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Scattering amplitude without an explicit enforcement of boundary conditions
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It has been known for some time that for short range potentials scattering observables can be calculated using
complex coordinates. We will show that the standard uniform complex scaling can be applied to calculate the
scattering amplitude even in the presence of a long range interaction. The main advantage of the application of
the complex scaling to the scattering problem is that the direct imposition of the complicated scattering boundary
condition can be avoided. As a result, the scattering problem can be solved using only square integrable functions.
The method will be applied not only for potential scattering but for the coupled-channel reaction model. As an
application we calculate the phase shifts of the charge exchange reaction 3H(p, n)3He.
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I. INTRODUCTION

The method of complex scaling (CS) is well known among
few-body physicists as a tool to calculate the half-life time
of a resonance state. The CS is widely used in many areas
of quantum physics. The applications began in atomic and
molecular physics in the early 60s of the last century. A general
review of the principles and applications is given in [1,2]. It
is very important that the theory of the CS has been founded
mathematically [3] and it can easily be applied. The CS method
later has become popular also in nuclear physics. Most of the
states of a nucleus are decaying ones and this fact gives a
great opportunity for the applications of the CS method in
nuclear physics. Indeed many calculations have been devoted
to find resonance states of cluster nuclei [4–7] or to calculate
resonances of nuclear three-body problems [8–11].

Carrying out the diagonalization of the complex scaled
Hamiltonian, we can gain information about the bound and
resonance states. Besides the observation of the quantized
bound and resonance states, the majority of information about
nuclei comes from scattering experiments. It would be very
expedient that in the framework of the CS procedure, the
scattering amplitude could be calculated. Recently, in an
indirect way, some scattering observables are calculated using
the CS [12] but it is not obvious how to generalize it to coupled
channels or to three-body problems. Direct calculations of
scattering amplitudes in the framework of the CS have been
achieved very early on [13,14] but a drawback of the standard
CS (or the uniform CS) emerged. It can be safely applied only
for short range potentials [13,15]. This is indeed serious since
the Coulomb interaction cannot be neglected in problems of
atomic and nuclear physics. There were several ideas of how to
modify the basic procedure to overcome this problem [16,17]
but none of them gained a widespread acceptance. After these
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initial applications, the scattering aspect of the CS has received
negligible interest. The turning point is the work [18] where it
has been shown that, scattering calculations with the exterior
CS can be successfully performed for long range interactions
too. Since this pioneering work, the method has been applied
for three-body Coulomb scattering even above the three-body
breakup threshold [19–21].

The potential benefits to use the CS are the following: We
can avoid the explicit construction of the boundary condition
[22] and scattering observables can be calculated with the
help of square integrable functions. If the Coulomb interaction
presents, scattering calculations using CS can be carried out
only with the the exterior form of the CS [18–22]. Although a
modification of the standard CS was suggested in [23], it was
applied only for a potential which is slowly decreasing and it
was not checked to see how it performs for the truly long range
Coulomb interaction.

The aim of this paper is to show that the standard CS can
also be applied in the presence of the long range Coulomb
interaction. We will consider nuclear systems where a potential
term having Coulomb asymptotic is added to the short range
nuclear interaction. We will show that, by separating the
Coulomb and nuclear amplitudes, the standard CS can be
applied for the calculation of the nuclear scattering amplitude.
In Sec. II A for completeness, we review how to apply the
CS in the case of short range forces for the calculation of
scattering phase shift. Later in Sec. II B, we present our method
to handle the long range interactions. We will give two methods
to calculate the scattering amplitude. The first one is based
on the separation of the wave function into two parts. The
second one uses an expansion of the Green operator (Sec.
II C). At first glance, they may seem to be different methods
but we will show that they give exactly the same scattering
amplitude. We will show that both methods can be derived
from the same variational principle taking trial functions of
special forms. In Sec. II D, we will describe how to generalize
the method presented in the previous sections to the coupled-
channel reaction model. This model is very successfully and
extensively applied in nuclear physics. Finally, in Sec. III,
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we present our numerical calculations. Here we discuss the
scattering of a neutron on 3He and a proton on 3H in order to
show the performance of our method for short and long range
forces. In this part, we also solve a coupled-channel problem
using the CS. As a realistic application, we will calculate
the phase shifts of the charge exchange reaction 3H(p, n)3He
described in the two-channel Lane model.

II. COMPLEX SCALING AND SCATTERING STATES

First we consider the potential scattering case when one
particle moves in a central symmetric potential. In order to
calculate scattering states, the radial Schrödinger equation

Hlψ
(+)
l,k (r) = Eψ

(+)
l,k (r) (1)

has to be solved with the appropriate boundary conditions. The
Hamiltonian in the partial wave l is given by

Hl = − h̄2

2m

d2

dr2
+ h̄2

2m

l(l + 1)

r2
+ V (r). (2)

A. Short range interaction

In the case of a short range potential, the boundary
conditions for the physical solution can be given as follows:
the wave function is regular at r = 0, i.e., ψ

(+)
l,k (0) = 0 and

asymptotically behaves as [24]

ψ
(+)
l,k (r) →

r→∞ĵ l(kr) + kfl(k)ĥ
(+)
l (kr). (3)

Due to the centrifugal barrier, we have ψ
(+)
l,k (r) → cl × rl+1 if

r → 0, where cl is related to the Jost function.
For a given energy E > 0, the wave number is denoted

by k = ( 2m

h̄2 E)1/2 > 0 and the scattering amplitude is signed
by fl(k). In Eq. (3), we have introduced the Ricatti-Bessel

and Ricatti-Hankel functions, ĵ l(kr) and ĥ
(+)
l (kr), respectively,

taking the standard definitions.
The solution of Eq. (1) is searched in the form

ψ
(+)
l,k (r) = ĵ l(kr) + ψsc

l,k(r). (4)

For the unknown scattered part of the wave function, ψsc
l,k(r),

we can get an inhomogeneous equation

(E − Hl)ψ
sc
l,k(r) = V (r)ĵ l(kr). (5)

The scattered part of the wave function ψsc
l,k(r) is not square

integrable since asymptotically it has to behave as

ψsc
l,k(r) →

r→∞kfl(k)ĥ
(+)
l (kr), (6)

and for the Hankel function, we have ĥ
(±)
l (kr) →

r→∞ exp{ ±
i(kr − lπ

2 )}.
In the standard applications of the CS theory, the role of

the CS is to turn a non square integrable function into a square
integrable one. For example the wave function of a resonance
state is not square integrable but after applying the CS, it

becomes square integrable and then it can be expanded on any
square integrable basis. One can apply a similar trick in the
case of a scattering problem. The main idea of the method is to
carry out the CS not on the full scattering wave function ψ

(+)
l,k

but only on the scattered part of it.
The complex scaling operator is defined by U (θ )φ(r) =

φθ (r) = exp(iθ/2)φ(r exp(iθ )), where φ(r) is an arbitrary
function and θ is a fixed real number. Using this notation, we
get

ψ
sc,θ
l,k (r) →

r→∞eiθ/2kfl(k)i−leikr cos θ−kr sin θ . (7)

We can notice an important change as the function ψ
sc,θ
l,k (r)

becomes square integrable provided 0 < θ < π . If we had
applied the CS to the full wave function, it should not have
become square integrable since its asymptotic part contains
both incoming and outgoing Hankel functions.

It is easy to show that the complex scaled scattered part of
the wave function satisfies the following equation:

(E − Hl(θ ))ψsc,θ
l,k (r) = eiθ/2V (reiθ )ĵ l(kreiθ ), (8)

where the complex scaled Hamiltonian is

Hl(θ ) = −e−2iθ h̄2

2m

d2

dr2
+ e−2iθ h̄2

2m

l(l + 1)

r2
+ V (reiθ ). (9)

Since ψ
sc,θ
l,k (r) is square integrable we can approximate it with

the following ansatz:

ψ
sc,θ
l,k (r) ≈

N∑
i=1

ci(θ )φi(r), (10)

where φi(r), i = 1, . . . , N are arbitrary known square
integrable functions. Using Eq. (8) for the unknown linear
expansion coefficients, we get the following inhomogeneous
linear system of equations:

N∑
j=1

{
EOij − Hl

ij (θ )
}
cj (θ ) = bi(θ ), i = 1, . . . N, (11)

where

bi(θ ) = eiθ/2
∫ ∞

0
drφi(r)V (reiθ )ĵ l(kreiθ ). (12)

In Eq. (11), we used the notations Oij = 〈φi |φj 〉 and Hl
ij (θ ) =

〈φi |Hl(θ )|φj 〉.
It remains to calculate the scattering amplitude. We use the

well known expression [24]

fl(k) = − 2m

h̄2k2

∫ ∞

0
drĵ l(kr)V (r)ψ (+)

l,k (r). (13)

Substituting Eq. (4) into Eq. (13), we can separate the Born
term and we get

fl(k) = f Born
l (k) + f sc

l (k), (14)

where

f Born
l (k) = − 2m

h̄2k2

∫ ∞

0
drĵ l(kr)V (r)ĵ l(kr) (15)

044602-2



SCATTERING AMPLITUDE WITHOUT AN EXPLICIT . . . PHYSICAL REVIEW C 75, 044602 (2007)

and

f sc
l (k) = − 2m

h̄2k2

∫ ∞

0
drĵ l(kr)V (r)ψsc

l,k(r). (16)

The Born term can be easily numerically integrated. In order
to use the complex scaled solution ψ

sc,θ
l,k (r), we deform the

integration contour of Eq. (16) into the complex r plane in the
following way r → rexp (iθ ). Using the Cauchy-theorem, we
can express the scattering amplitude in terms of the complex
scaled solution

f sc
l (k) = − 2m

h̄2k2
eiθ/2

∫ ∞

0
drĵ l(kreiθ )V (reiθ )ψsc,θ

l,k (r). (17)

Substituting the approximate scattered wave function Eq. (10)
into the integral of Eq. (17), we get our final formula

f sc
l (k) ≈ − 2m

h̄2k2

N∑
i=1

ci(θ )bi(θ ). (18)

B. Long range interaction

In this section, we assume that in addition to a short
range interaction (VN (r)) the Hamiltonian contains the pure
Coulomb interaction VC(r) = Z1Z2e

2/r with charges Z1

and Z2. Using the previous notation, now, we have V (r) =
VN (r)+VC(r). We will denote the corresponding Hamiltonian
by HC

l and the corresponding scattering solution by ψ
C(+)
l,k (r).

We will apply similar arguments and steps as we have done in
the case of the short range interaction.

The asymptotic form of the wave function is known

ψ
C(+)
l,k (r) →

r→∞Fl(kr)eiσl + kfl(k)e2iσl u
C(+)
l (kr), (19)

where we have introduced the outgoing Coulomb wave
u

C(±)
l (kr) = ( ± iFl(kr) + Gl(kr))e∓iσl . The regular and

irregular Coulomb functions are denoted by Fl(kr) and Gl(kr),
the Coulomb phase shift is signed by σl and the nuclear
scattering amplitude is marked by fl(k). Decomposing the
total wave functions into two pieces

ψ
C(+)
l,k (r) = Fl(kr)eiσl + ψ

C,sc
l,k (r), (20)

we can easily derive the following equation:

(
E − HC

l

)
ψ

C,sc
l,k (r) = eiσl VN (r)Fl(kr). (21)

Now we can repeat the steps of the previous section. The
asymptotic behavior of the outgoing Coulomb function is given
by u

C(±)
l (kr) →

r→∞exp{±i(kr−η ln 2kr− lπ
2 )}. Using this form,

we can realize that the U (θ )ψC,sc
l,k (r) function goes to zero

exponentially fast as r tends to infinity since

ψ
C,sc,θ
l,k (r) →

r→∞eiθ/2kfl(k)e2iσl i−l

× ei(kr cos θ−η ln 2kr) · e− kr sin θ+η θ . (22)

This conclusion is valid if 0 < θ < π .

The complex scaled analog of Eq. (21) reads

(
E − HC

l (θ )
)
ψ

C,sc,θ
l,k (r) = eiθ/2eiσlVN (reiθ )Fl(kreiθ ), (23)

where HC
l (θ ) = U (θ )HC

l U (θ )−1. Due to the square integra-
bility of ψ

C,sc,θ
l,k (r), we can also approximate it in the form

ψ
C,sc,θ
l,k (r) ≈

N∑
i=1

cC
i (θ )φi(r). (24)

Using Eq. (23), we can derive the following set of equations:

N∑
j=1

{
EOij − H

C,l
ij (θ )

}
cC
j (θ ) = bC

i (θ ). (25)

The inhomogeneous term is given by

bC
i (θ ) = eiθ/2eiσl

∫ ∞

0
drφi(r)VN (reiθ )Fl(kreiθ ). (26)

This integral exists since only the short range potential appears
in it.

The nuclear amplitude can be calculated from the expres-
sion

fl(k) = − 2m

h̄2k2
e−iσl

∫ ∞

0
drFl(kr)VN (r)ψC(+)

l,k (r). (27)

Substituting the decomposition of Eq. (20) into the integral
above, we can separate the Born term. The total amplitude can
be written also in the form of Eq. (14). The Born term is

f Born
l (k) = − 2m

h̄2k2

∫ ∞

0
drFl(kr)VN (r)Fl(kr) (28)

and the second term of Eq. (14) now looks like

f sc
l (k) = − 2m

h̄2k2
eiθ/2e−iσl

×
∫ ∞

0
drFl(kreiθ )VN (reiθ )ψC,sc,θ

l,k (r), (29)

where we have used the Cauchy-theorem. If we make the
approximation of Eq. (24), we can write

f sc
l (k) ≈ − 2m

h̄2k2
e−2iσl

N∑
i=1

cC
i (θ )bC

i (θ ). (30)

C. The Green operator method

In the previous section, the application of the CS to a
scattering problem is based on calculating the scattering wave
function. Using the Green-operator formalism, we can give
the scattering amplitude without an explicit reference to the
scattering function. The scattering amplitude correction to the
Born term can be cast into the form

f sc
l (k) = − 2m

h̄2k2

∫
drdr′Fl(kr)

×VN (r)Gl(E; r, r ′)VN (r ′)Fl(kr ′). (31)
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The coordinate space representation of the full Green
operator is denoted by Gl(E; r, r ′) = limε→+0〈r|(E + iε −
HC

l )−1|r ′〉. If we transform the integration contours into the
complex r and r ′ planes in the same way as we have done in
Sec. II A and use the Cauchy theorem, we can turn Eq. (31)
into the form

−e2iθ 2m

h̄2k2

∫
drdr′Fl(kreiθ )VN (reiθ )

×Gl(E; reiθ , r ′eiθ )VN (r ′eiθ )Fl(kr ′eiθ ). (32)

We can realize that we can rewrite this integral in a form which
contains the Green operator of the complex scaled Hamiltonian

−eiθ 2m

h̄2k2

∫
drdr′Fl(kreiθ )VN (reiθ )

×Gθ
l (E; r, r ′)VN (r ′eiθ )Fl(kr ′eiθ ), (33)

where Gθ
l (E) = (E−HC

l (θ ))−1. In order to be able to calculate
the integral above, we need a good approximation for the
Green-operator of HC

l (θ ).
To get such an approximation for Gθ

l (E), we consider
the eigenvalue problem of the complex scaled Schrödinger
equation HC

l (θ )ψθ
α = Eθ

αψθ
α . An approximate solution is

searched in the form

ψ̃
θ

α =
N∑
i

aC
α,i(θ )φi(r). (34)

The approximate eigenvalues—bound, resonance, and dis-
cretized continuum ones—are denoted by εα(θ ) and they
can be calculated by solving a generalized matrix eigenvalue
problem

N∑
j=1

{
εα(θ )Oij − H

C,l
ij (θ )

}
aC

α,j = 0, i = 1, . . . N, (35)

where H
C,l
ij = 〈φi |HC

l (θ )|φj 〉. Using these approximate
eigensolutions, the Green-operator appearing in Eq. (33) can
be expanded in the form [25,26]

Gθ
l (E; r, r ′) ≈

N∑
α=1

ψ̃
θ

α(r)ψ̃
θ

α(r ′)
E − εα(θ )

. (36)

Substituting this expansion into Eq. (33), we get for the
amplitude

f sc
l (k) ≈ −eiθ 2m

h̄2k2

∑
α

dC
α (θ )dC

α (θ )

E − εα(θ )
, (37)

where

dC
α (θ ) = e−iθ/2e−iσl

N∑
j

aC
α,j (θ )bC

j (θ ). (38)

We will refer to the calculation based on Eq. (37) as the CS-GO
method and a procedure outlined in the previous section as the
CS-WF method [Eq. (30)].

The Green-operator Gθ
l (E; r, r ′), considering it as a func-

tion of the energy, has pole and cut singularities. It is a bounded

operator if E is different from the singularities, unbounded if
E is from the cut and undefined if E is a pole. It is expected
and numerical studies confirmed, that the finite basis set
expansion (36) is a good approximation if the energy E is
different from the cut [17]. Thanks to the complex scaling, the
cut of Gθ

l (E; r, r ′) is moved from the real axis to the complex
plane. Therefore for real E we can use Eq. (36). Since the
threshold remains on the real axis, the applicability of Eq. (36)
is questionable at threshold. In the numerical calculations, we
have not experienced any problem due to the fact that εα(θ ) in
Eq. (36) is never equal to the threshold energy as far as we use
a finite basis set.

It is worthwhile to mention here that in the standard
application of the CS, Eq. (35) has to be solved in order to
determine the bound and resonance states of the system. We
have shown that we can also determine the scattering amplitude
using this solution. The extra computational effort to calculate
the amplitude is negligible [see Eqs. (37) and (38)]. In other
words, we can say that it is possible to get the scattering
information in the continuum energy region simultaneously,
in addition to information on the bound and resonant states by
solving the eigenvalue problem Eq. (35).

The remaining part of this section is devoted to show the
equivalence of the CS-GO and CS-WF methods. We take two
arbitrary but fixed square integrable functions |χ〉 and |χ ′〉 and
consider the calculation of the matrix element

D = 〈χ ′|Gθ
l (E)|χ〉. (39)

For this purpose we will use a functional F with two trial
functions |φ′〉 and |φ〉

F = 〈χ ′|φ〉 + 〈φ′|χ〉 − 〈φ′|(E − HC
l (θ )|φ〉. (40)

It is easy to show that D is the stationary value of the
functional F . The Euler-Lagrange equations for F are |χ〉 =
(E − HC

l (θ ))|φ〉 and |χ ′〉 = (E − HC
l (θ )†)|φ′〉. The formal

solutions can be immediately written down |φ〉 = Gθ
l (E)|χ〉

and |φ′〉 = Gθ
l (E)†|χ ′〉, where the adjoint of an operator

is denoted by the upper sign †. Substituting these solutions
into Eq. (40), we get F = D. The functional introduced in
Refs. [27,28] has the same form as Eq. (40) but in our case
a non-Hermitian operator the complex scaled Hamiltonian
appears in it. An another difference is that the energy E is
real. We do not have to worry about condition ImE �= 0 of
Refs. [27,28] since we have changed the Hamiltonian. The
condition of the applicability of the functional Eq. (40) is as
follows: the energy E has to differ from the poles and cut of
the Green-operator Gθ

l (E).
For the calculation of scattering amplitudes, a similar

functional as Eq. (40) was introduced in [13]. This method
was used only for short range potentials. The functional
Eq. (40) was used also in [17] where it was outlined how
a method, similar to the CS-GO method, can be derived from
Eq. (40) using the locally complex distortions technique
instead of uniform CS. Here we show how the CS-WF and
CS-GO methods can be derived from Eq. (40) in the presence
of long range potentials. Let us choose the function |χ〉 to the
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right hand side of Eq. (23)

χ (r) = eiθ/2eiσl VN (reiθ )Fl(kreiθ ) (41)

and furthermore we take |χ ′(r)〉 = |χ∗(r)〉. The function |χ〉
is square integrable since the diverging asymptotic behavior of
Fl(kreiθ ) is compensated by the short range potential VN (reiθ ).
For the solutions we have |φ′(r)〉 = |φ∗(r)〉 since the complex
scaled Hamilton operator is complex symmetric. With these
choices, D happens to be proportional to f sc

l (k) [see Eqs. (31)
and (33)]. We have the relationship

f sc
l (k) = −e−2iσl

2m

h̄2k2
D. (42)

If we approximate |φ(r)〉 in the form
∑N

i=1fi(θ )φi(r) then the
calculation of the stationary value of the functional Eq. (40)
leads to the equation

N∑
j=1

(
EOij − H

C,l
ij (θ )

)
fj (θ ) = bC

i (θ ). (43)

For the correction to the Born term from Eqs. (40) and (42),
we get

f sc
l (k) ≈ −e−2iσl

2m

h̄2k2

N∑
i=1

fi(θ )bC
i (θ ), (44)

where we have used Eq. (43). We notice that the coefficients
fi(θ ) and cC

i (θ ) satisfy the same set of equations [see Eqs. (25)
and (43)] so fi(θ ) = cC

i (θ ). Taking into account this fact we
can conclude that the variational principle with this choice of
trial functions leads to the method CS-WF [see Eq. (30)].

An important property of a variational principle is that
the result depends only on the subspace where the “best”
solution is searched. The functions φi(r), i = 1, . . . N span
a linear subspace. However this subspace is also spanned by
the functions of Eq. (34) therefore if we search the stationary

solution |φ(r)〉 of Eq. (40) in the form
∑N

α=1gα(θ )ψ̃
θ

α(r) we
have to get the same result for D as before. Varying gα(θ ) in
the functional Eq. (40), we get the condition of stationarity

N∑
β=1

(
Eδα,β − H

C,l
αβ (θ )

)
gβ(θ ) = eiθ/2eiσl dC

α (θ ), (45)

where H
C,l
αβ (θ ) = 〈ψ̃α|HC

l (θ )|ψ̃β〉. Using Eq. (35), we can
solve the previous equation and the result is

gθ
α = eiθ/2eiσl

dC
α (θ )

E − εα(θ )
. (46)

Calculating the value of D with this solutions (D ≈ F =
eiθ/2eiσl

∑N
α=1gα(θ )dC

α (θ )) and using Eq. (42), we realize that
the result agrees with the expression that we get with the
CS-GO method, i.e., with Eq. (37).

It goes without saying that the CS-WF and the CS-GO
methods should produce the same result if N → ∞, however
we have proved that the CS-WF and CS-GO methods give the
same scattering amplitude even if N is a finite number.

D. Coupled-channel problem

The applications of the coupled-channel reaction model
lead to a system of coupled-differential or integrodifferential
equations. For simplicity we restrict ourselves to the first case
and show how to apply our CS-WF method in the coupled-
channel problem. We assume that the total number of channels
is M . The set of equations we have to solve is

(E − Hc)ψc −
M∑

c′=1

Vcc′ψc′ = 0, c = 1, . . . , M, (47)

where the radial channel functions are denoted by ψc. The
diagonal Vcc and coupling potentials Vcc′ , c �= c′ have short
ranges and the channel Hamiltonian Hc is given by

Hc = − h̄2

2µc

d2

dr2
+ h̄2

2µc

lc(lc + 1)

r2
+ V L

c (r) + Ec, (48)

where µc and lc are the reduced mass and the orbital
angular momentum, respectively, in the channel c, and the
pure Coulomb potentials are V L

c . The symbol Ec denotes
the sum of the energies of fragments which belong to the
channel c. For the channel wave numbers, we use the notation
kc = (2µc(E − Ec)/h̄2)1/2. The number of closed channels,
where the wave number is pure imaginary, is denoted by MB .
We assume that for a given sequence the open channels follow
the closed ones. The boundary conditions are the standard
ones employed in the coupled-channel reaction model. The
incoming wave is contained in the channel c0.

We decompose the radial functions in the same form as we
have done in the previous section [see Eq. (20)]

ψc(r) = eiσcFlc (kcr)δc,c0 + ψsc
c (r), c = MB + 1, . . . , M.

(49)

However we make this decomposition only for the open
channels. We do not touch the square integrable channel
functions of closed channels. One can easily get a system
of equations for the unknown functions ψc(r), c = 1, . . . MB

and ψsc
c (r), c = MB + 1, . . . , M . If we carry out the complex

scaling of this equation, we get

(
E − Hθ

c

)
ψθ

c −
MB∑
c′=1

V θ
cc′ψ

θ
c′ −

M∑
c′=MB+1

V θ
cc′ψ

sc,θ
c′

= eiθ/2eiσc0 Vcc0 (reiθ )Flc0
(kc0re

iθ ), c = 1, . . . , MB (50)

and

(
E − Hθ

c

)
ψsc,θ

c −
MB∑
c′=1

V θ
cc′ψ

θ
c′ −

M∑
c′=MB+1

V θ
cc′ψ

sc,θ
c′

= eiθ/2eiσc0 Vcc0 (reiθ )Flc0

(
kc0re

iθ
)
,

c = MB + 1, . . . ,M. (51)

The complex scaled channel Hamiltonian is Hθ
c =

U (θ )HcU (θ )−1. The result of the action of the CS operator
on a given function is denoted in the same way as earlier, i.e.,
ψθ

c = U (θ )ψc and similarly for ψsc
c .
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Since the functions ψθ
c , c = 1, . . . ,MB and ψsc,θ

c , c =
MB + 1, . . . ,M are square integrable, we can approximate
them in the following form:

ψθ
c (r) =

N∑
i=1

tc;i(θ )φi(r), c = 1, . . . ,MB (52)

and

ψsc,θ
c (r) =

N∑
i=1

tc;i(θ )φi(r), c = MB + 1, . . . , M. (53)

If we substitute Eqs. (52) and (53) into Eqs. (50) and (51),
we can get an inhomogeneous system of linear equations for
tc;i(θ )

N∑
j=1

{(
EOij − Hθ

c;ij

)
tc;j (θ ) −

M∑
c′=1

V θ
cc′;ij tc′;j (θ )

}

= bθ
cc0;i , c = 1, . . . , M, (54)

where we used the abbreviations

bθ
cc′;i = eiθ/2eiσc′ 〈φi |Vcc′ (reiθ )|Flc′ (kc′reiθ )〉. (55)

The rest of the notations are obvious.
The scattering amplitude for the c0 → c transition can be

turned into the form

fcc0 = −2(µcµc0 )1/2

h̄2kckc0

e−iσc eiθ/2

×
M∑

c′=1

∫
drFlc (kcre

iθ )Vcc′ (reiθ )ψθ
c′ (r). (56)

Using the decomposition of the open channels given in
Eq. (49) and the expansions of Eqs. (52) and (53), we can
write the correction to the Born term in the form

f sc
cc0

≈ −2(µcµc0 )1/2

h̄2kckc0

e−2iσc

M∑
c′=1

N∑
i=1

tc′;i(θ )bθ
c′c;i . (57)

III. NUMERICAL RESULTS

Because nuclear forces are charge independent, it is often
useful to use isospin representation. To be specific we will
consider the proton scattering on the ground state of a nuclei
A with isopin TA = 1/2 and projection Tz,A = 1/2 (e.g.,
3H). The isobaric analog nucleus Ā also has isospin TA but
with projection Tz,Ā = −1/2 (in the specific case Ā = 3He).
From the states |pA〉 and |nĀ〉 with superposition, one can
construct wave functions with the total isospins 0 and 1. These
states are coupled due to the isovector part of the interaction.
In the uncoupled representation, the total wave function is
|pA〉χp(r) + |nĀ〉χn(r), where the relative motion of proton
and neutron are described by χp(r) and χn(r), respectively. The
coupled equations of Lane [29] refer to these relative motion
functions. If p + A is the entrance channel with the Lane
equation, we are describing the A(p, p)A elastic scattering
and the A(p, n)Ā charge exchange scattering.

In the 3H(p, n)3He case, carrying out the partial wave
expansion, we get the following coupled equations:[

− h̄2

2µ3H+p

(
d2

dr2
+ L(L + 1)

r2

)
+ Vd (r)

+VCoul(r) − E3H+p

]
χp(r) = Vc(r)χn(r), (58)

[
− h̄2

2µ3He+n

(
d2

dr2
+ L(L + 1)

r2

)

+Vd (r) − E3He+n

]
χn(r) = Vc(r)χp(r), (59)

where E3H+p = E − ε3H+p and E3He+n = E − ε3He+n are the
center-of-mass energy of the relative motion of 3H+p, 3He+
n systems, µ3H+p and µ3He+n are the reduced masses of
3H+p, 3He+n systems, respectively. We use the experimental
threshold energy difference, ε3He+n − ε3H+p = 0.763 MeV,
between 3He + n and 3H + p systems.

The diagonal and coupling potentials (Vd and Vc) are
expressed by T = 0 and T = 1 components as

Vd = 1

2

{
V k,T =1exp

[
−

(
r

bk,T =1

)2]

+V k,T =0exp

[
−

(
r

bk,T =0

)2]}
, (60)

Vc = 1

2

{
V k,T =1exp

[
−

(
r

bk,T =1

)2]

−V k,T =0exp

[
−

(
r

bk,T =0

)2]}
, (61)

where k denotes the partial wave component 2S+1LJ . The
parameters bk and V k were obtained to reproduce the experi-
mental phase shift [30] and shown in Table I for 3PJ . The long
range part of the Coulomb potential between 3H and p is

VCoul(r) = e2

r
erf(

√
αr), (62)

where α is taken to be 0.66 fm2. In order to apply the CS,
we have to separate off a pure Coulomb part in the diagonal
potentials. Using the notation of Sec. II D, we have V11(r) =
Vd (r) + VCoul(r) − e2/r and V L

1 (r) = e2/r . For the second

TABLE I. The 3N -N potential parameters for T =
1 and T = 0 channels.

k = 2S+1LJ bk[fm] V k
0 [MeV]

T = 1 3P0 1.54 −91.54
3P1 3.06 −18.83
3P2 3.03 −22.93

T = 0 3P0 2.5 −49.5
3P1 3.0 −8.0
3P2 3.5 −20.0
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TABLE II. The value of the 3P1 state phase shift at
different basis sizes using two distinct values for the
CS parameter θ expressed in degree. The center-of-mass
energy is 1.00 MeV.

N 3He+n 3H+p

θ = 15 θ = 25 θ = 15 θ = 25

15 4.618 4.685 3.229 3.273
20 4.912 4.939 3.433 3.425
25 4.932 4.933 3.419 3.418
30 4.933 4.933 3.418 3.418

exact 4.933 3.418

channel, we can write V22(r) = Vd (r) and V L
2 (r) = 0 and for

the coupling V12(r) = Vc(r).
It remains to specify our basis functions. For the partial

wave L, we use Gaussian functions with different size
parameters

ψi(r) = NL(bi) · rL+1exp

[
− 1

2b2
i

r2

]
,

NL(bi) = b
−3/2−L

i

{
2L+2

(2L + 1)!!
√

π

}1/2

,

(63)

where the parameters {bi : i = 1, 2, . . . , N} are given by
a geometric progression of the form bi = b0γ

i−1. Here, b0

and γ are the first term and the common ratio, respectively.
These type of basis functions are frequently used [31]. We
here employ b0 = 0.2 fm and γ = 1.2 values in the following
calculations.

First we check our method in the potential scattering case.
For the one channel calculations we will use for the protons
Eq. (58) and for neutrons Eq. (59). Understandingly now we
will put the coupling potential Vc(r) identically to zero and
similarly ε3He+n = ε3H+p = 0. We will show that the rate of
the convergence does not depend on the nature (short or long
range) of the potential. Table II shows the calculated phase

||S
k(

E
)|

-1
|

Energy [MeV]

10-8

10-7

10-6

10-5

10-4

10-3

10-2

8.06.04.02.00.0

N=20
N=25
N=30

10.08.06.04.02.00.0

N=20
N=25
N=30

FIG. 1. The quantity ||Sk(E)|−1| for the partial wave k = 3P1 as
the function of the energy using different number of basis functions.
Sk(E) is the partial wave S-matrix. The complex scaling parameter
is 20◦.

δ 
[d

eg
]

Energy [MeV]

210

180

150

120

90

60

30

0

-30
4.03.02.01.00.0

3He+n

3P1

3P2

3P0

5.04.03.02.01.00.0

3H+p

3P1

3P2

3P0

FIG. 2. The P -wave phase shifts of the charge exchange reaction
3H(p, n)3He. The solid lines are determined by CS calculation and the
circles are calculated by integrating the differential equations with the
Runge-Kutta method. The vertical dashed lines show the threshold
energy of the channel 3He+n.

shift at different basis sizes at two different values of the CS
parameter θ .

The results of Table II clearly show that the rate of
convergence is independent from the short or long range nature
of the potential. This table also demonstrates that the converged
result is independent, as it should be, from the value of the
complex scaling parameter θ . We also notice that the rate of
convergence is the same for both θ values.

In order to judge the quality of our method, we present
Fig. 1. This figure shows the quantity ||Sk(E)| − 1| as the
function of the energy. Results of calculations carried out by
different basis sizes are displayed. Since the S-matrix is unitary
the quantity ||Sk(E)|−1| should be very close to zero. Figure 1
shows that 10−5 accuracy is achieved on a large energy region.

For the charge exchange reaction 3H(p, n)3He first we
show the calculated phase shift for a P wave compared to
the exact solution. This later one is determined by numerically
integrating the coupled-differential equation with the Runge-
Kutta method. The scattering phase shifts are shown in Fig. 2.
We mention that the rate of convergence is the same as
in the one channel case. Also the quality of the complex
scaled calculation remained unchanged. This was checked by
calculating the quantity ||det(Sk(E))| − 1|, where Sk(E) is the

||d
et

(S
k(

E
))

|-
1|

Energy [MeV]

10-8

10-7

10-6

10-5

10-4

4.03.02.01.00.0

3P0

4.03.02.01.00.0

3P1

5.04.03.02.01.00.0

3P2

FIG. 3. The quantity ||det(Sk(E))|−1| for different partial waves
as the function of the energy. The CS calculation is carried out using
30 basis functions. Sk(E) is the 2 × 2 S-matrix in the partial wave
k = 2S+1LJ . The complex scaling parameter is 20◦. The vertical
dashed lines show the threshold energy of the channel 3He+n.
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2 × 2 S-matrix in the partial wave k. We display the quantity
||det(Sk(E))| − 1| in Fig. 3 as the function of the energy using
30 basis functions for three different partial waves. We see
that in the coupled-channel problem we have achieved the
same accuracy as in the potential scattering case.

IV. SUMMARY

In the coordinate space, boundary conditions have to be
given in order to get a unique solution of the Schrödinger equa-
tion. In any approximation method, these boundary conditions
have to be satisfied. However, the explicit implementation can
be avoided. We have presented a method which overcomes the
difficulty of the construction of the correct asymptotic form
of a scattering wave function. We have achieved this using
the method of the CS. It has been known for some time that
such a procedure is possible for short range potentials. We
have generalized this method to long range potentials, i.e.,
potentials with Coulombic asymptotic. The method is based
on the fact that the total scattering amplitude is the sum of the
Coulombic and nuclear amplitudes. As a by-product of our
method, it turned out that in order to treat long range potentials
it is enough to use the standard CS and that the application of
the exterior scaling is not necessary. We have also shown how

to apply the method in the framework of the coupled-channel
reaction theory.

Nowadays the CS method is a standard tool to find
resonances. The standard application of the CS method re-
quires the solution of a complex symmetric matrix eigenvalue
problem. Having solved this equation, the physically important
bound and resonance states of the considered system can be
determined. We have showed that using the output of the
standard CS calculation we can also determine the scattering
amplitude. In addition to the Hamiltonian matrix we need only
one new matrix: the matrix elements of the transition potential
between the basis functions and the regular solution (ĵ l or Fl).
The computational cost of this task is negligible. Now we can
claim that the CS method has become a unique technical tool
since the bound, resonance and scattering state calculations
can be done in one run using only square integrable functions.

The scattering boundary condition is especially compli-
cated in the case of three charged particles. We are presently
working on how to generalize the presented ideas in the case
of the Coulombic three-body problem.
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