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Isospin dependent thermodynamics of fragmentation
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The thermal and phase properties of a multifragmentation model that uses clusters as degrees of freedom are
explored as a function of isospin. Good qualitative agreement is found with the phase diagram of asymmetric
nuclear matter as established by different mean-field models. In particular, from the convexity properties
of the nuclear entropy, we show that uncharged finite nuclei display first- and second-order liquid-gas-like
phase transitions. Different quantities are examined to connect the thermal properties of the system to cluster
observables. In particular, we show that fractionation is only a loose indication of phase coexistence. A simple
analytical formula is proposed and tested to evaluate the symmetry (free) energy from the widths of isotopic
distributions. Assuming that one may restore the isotopic composition of breakup fragments, it is found that
some selected isotopic observables can allow one to quantitatively access the freeze-out symmetry energy in
multifragmentation experiments.
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I. INTRODUCTION

Due to the short-range repulsive and finite-range attractive
character of the nucleon-nucleon interaction, nuclear matter is
known to exhibit a phase transition similar to the liquid-gas
transition taking place in real fluids [1,2].

Many experimental and theoretical efforts have been
devoted to this subject [3]; in particular, most recent works
focus on asymmetric matter and the effect of isospin as an
additional degree of freedom [4–7]. Mean-field-based models
have demonstrated the presence of a first-order phase transition
in both isospin symmetric and asymmetric nuclear matter [8],
the decrease of the critical temperature with increasing isospin
asymmetry, and, in the case of asymmetric matter, different
neutron-proton compositions of the liquid and gas phases
[4,6–8].

In astrophysics, both neutron-star structure and supernova
dynamics are influenced by thermal properties of neutron-
rich nuclear matter in a large interval of temperatures and
densities [9,10]. All these different phenomena involve ex-
cited matter at baryon densities lower than normal nuclear
matter density; this corresponds in the phase diagram to
a region of instability with respect to phase separation.
Information on the phase structure and properties of hot
and diluted nuclear matter is thus clearly of astrophysical
relevance.

From an experimental point of view, the only terrestrial
phenomenon that may allow one to access finite-temperature
low-density properties of neutron-rich matter and, in particular,
to pin down the density and temperature dependence of the
symmetry energy is given by nuclear multifragmentation [3].
Indeed, this specific decay channel of nuclei, whose excitation
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energy is of the order of a few MeV/nucleon, has for a long
time been tentatively associated with the coexistence zone of
the nuclear matter phase diagram [11].

However, the connection between multifragmentation ob-
servables and the nuclear matter energy-density functional and
phase structure is far from being trivial. First, finite nuclei
are charged, whereas nuclear matter is by definition neutral.
Therefore, the presence of this nonsaturating long-range force
makes it difficult to relate the multifragmentation phenomenol-
ogy to the theoretical studies of nuclear matter 1. Second, and
even more important, atomic nuclei are composed of a very
small number of constituents, and their phase properties are
not trivially linked to the phase structure of nuclear matter. At
the thermodynamic limit, the coexistence zone is a simple
linear superposition of pure liquid and gas phases, and it
can be deduced from a mean-field approach through a Gibbs
construction. The situation is completely different in finite
nuclei, where phase coexistence is revealed by convexity
anomalies of the entropy surface [13,14]. The properties of
coexistence cannot be deduced from the properties of the pure
phases (nuclei and nucleons, respectively), mean-field based
approaches badly fail, and a description explicitly accounting
for complex clusterization is mandatory [13].

A typical example of this ambiguity is given by the fraction-
ation phenomenon, originally expounded as a consequence of
Gibbs phase equilibrium, later recognized as a generic feature
of cluster formation [15–17], and systematically observed

1It is interesting to note that, on the other hand, the presence of
the Coulomb interaction may make finite nuclei a good laboratory in
which to address the properties of compact stellar objects. Indeed,
neutrality is verified only on a macroscopic scale in neutron star crust
matter, and charge fluctuations are recognized to be at the origin of
the crust phase structure [12].
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in experimental analyses [18–22]: a clear thermodynamic
interpretation of fractionation is not trivial in a finite system,
because we cannot unambiguously associate a given fragment
size to the “liquid” or “gas” phase.

To contribute to closing the gap between nuclear mat-
ter thermodynamic studies and nuclear multifragmentation,
we investigate in this paper the isospin dependent phase
diagram of finite excited nuclei. The study is done in the
framework of the microcanonical multifragmentation model
(MMM) [23], which explicitly considers clusters as degrees
of freedom. A similar analysis was already presented in
Ref. [24], where Coulomb effects on the phase diagram were
especially addressed. Here, in order to concentrate on isospin
effects, we first consider that the Coulomb interaction is
switched off. The use of such an idealized neutral system will
additionally allow us to make connections with the expected
behavior at the thermodynamic limit and to explore the
link between isospin observables (isoscaling [16,22,25–29],
isospin fluctuations [18,22,30–32]) and the low-density finite-
temperature symmetry (free) energy of the equation of state.
The robustness of measurements of the symmetry energy in
both finite neutral systems and real nuclei under the effect
of mass and charge conservation and Coulomb is finally
addressed.

II. THEORETICAL FRAMEWORK

To provide a realistic description of multifragment pro-
duction, a theory dealing with complex correlations well
beyond the mean field is needed. An exact solution of
this problem at the microscopic level is provided by clas-
sical models (molecular dynamics, lattice gas) [11], which,
however, completely miss all the specific quantal features
of the process. Moreover, no connection is possible within
these models between fragment observables and the different
ingredients of the nuclear energy-density functional, which are
explored through multifragmentation reactions. On the other
hand, semiclassical or quantum molecular models (such as
QMD [33], AMD [34]) which reproduce the most important
macroscopic nuclear properties as density distributions and
binding energies, and account for nucleon-nucleon interaction
and Pauli blocking, still do not offer a definite description
of multifragmentation and access to the equation of state of
excited matter because of the ambiguity of the fragments and
breakup definition.

An interesting alternative is given by statistical models
which use clusters as degrees of freedom [35]. Such models
offer the remarkable advantage that all nuclear bound as well
as continuum states are naturally accounted for via empirical
parametrizations of the cluster energies and level densities,
allowing a direct comparison with experimental data.

The price to pay for such a realistic inclusion of nuclear
effects is the underlying hypothesis that nuclear correlations
are entirely exhausted by clusterization, which amounts to
the implementation of the properties of isolated low excited
nuclei for the description of breakup fragments. This limitation
can in principle be avoided by including effective in-medium
corrections in the fragment energy functional [36]. In this case,

however, the fragment energy becomes a free parameter of the
theory.

The distinctive feature of the fragmentation process,
namely, the explosion of an isolated nucleus into a vacuum,
recommends the microcanonical framework [37–39] as the
most natural choice. The nonphysical hypothesis of a sharp
fixed freeze-out volume constraint may be easily overcome by
considering a total spatial extension for the fragmenting system
fluctuating event by event [40]. Technically, this is realized by
introducing a λ Lagrange parameter conjugate of the volume
V which alters the statistical weight of a configuration WC

by an extra factor, exp (−λV ) [41]. The thermodynamical
potential associated with this ensemble is S̄E[λ] = S − λV =
lnW(E, λ), whereW(E, λ) = ∫

W (E,V ) exp (−λV ) dV. In
addition, for a system belonging to the liquid-gas universality
class, the exploration of the configuration space along constant
λ paths provides a straightforward method to reveal phase
coexistence by the back bending of the corresponding caloric
curves and to finally construct the phase diagram [14].

The MMM version [23] of the microcanonical multifrag-
mentation models [37–39] has been used so far to investigate
the thermodynamic properties of charged nuclei with excita-
tion energies between 1 and 15 MeV/nucleon [24] and will
be presently employed for the study of isospin effects. MMM
provides a Monte Carlo calculation of the global density of
states W (A,Z,E, P, L, V ) of a nuclear system modeled as
a noninteracting collection of nuclear clusters. The space of
observables is given by the baryonic number A, proton number
Z, total energy E, total momentum P , total angular momentum
L, and freeze-out volume V . The investigation of all cluster
states compatible with conservation laws and geometrical
restrictions is performed using a Metropolis trajectory in
configuration space.

Breakup fragments are considered as having normal nu-
clear density ρ0 and described by a ground-state liquid-
drop binding energy including surface and symmetry terms.
This description is consistent with a semiclassical Thomas-
Fermi approximation [42] or hot Hartree-Fock [43], where
the effect of temperature is a modified occupation of the
single-particle eigenstates of the mean-field Hamiltonian. The
finite-temperature fragment energy functional in this approach
is thus modified with respect to the ground state only for the
internal excitation energy (ε) coming from the occupation of
continuum states, which are treated with a Fermi gas level
density parametrization. To avoid double counting of the free
particle states [44], a high energy cutoff (τ = 9 MeV) is
applied to the level density.

To allow comparison with the well-known nuclear matter
thermodynamics [4,6,8] and to best isolate isospin effects on
the fragmentation process, we ignore the long-range Coulomb
interaction, and to avoid interference with finite size effects, we
consider equal size systems which differ by the neutron-proton
ratio.

III. PHASE DIAGRAM

The isospin dependence of the phase diagram for the
MMM model is easily spotted in the microcanonical “isobar”
ensemble, where energy is fixed and volume fluctuations
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are allowed and controlled through a conjugated Legendre
intensive.

Indeed, contrary to ordinary (macroscopic) thermodynam-
ics, the thermal and phase characteristics of a finite system
depend on the statistical ensemble considered. The liquid-gas
phase transition has a nonzero latent heat and has density as an
order parameter, meaning that the two associated phases can be
distinguished by their different particle and energy densities.
If a finite system (with a given fixed particle number) exhibits
this transition, its event distribution at the transition point will
show the two peaks corresponding to the two phases if and
only if both energy and volume are free to fluctuate, i.e., in the
canonical isobar ensemble [14].

The general relationship between a distribution in the
ensemble characterized by an intensive variable γ associated
with the conjugated extensive variable m, and the Boltzmann
entropy W (m) = exp S(m),

Pγ (m) = Z−1
γ exp (S(m) − γm), (1)

ensures then that at the liquid-gas transition point, the
compressibility is negative in the canonical isochore (β, V )
ensemble, and the heat capacity is negative in the microcanon-
ical isobar (E,P ) ensemble.

In the multifragmentation transition described by MMM,
the low multiplicity ordered phase (compound nucleus) and
high multiplicity disordered phase (multifragmentation) can be
distinguished by their energy and volume, just like in regular
liquid-gas systems, and all the above considerations apply [24].

Figure 1 shows some constant λ microcanonical caloric
curves of 200-nucleon systems with different neutron-proton
ratios. The Lagrange parameter λ can be associated with
a pressure through P = λT , where T = (∂S̄E[λ]/∂E)−1

is the constant λ microcanonical temperature. The expected
isospin invariance in the absence of the Coulomb interaction is
confirmed by the fact that mirror nuclei [(200,70) vs (200,130),
and (200,50) vs (200,150)] show an identical thermodynamical
behavior, translated into fully superimposable caloric curves.
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FIG. 1. (Color online) Microcanonical caloric curves at constant
λ = (βP ) = 3 × 10−3 fm−3 for 200-nucleon systems and various
neutron-proton ratios as indicated in the legend. E is the total energy
of the system. The magnitude of finite size effects with respect to
isospin ones may be estimated considering the caloric curves with
the same value of λ corresponding to the symmetric nuclei (100,50)
and (300,150).

The symmetric system shows a broad back bending, signaling
a liquid-gas-like phase transition. Increasing the isospin asym-
metry, the temperature shows a monotonic decrease, and the
back-bending width shrinks. The λ value, λ = 3 × 10−3 fm−3,
which still corresponds to the coexistence region for the
Z/A = 0.35 system, appears clearly supercritical for Z/A =
0.25.

The presence of Coulomb effects in physical nuclear
systems breaks the n-p invariance and can considerably mask
the isospin effects shown by Fig. 1 [24]. To disentangle these
effects, most of the experimental analyses concentrate on
different isotopes of the same element (e.g., 112Sn+112Sn
and 124Sn+124Sn collisions). In this case, however, the
sources have different total sizes, and a naturally rising
question is to what extent finite size effects interfering
with asymmetry effects may blur the signals of the last
ones. A quantitative answer is offered by Fig. 1, where
caloric curves corresponding to symmetric systems 50% larger
and 50% smaller than the previously discussed ones are
considered. The relative displacement of the curves suggests
that for most of the presently analyzed multifragmentation
reactions, finite size effects are small enough to be safely
negligible.

The monotonic decrease of the critical temperature and
pressure with the isospin asymmetry, together with the reduc-
tion of the coexistence region, are illustrated in Fig. 2, where
the phase diagrams of 200-nucleon systems with different
asymmetries are projected in the temperature–total-energy,
pressure-temperature, and pressure–total-energy planes. The
solid lines correspond to the borders of the coexistence region,
obtained from a Maxwell construction on the constant λ

microcanonical caloric curves. The dashed lines indicate the
borders of the spinodal zone, defined by the back-bending
extension for each λ value. The thick solid line connects
the critical points in any representation. By extrapolating this
line, we can see that pure neutron and proton systems may
exist only in the supercritical phase, as expected from their
inability to form clusters at any temperature. It is interesting to
note that this intuitive result is obtained only as a limiting
situation, while a phase transition survives with a sizable
critical temperature for systems as asymmetric as Z/A =
0.25.

These results are in qualitative agreement with nuclear
matter calculations [4,6,8], showing that the thermodynamics
of fragmentation of a finite nuclear system can be associated
with the phenomenology of the nuclear matter liquid-gas phase
transition. This intuitive connection is systematically pushed
forward in experimental studies; however, from a theoretical
point of view, this is not a trivial issue. Caloric curves and heat
capacities in the statistical multifragmentation model (SMM)
have been available for more than two decades, and most
calculations with finite systems [38] have been performed at
constant volume and not constant pressure, thus leading to
signals that cannot univocally be interpreted as a first-order
phase transition. A detailed exploration of the fragmentation
phase diagram was presented in Refs. [3,45]. The results show
a continuous transition from a high-temperature single phase
to a mixed phase, this latter extending over the whole density
domain of validity of the model [45]. This is reminiscent of
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FIG. 2. (Color online) Projections in the temperature–total-
energy, pressure-temperature, and pressure–total-energy planes of
the phase diagrams of 200-nucleon systems with various isospin
asymmetries (δ = (N -Z)/A = 0, 0.18, 0.30 and 0.50). Solid lines
mark the borders of the coexistence region, dashed lines indicate the
borders of the spinodal zone. Dotted lines in the upper panel show
the paths followed through the phase diagram by the considered
systems when the average freeze-out volume is fixed to 6V0 and
the excitation energy ranges from 2 to 10 MeV/nucleon. Solid
symbols point the location of multifragmentation events with Eex =
6 MeV/nucleon.

liquid-gas phenomenology, but the transition from the liquid
side, which is the only one accessible experimentally, cannot
be studied within this analytical model and is presented here
for the first time. The isospin dependence of the fragmentation
phase diagram also has never been studied before to our
knowledge.

IV. ISOTOPIC DISTRIBUTIONS AND FRACTIONATION

In this section, we turn to the connection between the system
phase diagram and cluster observables.

The generic feature of a first-order fluid phase transition
with two conserved particle numbers is the fractionation
phenomenon: if the coupling between like particles is less
attractive than the coupling between unlike ones, the ordered
phase is systematically more symmetric than the disordered
one. In the previous section, we showed that the fragmentation
transition is qualitatively similar to such a fluid transition;
we can therefore expect to find traces of fractionation in the
fragment and particle chemical compositions.

Looking at the isotopic composition of fragments of differ-
ent size emitted by neutron-rich nuclei, it has been observed
that the isospin ratio A/Z is a monotonically decreasing
function of the fragment size, as one would intuitively expect
if fractionation takes place and thermodynamic discontinuities
are rounded by finite size effects. This “fractionation” phe-
nomenon has been observed not only in experimental analyses
[18–22], but also in different dynamical models [15–17], where
it does not always seem connected to the phase coexistence
phenomenology.

As we stressed in Sec. I, when dealing with finite systems,
the properties of coexisting phases cannot be deduced from the
properties of pure phases by a simple linear combination. It
is therefore not clear whether the neutron (proton) enrichment
of the nuclear gas (liquid) characteristic of phase coexistence
in neutron-rich nuclear matter [4,6,8] will be apparent in the
partitions of the finite system inside the coexistence region.

Figure 3 presents isotopic yield distributions of isobars with
A = 6, 15, 20, and 30 obtained in the multifragmentation of
nuclear systems (200,100) [δ = (N − Z)/A = 0], (200,82)
(δ = 0.18), (200,70) (δ = 0.30), (200,50) (δ = 0.50),
(200,130) (δ = 0.30), and (200,150) (δ = 0.50) in a state
representative of most multifragmentation reactions, Eex =
6 MeV/nucleon and 〈V 〉 = 6V0, where V0 is the volume
corresponding to normal nuclear density; the free neutron and
proton multiplicities are listed in Table I. These states are
located in very different regions of the phase diagram. This
is shown in the upper panel of Fig. 2, where the dotted lines
mark the paths followed by the considered systems when the
average volume is fixed to 〈V 〉 = 6V0 and the excitation
energy increases from 2 to 10 MeV/nucleon. We can see that
the 〈V 〉 = 6V0 and Eex = 6 MeV/nucleon state (reported by
solid circles) is situated well inside the spinodal zone for δ = 0
and δ = 0.18, while it is close to the critical point for δ = 0.30
and belongs to the supercritical region for δ = 0.50.

The distributions of Fig. 3 exhibit some trivial characteristic
features: the isospin symmetric source produces preferentially
isospin symmetric breakup fragments (the isotopic yield distri-
butions have a maximum at Z = A/2), and breakup fragment
formation is invariant to n-p inversion (neutron and proton
yields are equal, and isotopic yield distributions are symmetric
with respect to A/2). Concerning the isospin asymmetric
systems, one can see that the more neutron (proton) rich is
the source, the more free neutrons (protons) are emitted, and
the more neutron (proton) rich are the breakup fragments. The
isospin invariance in the absence of the Coulomb interaction is
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TABLE I. Neutron and proton breakup multiplicity for different 200-nucleon systems with an excitation
energy of 6 MeV/nucleon and average freeze-out volume 〈V 〉 = 6V0.

Multiplicity/Source (200,100) (200,82) (200,70) (200,50) (200,130) (200,150)

Neutron 6.71 1.31 × 101 2.09 × 101 3.27 × 101 1.28 1.80 × 10−1

Proton 6.71 3.10 1.27 1.80 × 10−1 2.07 × 101 3.24 × 101

confirmed by the isotopic yield distribution of the mirror nuclei
(200,70) vs (200,130) and (200,50) vs (200,150), which have
reflection symmetry with respect to the Z = A/2 axis.

One can also notice that the distributions are cut, both
on the proton-rich and on the neutron-rich side. This is due
to the dramatic decrease of the binding energy with isospin
asymmetry approaching the drip lines. As a consequence,
for asymmetric sources, primary fragments tend to be more
symmetric than the initial source, the total asymmetry of
the system being preserved by a correspondingly increased
number of free neutrons (protons). The fractionation induced
by this effect can be appreciated from Fig. 4, which shows as
a function of the fragment size its average isospin content for
the four different asymmetries considered above.

The first feature arising from Fig. 4 is that fragments are usu-
ally more proton-rich than the corresponding source. The only
exception corresponds to the symmetric source and fragments

whose charge is close to half the source charge, where mass and
charge conservation induces for the Z/A ratios values slightly
lower than 0.5. Thus, the approximation frequently invoked in
multifragmentation studies—that primary fragments have the
same N/Z of their emitting source [22,25,46,47]—does not
seem to be correct if primary partitions correspond to statistical
equilibrium.

Even more importantly, the degree of fractionation is seen
to monotonically increase with the asymmetry of the source,
independent of the location of the multifragmentation event
in the phase diagram. Indeed, the occurrence of fractionation
directly follows from the isospin content of the free particles
because of mass and charge conservation; thus, it cannot be
taken as a signature of coexistence in finite systems. On the
other hand, the behavior of fractionation with fragment size
is very different depending on the thermodynamic character-
ization of the system. Inside the spinodal region (two upper
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FIG. 3. (Color online) Breakup isotopic yield distributions of isobars with A = 6, 15, 20, and 30 originating from the multifragmentation
of 200-nucleon sources with different isospin asymmetries at 6 MeV/nucleon excitation energy and an average freeze-out volume 〈V 〉 = 6V0.
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breakup fragments produced in the multifragmentation of dif-
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0, 0.18, 0.30, 0.50 as a function of fragment charge. In all cases,
〈V 〉 = 6V0 and Eex = 6 MeV/nucleon. Horizontal solid lines indicate
the isospin content of the sources.

panels), the 〈Z/A〉 vs Z distributions shows a clear U shape,
which has already been discussed in Ref. [48]. The two bottom
panels, which refer to system in a “pure” phase (liquid or
fluid), present similar characteristics which are very different
from the behavior discussed above: both show a monotonically
increasing 〈Z/A〉 vs Z distribution, which for Zsource/4 reaches
saturation at about 〈Z/A〉 ≈ 0.42.

These observations mean that the fractionation phe-
nomenon naturally appears as soon as the fragmentation
process is ruled by thermal laws. It allows one to identify
the coexistence region of the first-order phase transition only
if an accurate isotopic characterization of all emitted fragments
is possible.

The energy and asymmetry dependence of fractionation is
further explored in Fig. 5, which gives the evolution with
excitation energy of various ratios of light mirror nuclei
isotopic yields.

The top panel corresponds to the symmetric source
(200,100), and the results indicate that no matter the excitation
energy, mirror nuclei are produced with equal probability. The
lower panels show that this is not true in asymmetric systems,
and the increase in the emission probability for asymmetric
light clusters, with respect to combinatorial expectations,
increases with the asymmetry of the source. Similar to the
results of Fig. 4, these results show that fractionation is mainly
dictated by the number of evaporated nucleons in excess,
and no special pattern can be distinguished for the events
located inside the coexistence region with respect to those
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FIG. 5. (Color online) Ratios of isotopic yields of different light
mirror nuclei at the breakup stage of 200-nucleon systems with
different isospin compositions as a function of excitation energy.
In all cases, the average freeze-out volume is 〈V 〉 = 6V0. For the
neutron-rich sources, the considered ratios are with the neutron-rich
isobars in the numerator; for the neutron-deficient sources, the
neutron-rich isobars are in the denominator.

situated in the liquid or supercritical regimes. Indeed, similar
values are obtained, for instance, for the δ = 0.18 source
with Eex = 4 MeV/nucleon (phase coexistence region) and
the δ = 0.30 source at Eex = 8 MeV/nucleon (supercritical
region). Concerning the dependence with excitation energy,
we can see that the energy increase partially washes out the
trend of the neutron-rich systems to preferentially produce
neutron-rich fragments. This is in agreement with statistical
microscopic models [49].

Based on the idea of isospin fractionation, it has been
proposed that the gas neutron enrichment can be measured
from such ratios [19,25]. Indeed, in the grand-canonical
approximation, if the charge difference between the two
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isobars is 	Z = 1, the isobaric ratio is given by

R = Y (A,Z1)

Y (A,Z2)
= exp

(
	B + 	µ

T

)
, (2)

where 	B = B(A,Z1) − B(A,Z2), and 	µ = µn − µp,
if the neutron-rich isobar is in the numerator. Choosing light
isobars having close binding energies, this ratio is then a direct
measure of the chemical potential difference between neutrons
and protons, i.e., of the ratio ρn/ρp of the free neutron-proton
densities.

Figure 5 shows that at least for the considered fragments,
this approximation is reasonable enough for all excitation
energies and asymmetries, and information on the free neutron
vs proton behavior can indeed be inferred from the mea-
surements of isotopically resolved light fragments, assuming
that freeze-out yields can be restored from the experimentally
detected cold fragments. However, it is important to stress
that this free densities ratio cannot unambiguously sign the
neutron enrichment of the gas phase, since, as discussed above,
the same behavior is observed when no gas phase can be
thermodynamically defined.

To conclude, we have pointed out in this section that
isospin fractionation cannot be taken as a signature of phase
coexistence when dealing with finite systems. In a previous
work [24], we already showed that the Coulomb interaction
tends to quench the coexistence zone; because of that, the
multifragmentation phenomenology can be associated with a
supercritical region of the charged-system phase diagram. Here
we show that even in the absence of the Coulomb interaction,
a generic universal feature of fragmentation, namely, isospin
fractionation, can show up above the critical point. If the effect
of the Coulomb interaction on the phase diagram strongly
depends on the specific model used [24,52], this supercritical
fractionation is a generic effect, which we believe should be
present in any fragmentation model. Indeed, it is caused by
the combined effect of clustering in the supercritical region
(which favors the formation of fragments close to stability,
i.e., an isospin symmetric fraction of the system condensed at
finite baryon density) and particle number conservation (which
forces the low-density nonclustered part to have a strong
isospin asymmetry). These features are naturally present in any
model, microscopic or macroscopic, respecting conservation
laws and ruled by the competition between entropy and energy.
Such an effect is not accessible in nuclear matter calculations,
where the sharing of the system into a dense and a diluted
fraction is by construction a sign of phase separation. Classical
models [53] have already shown clustering in the supercritical
region, but this is to our knowledge the first time that this effect
is reported in a realistic nuclear multifragmentation model.

V. ISOTOPIC WIDTHS AND SYMMETRY ENERGY IN
FINITE NEUTRAL SYSTEMS

A very powerful motivation in the study of isotopic distri-
butions in fragmentation reactions is given by the well-spread
expectation that information coming from the low-density
finite-temperature coexistence zone of the phase diagram will
be sensitive to the symmetry energy coefficient of the nuclear

(free) energy-density functional at finite temperatures and at
densities well below saturation [25–29,50]. Such analyses
would then be complementary to isospin diffusion and neutron
skin measurements [51] and additionally would give unique
information on temperature effects on the symmetry energy.

In the MMM model, the binding energy of a cluster of mass
A and charge Z is parametrized as

BnoC(A,Z) = (avA − asA
2/3) − ai(avA − asA

2/3)

× (A − 2Z)2

A2

= (avA − asA
2/3) − Csym(A)

(A − 2Z)2

A
, (3)

and includes a full mass dependence of the bulk+surface and
isospin-dependent contributions. The Coulomb part of the
binding energy (acZ

2/A2 + aaZ
2/A) [54], which is included

in the standard version of MMM [23], is switched off for this
study, to concentrate on isospin effects.

As we stressed in Sec. II, in the framework of statistical
models under the Fisher approximation [35], the low-density
correlations are entirely exhausted by clusterization. This
means that the symmetry (free) energy entering in the fragment
production yields inside coexistence should be the symmetry
energy of isolated nuclei at finite temperatures. In particular,
the interaction part of this energy [Eq. (3)] should correspond
to normal ground-state values, meaning that the liquid-drop
parameters ai, av, as have standard ground-state values [54]. In
our model, isotopic yields are therefore expected to be entirely
determined in the whole phase diagram by the symmetry
energy coefficients Csym(A).

If this approximation gives a correct description of multi-
fragmentation, this would mean that no relevant information
on Csym(ρ, T ) can be inferred from fragment observables. If,
on the other hand, the energy functional of breakup fragments
differs from the ground-state functional [26,27], it would be
interesting to trace its behavior, and isotopic distributions could
be good candidates. The extent to which this may be true is
a difficult theoretical issue, demanding a quantal many-body
transport treatment, completely out of the scope of the present
study. Whatever the final answer, for the fragment symmetry
energy to be accessible from experimental data, it is necessary
to prove that in a controlled model where the symmetry energy
set in breakup fragments is an input value of the calculation,
the proposed observables do indeed recover its value within a
good precision.

The information on Csym can be directly inferred from the
widths of the isotopic distributions in the grand-canonical
approximation. Indeed, a Gaussian approximation on the
grand-canonical expression

Yβ,µn,µp
(N,Z) = Z−1

β,µn,µp
exp [−β(Fβ(N,Z)

−µnN − µpZ)] (4)

leads to

Yβ,µn,µp
(A,N − Z) = K(A) exp

[
− (N − Z − I0)2

2σ 2
I (A)

]
, (5)
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where I0 = N̄ − Z̄ is the most probable value of N − Z for
a given value of the cluster size A,K(A) does not depend on
the asymmetry I = N − Z, and the isospin variance is related
to the symmetry energy coefficient by

σ 2
I (A) = AT

2C
β
sym(A)

. (6)

The coefficient C
β
sym(A) appearing in this last expression is

a free symmetry energy coefficient given by

Cβ
sym(A) = A

2

∂2Fβ(N,Z)

∂I 2
|A, (7)

and coincides with Csym(A) defined by Eq. (3) if we neglect the
I dependence of the excitation energy and entropy associated
with a given mass A. In this case, Eq. (6) reads

σ 2
I (A) ≈ AT

2Csym(A)
. (8)

The quality of all these approximations can be appreciated
from Fig. 6, which displays the width of the asymmetry
distribution (open circles) as a function of the fragment mass
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FIG. 6. (Color online) Widths of Y (I )|A (open symbols) and
Y (N )|Z (solid symbols) distributions corresponding to the breakup
stage of 200-nucleon systems with different asymmetries (δ = 0,
0.18, 0.30, 0.50) as a function of fragment mass in comparison with
predictions of Eq. (8) calculated for fragment (solid line) and bulk
(dashed line) symmetry energies. All systems are characterized by
〈V 〉 = 6V0 and Eex = 6 MeV/nucleon, and the Coulomb interaction
is switched off.

for the same thermodynamic conditions as Figs. 3–5. For
all considered asymmetries, Eq. (8) (solid line) appears well
verified for small masses, meaning that this width can indeed
be taken as a measure of the underlying symmetry energy.
For higher masses and extreme asymmetries, the Gaussian
approximation breaks down, as can be observed in Fig. 3, and
the link between symmetry energy and fluctuation is lost. The
neutron distribution (filled circles) contains approximately the
same information brought by the asymmetry distribution. The
dashed lines in Fig. 6 give the grand-canonical expectation for
the isotopic widths Eq. (8), when only the bulk term (Cbulk

sym =
aiav) of the symmetry energy is considered, instead of the
complete expression [Csym(A) = aiav − aiasA

−1/3] used for
the solid line. We can see that accounting for surface effects in
the fragment energy functional leads to a considerable increase
of the isospin widths even for relatively massive fragments.
Such fragments (A � 30) are not adapted to the study
of the symmetry energy coefficient though, because of the
important effect of the mass and charge conservation constraint
that causes the widths to deviate from their grand-canonical
expectation.

It is very interesting to observe that the solid and dashed
lines are almost parallel to each other. This means that the
expected functional dependence of the width on the mass
number does not change drastically if the symmetry energy has
a surface contribution or not. As a consequence, a large width,
as expected for light, surface-dominated fragments (A � 30),
can be easily misinterpreted as a signature of a reduced bulk
symmetry value, as it has been suggested by some recent
publications [26,27].

The relation between isotopic widths and symmetry energy
has interesting consequences on the isoscaling observable,
which has raised great interest in recent literature [16,26,
27,50]. As long as the distributions can be approximated by
Gaussians, the ratio between the production yield of the same
isotope in two different systems (1) and (2) [where we denote
by (2) the neutron-rich one] for a given Z can be expressed as
a function of neutron number N as

ln

(
Y(2)(N,Z)

Y(1)(N,Z)

)
= −N2

2

(
1

σ 2
N(2)

− 1

σ 2
N(1)

)

+N

(
N̄ (2)

σ 2
N(2)

− N̄ (1)

σ 2
N(1)

)
+ K(Z), (9)

where N̄ (i) is the most probable N value for the element Z in
system (i) and σ 2

N(i)
is the variance of the N distribution in the

same system. If we choose as systems (1) and (2) two systems
of similar masses and temperatures, then σ 2

N(1)
≈ σ 2

N(2)
≈ σ 2

N

and the ratio shows (in log scale) a linear dependence on N (at
fixed Z). Similar arguments hold also for fragments with fixed
N , meaning that the quantity in the left-hand side of Eq. (9)
has also a linear dependence on Z (at fixed N ). This result is
known in the literature as the isoscaling phenomenon [25]:

ln

(
Y(2)(N,Z)

Y(1)(N,Z)

)
= α(Z)N + K(Z), (10)
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where

α(Z) = 1

σ 2
N

(N̄ (2) − N̄ (1)), (11)

or, for symmetric distributions,

α(Z) = 1

σ 2
N

(〈N〉(2) − 〈N〉(1)). (12)

In the mass region where the Gaussian approximation is
well verified and in the absence of Coulomb effects (see Fig. 6),

σ 2
N (Z) ≈ σ 2

I (〈A〉(Z)). (13)

Then, the isoscaling parameter α(Z) is linked to the
fragment symmetry energy by

α(Z) ≈ 2Csym(〈A〉)
〈A〉T (〈N〉(2) − 〈N〉(1)), (14)

or, equivalently,

α(〈Z(A)〉) ≈ 2Csym(A)

AT
(〈I 〉(2) − 〈I 〉(1)). (15)

Figure 7 compares the symmetry energy coefficient ex-
tracted from Eq. (14) with the input symmetry energy of the
model for a representative case. Different average volumes,
excitation energies, and asymmetry ratios give similar results.
We can see that once again the Gaussian approximation
appears well verified for light fragments, and, in that case,
isoscaling techniques give a reasonably good measure of the
fragment symmetry energy, because this parameter is directly
linked to isotopic fluctuations.

A similar expression,

α(Z) ≈ 4Csym(〈A〉)
T

(
Z2

〈A〉2
(1)

− Z2

〈A〉2
(2)

)
, (16)
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FIG. 7. (Color online) Input symmetry energy coefficient as a
function of fragment size (solid line) compared with the estimations
from fragment observables, calculated for the breakup stage of
(200,82) and (200,100) nuclear systems without Coulomb and with
〈V 〉 = 6V0 and Eex = 6 MeV/nucleon. Open diamonds and circles
stand for predictions of Eqs. (8) and (14), respectively. Predictions
of Eq. (16) are plotted as open or solid stars depending on whether
the isoscaling parameter α is calculated according to its definition
[Eq. (10)](open stars) or as the average values of fragments with
1 � Z � 8 (solid stars).

was derived in Ref. [16] from Eq. (4) with a similar saddle
point approximation as for Eq. (14), considering only the most
probable isotopes for each Z. This equation is also plotted in
Fig. 7 and gives comparable results to Eq. (14).

In some experimental analyses, the isoscaling parameter
α(Z) is not extracted separately for each isotope, as defined
in Eq. (10), but as the average value over fragments with
1 � Z � 8. For this last situation, we adopt the notation
αexp. Figure 7 plots the behavior of Eq. (16) for these different
definitions of α. It comes out that the procedure to calculate α

using exclusively the light nuclei does not perturb the extracted
symmetry energy, but rather minimizes the deformations
due to conservation laws, which would prevent a precise
extraction of the symmetry energy coefficient for large clusters.
Quantitatively speaking, by ignoring the monotonic increase
with Z, the use of αexp results in slightly lower values of the
symmetry energy with respect to the ones obtained employing
α(Z).

It has been recently argued [29,50] that a constant value of
the isoscaling parameter α would imply a bulk character for
the associated symmetry energy. It is particularly interesting
to notice that in our model this is not the case. Indeed, the
size dependence of Csym(〈A〉)/〈A〉 is compensated by the size
dependence of (〈N〉(2) − 〈N〉(1)) giving a constant α.

VI. ISOTOPIC WIDTHS AND SYMMETRY ENERGY IN
REAL NUCLEI

The robustness of these signals to measure the symmetry en-
ergy when the Coulomb interaction is included is particularly
important, as it gives the extent to which one may extract this
basic quantity from multifragmentation data, assuming that
one may access the chemical composition of the physically
relevant breakup fragments.

In ground-state nuclei, the Coulomb interaction is known
to shift the stability peak toward neutron-rich nuclei and to
reduce dramatically the binding energy of the proton-rich ones.
This last effect is responsible for a strong narrowing of the
B(A,Z)|A and B(A,Z)|N distributions and becomes more
pronounced with the mass increase. Since the logarithm of
fragment multiplicity approximately follows the evolution of
B(A,Z)/T [Eq. (4)], we can expect to find the same effect of
a width reduction on fragment yields.

Figure 8 plots the widths of the Y (I )|A, Y (N )|Z and,
for the sake of completeness, Y (Z)|N distributions for two
nuclei, (210,82) and (190,82), in a thermodynamic state
relevant for most multifragmentation reactions, V = 4V0 and
Eex = 6 MeV/nucleon. The choice of a pair of nuclei with
equal charge minimizes the interference between Coulomb
and isospin contributions.

We can observe that the expected dispersion between
σ 2

I , σ 2
N, and σ 2

Z increases with the fragment mass and source
asymmetry, which obviously restricts the validity of the
approximation Eq. (13). The decrease of σ 2

I and σ 2
Z can be

attributed to the above-mentioned narrowing of B(A,Z)|A
and B(A,Z)|N distributions under the Coulomb effect. The
increase of σ 2

N then results from particle number conservation.
Indeed, under mass and charge conservation, the dispersion of
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FIG. 8. (Color online) Widths of Y (I )|A (open circles), Y (N )|Z
(solid circles), and Y (Z)|N (open stars) distributions corresponding
to the breakup stage of two Z = 82 nuclei and different asymmetries,
δ = 0.14 (upper panel) and 0.22 (lower panel) characterized by
V = 4V0 and Eex = 6 MeV/nucleon as a function of fragment mass
in comparison with predictions of Eq. (8) calculated for fragment
(solid line) and bulk (dashed line) symmetry energies.

fragment yields obeys the law:

σ 2
I ≈ (

σ 2
N + σ 2

Z

)
/2. (17)

The consequence of these effects is that the slight deviation
of σ 2

I from Eq. (8), already present for the heavy fragments
obtained in the decay of finite neutral systems, becomes more
pronounced under the Coulomb effect such that for A > 50, σ 2

I

practically falls over the predictions of Eq. (8) with bulk
symmetry energy (dashed line) instead of fragment symmetry
energy (solid line). However, it is important to observe that
for the light fragments which are isotopically resolved in most
experimental data sets, σ 2

I remains an excellent measure of the
input symmetry energy irrespective of conservation laws and
Coulomb effects.

Finally, Fig. 9 gives the quality of the approximations of
the different formulas [Eqs. (8), (14), (15) and (16)] proposed
in the previous section to access the symmetry energy. As in
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FIG. 9. (Color online) Same as Fig. 7, but for the breakup
stage of (210,82) and (190,82) nuclei with V = 4V0 and Eex =
6 MeV/nucleon when the Coulomb energy is included. The estimation
of Eq. (15) (open squares) is also presented. For this last expression,
the abscissa has the meaning of the exact mass.

the previous section, for the so-far widely used Eq. (16) we
considered two definitions of α: the slope of the logarithm
of isotopic yield ratios for each Z [Eq. (10)] and, in the
spirit of most experimental analyses, the average value of
α(Z) for fragments with 1 � Z � 8. Not surprisingly, the
reconstruction of the input symmetry energy is perturbed by
Coulomb effects. As one may notice, for heavy fragments,
the violation of the different approximations on which the
proposed expressions reckon leads to a relative dispersion
which may range from 15% (for A = 20) to 25% (for A = 70).
The best description of the fragment symmetry energy seems
to be offered by the simplified version of Eq. (15) where the
parameter α is calculated as the average value of Eq. (10) over
fragments with Z = 1−8 as it underestimates the witness value
by less than 1 MeV over the whole considered fragment mass
interval (A = 1 − 70). As a general statement, considering
the light (A � 20) fragments used in most experimental
analyses for which the conservation law constraints are the
least important, it is encouraging to see that both isoscaling
and isotopic widths give a consistent estimation of Csym which
deviates from the input value by no more than 20% [55].

VII. CONCLUSIONS

Isospin effects on the thermal and phase properties of finite
uncharged excited nuclear systems at subnuclear densities have
been studied in the framework of a microcanonical statistical
model with cluster degrees of freedom. We find that the
isospin asymmetry of the source reduces the width of the
coexistence region and the critical temperature and pressure
values, in qualitative agreement with well-known results for
infinite nuclear matter. The similarity of the phase diagram
with the nuclear matter one is an extra confirmation that the
multifragment production phenomenon can be associated with
the coexistence zone of a first-order phase transition of the
liquid-gas type.

To push this connection further, we have explored the
relation between fragment chemical composition and the
expected isospin fractionation in the coexistence region of
a multifluid system. We have shown that a number of excess
neutrons are emitted as free particles in neutron-rich sources.
This number strongly increases with the asymmetry of the
source, independent of the system location in the phase
diagram. This implies that free nucleons emitted by a finite
isolated system cannot be unambiguously associated with the
gas phase of the corresponding phase diagram. Because of the
mass and charge conservation law, the isotopic distribution of
complex fragments is in turn mainly dictated by the excess free
nucleons. Thus the fractionation phenomenon cannot be taken
as a measure of phase coexistence. An interesting observable
is given by the U shape of the complete Z/A vs Z distribution
which appears characteristic of the phase coexistence region,
while more simple quantities such as ratios of mirror nuclei
give ambiguous results.

Finally, we investigated the relation between fragment
symmetry energy and the variance of isotopic distributions.
A simple expression relates the symmetry energy with the
isospin asymmetry variance, and a new formula is proposed to
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calculate the same quantity from isoscaling observables. While
they are always accurate enough in the case of finite neutral
systems, some of these expressions show sizable deviations
in real nuclei under the influence of the Coulomb interaction.
The present study, however, suggests that the widths of the

isotopic distributions, as well as the isoscaling parameter,
can still give a correct estimation of the symmetry energy
in physical nuclear multifragmentation data, provided the
breakup fragment partitions can be restored from the detected
cold fragments.
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