotopes, the proton radii remain nearly constant
in the range of 2.3–2.4 fm. Assuming the charge radius of
the proton to be 0.85 fm, we find that the charge radii of
12,13,14C are 2.48, 2.47, and 2.46 fm, respectively, which are
compared to the experimental values [41], 2.4715, 2.4795, and
2.4962 fm. The agreement with experiment is very good.

In contrast to the proton radius, the neutron radii change
drastically reflecting the even-oddness of the neutron number.
The isotope with odd N has much smaller neutron separation

TABLE IV. Criterion on the sepa-
rability of the c.m. motion from the
Slater determinant wave functions. ν is
the parameter of the harmonic-oscillator
potential well. See Table III for the two
sets of 14C and 17C.

Nucleus (2ν)−1/2 (fm) o(ν)

12C 1.61 0.998
13C 1.72 0.988
14C 1.69 0.992

1.64 0.996
15C 1.79 0.944
16C 1.71 0.992
17C 1.82 0.958

1.82 0.973
18C 1.75 0.988
19C 1.89 0.949
20C 1.83 0.980

energy than the isotope with N −1. Consequently the value of
V0 becomes small and all the occupied neutron orbits tend to
extend to larger distances, resulting in a considerable increase
of the rms radius. See Fig. 4 later. As the reaction cross section
for an odd N nucleus will turn out to be too large, we will
discuss its density beyond the mean-field approach.

Another point to be noted in Fig. 3(a) is that the neutron
radius of 14C given by the present model is much larger than
that of 12C. This is in contrast to the result of Ref. [10], in
which the radii of both nuclei remain almost the same. In fact,
we will see later that the reaction cross section for 14C+12C
is too large to be compared to experiment. Thus the present
mean-field description does not seem to work well for 14C, and
the molecular model [9] or 12C+n+n three-body model may be
promising in producing its better density. Related to the radius
problem of 14C, we note that the V0 value for 14C strongly
deviates from the systematics of the potential strength for even
N nucleus. According to Ref. [40], the potential strength for a
neutron is

V0 = 51 − 33
N − Z

A
(MeV). (23)

Compared to this value, the V0 value listed in the table is deeper
by about 6 MeV for even N nuclei, but it is nearly equal for
14C. We test a deeper value of V0 for 14C as listed in Table III.
This parameter set turns out to be more suitable for 14C, so
it will be used to generate the densities of 15C and 16C in the
dynamical model, which will be discussed in the next section.

IV. DENSITY WITH A DYNAMICAL MODEL

In the previous section, the neutron (proton) separation
energy was used to determine all of the occupied single-particle
orbits. For the nucleus with odd N , the neutron separation
energy is small, so all the neutrons result in moving in a shallow
potential well. Because of this, the radii of the odd N isotopes
tend to be too large. To improve this restricted description, one
has to go beyond a Slater determinant model by allowing for
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FIG. 3. Neutron, proton and matter radii of the carbon isotopes. The results with the Slater determinants are shown in panel (a), whereas
those improved with the core+n and core+n+n models are shown in panel (b). See the text for detail. The empirical matter radii are taken
from Ref. [13].

the degree of freedom of “clustering.” The isotope with odd
N will be described with a core nucleus with the even number
(N − 1) of neutrons and a neutron. Here the last neutron is
required to have the experimental separation energy, whereas
the core nucleus is described as its subsystem independently
from the separation energy of the last neutron.

We also consider the partition of a particular system into
a core nucleus plus two neutrons, e.g., a 14C+n+n model
for 16C and a 20C+n+n model for 22C. The motivation for
this model is as follows. The last two neutrons in 16C are
found to have nearly equal amount of (1s1/2)2 and (0d5/2)2

configurations [3,5]. It is thus impossible to approximate the
ground state of 16C with a single Slater determinant. As for
22C, 21C is unstable with respect to a neutron emission, and
22C becomes a Borromean system as the partition of 20C+n+n.
Thus the core+n+n model appears more realistic for 22C than
the Slater determinant model. These core+n+n models have
been worked out in Refs. [4,5,8].

A. Density in a core+n model

A core+n model is applied to the odd isotopes, 13,15,17,19C,
where the corresponding cores are 12,14,16,18C, respectively.
For 17C, the last neutron is assumed to be in the 1s1/2 orbit. Let
�0 = �c�1n denote the intrinsic wave function of the core+n

model, where �c represents the intrinsic wave function of the

core nucleus and �1n the relative motion function between
the neutron and the core nucleus. The core nucleus can be
described in exactly the same way as in the previous section,
whereas the motion of the last neutron for a specified quantum
number is determined from the n-core potential taken as the
form of Eq. (14) with A(N ) being replaced by A − 1(N − 1),
the mass (neutron) number of the core nucleus. The potential
strength V0 is set to reproduce the neutron separation energy,
and it is listed in Table III.

The intrinsic proton density is given by

ρp(r) = 〈�1n(ρ)|ρp
c

(
1

A
ρ + r

)
|�1n(ρ)〉, (24)

and similarly the neutron density is

ρn(r) = 〈�1n(ρ)|ρn
c

(
1

A
ρ + r

)
|�1n(ρ)〉

+ 〈�1n(ρ)|δ
(

A − 1

A
ρ − r

)
|�1n(ρ)〉. (25)

Here ρ is the distance vector from the c.m. of the core to
the last neutron, and ρc is the intrinsic density of the core
nucleus. The integration with respect to the spin coordinate of
the neutron should be done though it is not explicitly written
in these equations.
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FIG. 4. Comparison of the neutron density of 19C between the Slater determinant model and the dynamical model of 18C+n. The lower
panels show the decomposition of the density into the contributions of the neutron orbits with different orbital angular momenta. The c.m.
motion is included.

We compare in Fig. 4 the neutron density of 19C between
the Slater determinant model and the dynamical 18C+n model.
The contribution of the neutron orbits to the density is
also displayed in two lower panels for each orbital angular
momentum to clarify the difference in the radial extension.
The density of the Slater determinant model extends radially to
further distances than that of the dynamical model. Particularly
the 0p and 0d orbits play the most important role in producing
the different neutron size.

The resulting radii calculated in the core+n model are dis-
played in Fig. 3(b) by closed square (for neutron), closed circle
(for proton), and closed triangle (for matter), respectively. We
see that the core+n model leads to a substantial reduction
in the neutron radius, resulting in a fair improvement for the
matter radius. The matter radius of 19C especially is in good
agreement with the empirical value. The matter radii of 15C
and 17C are, however, still too large compared to the empirical
ones.

B. 22C in a 20C+n+n model

The ground state of 22C in the core+n+n model [8] is given
by

� = �c�2n(x1, x2), (26)

where the two-neutron wave function �2n is expressed with the
n-core relative coordinates, x1 and x2, again suppressing the
spin coordinates. The valence neutron part �2n is obtained

in a combination of correlated Gaussian bases, �2n =

iCi�(�i,Ai), with

�(�,A) = (1 − P12)

×{e− 1
2 x̃Ax[[Y�(x1)Y�(x2)]LχS(1, 2)]00}, (27)

where P12 permutes the neutron coordinates and x̃Ax =
A11x2

1 + 2A12x1 · x2 + A22x2
2. The angular parts of the

two-neutron motion are described using Y�m(r) = r�Y�m(r̂)
and they are coupled with the spin part χS to the total angular
momentum zero. The basis function is specified by a set of
angular momenta � = (�, S) (L = S) and a 2×2 symmetric
matrix A (A21 = A12). The two neutrons are explicitly
correlated due to the term A12x1·x2, the inclusion of which
assures a precise solution in a relatively small dimension [42].

The two-neutron wave function �2n is determined by
solving the relevant three-body problem of the Hamiltonian

H = Tλ + Tρ + U1 + U2 + v12 (28)

under the Pauli constraint that �2n should be orthogonal to any
orbits occupied in the core nucleus 20C. The subscripts, λ and
ρ, of the kinetic energies stand for the relative distance vectors
of the three-body system: λ = x1 − x2 and ρ = 1

2 (x1 + x2).
The two-neutron potential v12 is taken from the realistic G3RS
(case 1) potential [43] that contains central, tensor, and spin-
orbit forces and reproduces the nucleon-nucleon scattering
data as well as the deuteron properties. The n-20C potential Ui

is taken in the form of Eq. (14) augmented with an additional
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term:

U = −V0f (r) + V1r
2
0 � · s

1

r

d

dr
f (r) + Vse

−µr2Ps . (29)

The operator Ps of the last term projects to the s wave
of the n-20C relative motion, so this term modifies the
s-wave potential strength. In evaluating angular-momentum-
dependent matrix elements in the basis of Eq. (27), we have
neglected a small difference between the x1, x2 coordinate
and the Jacobi coordinate as the core mass is much larger
than the neutron mass. To determine the parameters of U ,
we take into account the conditions that (i) the 1s1/2 orbit is
unbound as 21C is unstable for a neutron emission and (ii)
the 0d5/2 orbit is bound by at most 2.93 MeV, which is the
neutron separation energy of 20C. Because no information is
available to determine the s-wave strength except that the 1s1/2

orbit is unbound, we vary Vs in a reasonable range. The range
parameter µ is set to be µ = 0.09 fm−2. The value of V0 is
43.24 MeV (set B of Ref. [8]) and V1 is fixed to be 25.63 MeV
(N = 14, Z = 6 in Eq. (15)).

Table V lists the ground-state energy E of 22C with respect
to the 20C+n+n threshold together with the rms neutron,
proton and matter radii for some values of Vs . The calculated
energies are all within the uncertainty of the experimental
value (−0.423±1.140 MeV). If one chooses a smaller value
than 9.46 MeV for Vs , the 1s1/2 orbit would be bound. We see
from the table that the neutron radius increases considerably
as the s wave potential strength decreases. A slight change of
the proton radius is due to the change of the two-neutron wave
function, as will be discussed in the next subsection.

C. Density in a core+n+n model

The intrinsic neutron density for the core+n+n system is
obtained by

ρn(r) = 〈�2n(x1, x2)|ρn
c

(
2

A
ρ + r

)
|�2n(x1, x2)〉 + ρ2n(r),

(30)

where

ρ2n(r) = 〈�2n(x1, x2)|
2∑

i=1

δ

(
xi − 2

A
ρ − r

)
|�2n(x1, x2)〉

(31)

TABLE V. Properties of 22C for different Vs values of the n-20C
potential. E is the ground-state energy in MeV with respect to the
20C+n+n threshold, and 〈r2

n〉1/2, 〈r2
p〉1/2, and 〈r2

m〉1/2 denote the rms
neutron, proton, and matter radii given in fm, respectively.

Vs E 〈r2
n〉1/2 〈r2

p〉1/2 〈r2
m〉1/2

9.46 −0.489 3.96 2.43 3.61
9.90 −0.361 4.07 2.44 3.69

10.4 −0.232 4.24 2.45 3.83
10.9 −0.122 4.58 2.48 4.11
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FIG. 5. Comparison of the matter density of 16C between the
Slater determinant model and the 14C+n+n model.

is the contribution of the two neutrons to the neutron density.
The intrinsic proton density is given by

ρp(r) = 〈�2n(x1, x2)|ρp
c

(
2

A
ρ + r

)
|�2n(x1, x2)〉. (32)

We use the intrinsic core density obtained in Sec. III. A method
of calculation for the density with the correlated Gaussians
�2n(x1, x2) is given in Appendix.

We compare in Fig. 5 the densities for 16C obtained with
the Slater determinant and the dynamical core+n+n model.
The dynamical model with 14C+n+n allows us to include both
of the d and s waves for the last neutrons. This is the reason
why the central density rises compared to that with the Slater
determinant where the last two neutrons are restricted to the
(0d5/2)2 configuration. It is also noted that the density of the
dynamical model is larger at large distances (r � 4.0 fm) than
that of the Slater determinant model. As shown in Fig. 3(b),
the matter radius of 16C calculated in the dynamical model
slightly increases compared to that of the Slater determinant
model, and it is in good agreement with the empirical value.

Figure 6 displays the two-neutron density distribution
ρ2n(r) of 22C for the potential parameters given in Table V.
The density decreases slowly for increasing r , reaching far
distances. The two-neutron density is found to dominate the
total neutron density of 22C for r > 6 fm [8]. The position of
the dip hardly alters against the change of Vs , which is because
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FIG. 6. The two-neutron densities of 22C for some of the potential
parameters of Table V.
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FIG. 7. The reaction cross sections of the carbon isotopes on a 12C
target calculated with the NTG model. The experimental data cited
here are the interaction cross sections [13]. The incident energy of
the projectile nucleus is around 950A MeV, except for 15C performed
at 740A MeV.

the dip appears as a consequence of the Pauli orthogonality
constraint to the orbits occupied in the core mentioned above.

V. NUMERICAL RESULTS

In this section, we show our numerical results of the total
reaction cross sections of the carbon isotopes on 12C.

A. Reaction cross sections for 12C to 20C

The calculation of reaction cross section has been per-
formed using the phase shift functions defined by Eqs. (4)
(OLA), (8) (NTG), and (5) together with Eq. (12) (NTO).
The densities used in the reaction calculation give the nucleon
radii shown in Fig. 3(b). These densities are fitted in terms of a
combination of Gaussians with different width parameters to
facilitate the phase-shift calculation.

In Fig. 7, we plot the numerical results of NTG calculation
of the reaction cross sections of the carbon isotopes on 12C
at high incident energy around 950A MeV. For comparison,
we plot the data in the same figure. To compare the numerical
results with experiment, we have to bear in mind that most
of the cross sections measured at high energy are not reaction
cross sections but interaction cross sections. The interaction
cross section does not include the contribution from those
inelastic processes that correspond to the excitation of the
projectile to particle-bound excited states, so the interaction
cross section is in general smaller than the total reaction cross
section if such excited states exist. Actually, as was pointed
out recently [44], there exists some difference between the
total reaction cross section and the interaction cross section,
about 80 mb, for the case of 12C+12C reaction. Because such
difference depends on the nuclear structure, and no such data
are available, we consider the difference as a kind of maximum
uncertainty of our numerical results in this figure.

A comparison with experiment indicates that the numerical
results of the reaction cross sections for 12,16,18,19,20C agree
with the interaction cross-section data, whereas those for 15,17C
are too large.

Whether the reaction cross section calculated for 14C is
quite reasonable or a little too large compared to experiment is

not clear, because it is difficult to estimate possible contribution
from the inelastic processes. For all the carbon isotopes with
even N (except for 14C), we have the densities which reproduce
the experimental cross sections. We used these densities
in the core+n description for the carbon isotopes with odd
N . The reaction cross sections calculated with this model is
found to bring a significant improvement in the agreement
with experiment. Particularly, the agreement attained in 19C is
excellent, considering that the reaction cross section is equal
to the interaction cross section for 19C to good accuracy.
For the case of 13C, it is not clear whether the differences
between theory and experiment can entirely be explained
by the difference between the reaction cross section and the
interaction cross section.

The reaction cross section for 16C is calculated in the
14C+n+n model using the improved density of 14C. The
two neutrons are restricted to neither (1s1/2)2 nor (0d5/2)2

configuration, but contains both of them together with other
configurations [5]. We see that the calculated cross section
turns out to be in almost perfect agreement with experiment
within its error.

We predict in Fig. 8 the reaction cross sections of the
carbon isotopes 13−20C on a 12C target as a function of
the incident energy. The reaction cross section predicted by
the OLA is typically 50 mb larger than that predicted by the
NTG except for the incident energy range of 80–150A MeV.
This tendency is already seen in the 12C+12C case, as shown
in Fig. 2. The energy dependence of both NTG and NTO cross
sections is similar to that of the 12C+12C case displayed in
Fig. 2. Very limited experimental data available at lower ener-
gies hamper a clear-cut conclusion. It appears, however, that
the cases for 13,14,16C are successfully reproduced. In contrast
to these nuclei, the cross section of 15C clearly indicates
a marked discrepancy between theory and experiment: The
theory underestimates the cross section at lower energy, but
appears to overestimate it at high energy.

One might think that the above discrepancy in 15C could be
resolved by including its breakup effect into 14C+n continuum
states in the few-body (FB) framework of a core+n model [15,
45,46]. This is not the case, however, because the NTO already
takes into account most of the effect. In fact, we have compared
the reaction cross sections between NTO and FB at several
incident energies, and found that the difference between them
is small even at low energy: For example, at the incident energy
of 40A MeV, the σR value of 15C+12C is 1519 mb for NTO
and 1525 mb for FB, whereas it is only 1425 mb for the
folding model which uses Eq. (13) to obtain the phase shift
function. Thus the increase of the reaction cross section given
by FB compared to NTO is just 6 mb for 15C, and 18 mb for
19C. At the higher energy of 800A MeV, the FB cross section
becomes only slightly smaller than the NTO cross section. The
discrepancy observed in the reaction cross section of 15C+12C
remains an open question.

B. Reaction cross section for 22C

We display in Fig. 9 our prediction of the reaction cross
section of 22C+12C as a function of the incident energy. As the
reaction cross section increases for the increasing radius of the
projectile and no information on the mass of 22C is available,
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FIG. 8. Reaction cross sections for the collisions of the carbon isotopes on a 12C target calculated with the NTG, NTO, and OLA models.
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we plot two cases obtained using the densities that correspond
to the two extremes in Table V, namely Vs = 9.46 and
10.9 MeV. The matter radius obtained with the latter parameter
is larger by 11% than that with the former parameter.

The cross sections calculated with the NTG and NTO
models are in reasonable agreement, whereas the OLA cross
section at lower energy shows an enhancement of about 10%
compared to the NTG cross section. According to the NTG
calculation, the total reaction cross section of 22C is estimated
to be 2200–2450 mb at 40A MeV and 1500–1600 mb around
900A MeV.

To see the implication of these results, we refer to the black-
sphere picture [49,50] or the strong absorption model [16]:
These pictures include only one scale, the nuclear radius, a.
If one determine the values of a so as to reproduce the angle
of the first diffraction maximum in the proton-nucleus elastic-
scattering data, the absorption cross section, πa2, agrees with
the empirical total reaction cross section [50]. This a can be
regarded as a “reaction radius," inside which the reaction with
incident protons occurs.

Because the data of p+22C elastic differential cross section
are not available, we may estimate the reaction radius through

σR(P + T ) = π (RP + RT )2, (33)

where RP and RT are the reaction radii of the projectile and
target, respectively [50]. For a 12C target we obtain RT =
2.69 fm [50]. The reaction radius of stable nuclei follows
1.21 A1/3 fm. If we apply it to the above expression, we obtain
1170 mb, much smaller than the result around 900A MeV.
This supports the much more extended matter distribution of
22C than the stable nuclei of the same mass number.

Based on the above expression, the reaction radius of 22C
may be estimated by

R22C =
(√

4σR(22C +12C)

σR(12C +12C)
− 1

)
R12C. (34)

Using the reaction cross sections calculated at high energy
together with R12C =

√
σR(12C + 12C)/4π leads to the

estimation that the reaction radius of 22C, R22C, is about
4.41 fm. Multiplying it by

√
3/5, we obtain 3.41 fm for the

rms reaction radius of 22C, which is smaller than the rms
matter radii listed in Table V. For lighter stable nuclei, typically
A< 50, the rms reaction radii are usually smaller than the rms
matter radii [50]. Because light nuclei have no sharp surface,
the reaction occurs inside compared to heavier nuclei.

Actually, for the data of incident energies higher than
∼800A MeV,

√
3/5a systematically deviates from the empiri-

cally deduced values of the rms matter radius for nuclei having
mass number less than about 50, whereas it almost completely
agrees with the deduced values for A � 50. This tendency
suggests a significant change of the nuclear matter distribution
from a rectangular one for A � 50, which is consistent with
the behavior of the empirical charge distribution. Therefore,
the above result of 22C suggests that such feature of light nuclei
still persists in 22C although it has a large radius comparable
to much heavier nuclei.

Measurements of the reaction cross section as well as the
mass of 22C are indispensable for the determination of its
radius.

VI. SUMMARY

We have systematically analyzed the total reaction cross
sections of carbon isotopes with N = 6–16 on a 12C target for
wide range of incident energy from 40 to 1000A MeV.

The structure of the carbon isotopes has first been described
by a Slater determinant generated from a phenomenological
mean-field potential. The potential depth of Woods-Saxon
type is determined separately for neutron and proton to
reproduce the nucleon separation energy. The intrinsic density
of each carbon isotope is built from the single-particle states
by separating, in a good approximation, the center-of-mass
motion from the Slater determinant. This model reasonably
well describes the ground states of even N isotopes, but the
mean-field potential for odd N isotope tends to be too shallow,
yielding too large neutron and matter radii. This unrealistic
feature has been largely improved by performing separate
studies which take into account their specific structure of
core+n. We have also performed the core+n+n three-body
model for 16C and 22C, to take into account the mixing of the sd
orbits in 16C and a Borromean character of 22C, respectively.

For calculations of the cross sections, we take two schemes:
one is the Glauber approximation, and the other is the eikonal
model using a global optical potential. It is vital to find a
consistent parametrization of the nucleon-nucleon scattering
amplitude in the former model. The parameters we find for the
NN profile function are different from previous ones, and they
have successfully reproduced the data on 12C+12C reaction
cross sections from 40 to 1000A MeV incident energies. The
both reaction schemes reasonably well reproduce the data
of the cross sections of 13C, 14C, and 16C on 12C that are
available at low and high incident energies. Those data which
are available for 18C, 19C, and 20C around 950A MeV are all
reproduced very well by the Glauber theory.

Compared to the empirical radii of the carbon isotopes
tabulated in Ref. [13], our dynamical model gives too large
values for 15C (see Fig. 3(b)). From this comparison, we
expect that the reaction cross section predicted by the present
model is larger than the experiment. In fact, this is true for

044607-12



SYSTEMATIC ANALYSIS OF REACTION CROSS . . . PHYSICAL REVIEW C 75, 044607 (2007)

the high-energy data at 740A MeV, but it is just opposite
at low energy. See Fig. 8. It is an open question that
the calculated reaction cross sections of 15C, though our
calculation practically includes the breakup effect, is found
to underestimate the empirical values observed at low energy.

The radius of 17C is also calculated to be too large. Even
in the 16C+n dynamical version, we do not consider that the
model for 17C is probably very realistic. More sophisticated
structure model will be necessary.

We have predicted the total reaction cross section of 22C
on 12C. In our model 22C has extremely large size comparable
to that of a medium heavy nucleus. Our prediction for the
cross section is at variance with the binding energy of the two
neutrons: According to the Glauber calculation, the reaction
cross section of 22C is 2200–2450 mb at 40A MeV and 1500–
1600 mb around 900A MeV. Measurements of the reaction
cross section as well as the mass of 22C will be useful to
determine the structure of 22C.

Our framework offers a prescription for simple, consistent
analyses of broad range of reaction cross-section data of
neutron-rich unstable nuclei. Such data are expected to be
provided by radioactive ion beam facilities, such as GSI and
Radioactive Ion Beam Factory at RIKEN.
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APPENDIX: CALCULATION OF A TWO-PARTICLE
DISTRIBUTION FUNCTION

The aim of this appendix is to outline a method of
calculation for the density which appears in Sec. IV C.
Expressing the core density in Eqs. (30) and (32) as

ρc

(
2

A
ρ

)
=

∫
δ

(
2

A
ρ − r

)
ρc(r)dr (A1)

with ρ = 1
2 (x1 + x2), we note that the terms in Eqs. (30), (31),

and (32) are all reduced to the calculation of the two-particle
distribution function

D(w, r) = 〈[GS(A′, �′)χS(1, 2)]00|
× δ(w̃x − r)|[GS(A, �)χS(1, 2)]00〉. (A2)

Here the function G is a short-hand notation for

GLM(A, �) = e− 1
2 x̃Ax[Y�(x1)Y�(x2)]LM, (A3)

and w̃x stands for w1x1 +w2x2, where w1 and w2 are constants
that are chosen appropriately depending on the two-particle
distribution function to be evaluated. A choice of w1 = 1 − 1

A

and w2= − 1
A

or w1 = − 1
A

and w2 = 1 − 1
A

is made for the

evaluation of the density of Eq. (31), while w1 = w2 = 1
A

is
chosen for Eqs. (30) and (32).

After integrating over the spin coordinates, we obtain

D(w, r) =
∑

λ

Cλ(��′S)
∫∫

e− 1
2 x̃Bx(x1x2)�+�′

× [Yλ(bx1)Yλ(bx2)]00δ(w̃x − r)dx1dx2, (A4)

where B = A + A′ and

Cλ(��′S) = (2� + 1)(2�′ + 1)

4π (2λ + 1)
√

2S + 1
〈�0�′0|λ0〉2U (�λS�′; �′�).

(A5)

Here U is a unitary Racah coefficient, and λ takes those values
from |�− �′| to �+ �′ which satisfy the condition of λ+ �+ �′
= even.

The integration I in Eq. (A4) can be performed by a change
of variables from x to y, x = Wy, under the condition that y2

is set equal to w̃x. Though y1 can be chosen arbitrarily as long
as it is independent of y2, we here choose W as follows:

W = 1

w2
1 + w2

2

(
w2 w1

−w1 w2

)
. (A6)

Substituting x = Wy in Eq. (A4) and noting that
[Yλ(bx1)Yλ(bx2)]00 can be expressed in terms of a Legendre
polynomial Pλ(ζ ) with ζ = (x1 · x2)/(x1x2), we obtain

I = (detW )3
∫∫

e− 1
2 ỹB̄yF1(y)F2(y)δ(y2 − r)dy1dy2,

(A7)

where B̄ = W̃BW and

F1(y) = (x1x2)�+�′−λ = (detW )2(�+�′−λ){|w2y1 + w1y2|

× | − w1y1 + w2y2|}�+�′−λ, (A8)

and

F2(y) = (x1x2)λ[Yλ(bx1)Yλ(bx2)]00

= ( − 1)λ
√

2λ + 1

4π
(detW )2λ

×
[ λ

2 ]∑
k=0

( − 1)k
(2λ − 2k − 1)!!

(λ − 2k)!(2k)!!

×{(w2y1 + w1y2) · (−w1y1 + w2y2)}λ−2k

×{|w2y1 + w1y2| | −w1y1 + w2y2|}2k. (A9)

Both F1(y) and F2(y) are polynomials of y2
1 , y2

2 and y1 · y2 as
�+ �′ −λ is an even integer, so that, with y2 being replaced by
r, I is reduced to the following type of elementary integrals∫

e−py2
1 +qr·y1y2m

1 (r · y1)ndy1, (A10)

where both m and n are non-negative integers.
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