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Reanalysis of muonic 90Zr and 208Pb atoms
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Muonic transition energies in lowlying µ−−90Zr and µ−−208Pb states are reanalyzed by using nuclear
polarization with the full-electromagnetic nuclear response. The possibility of the observed enhancement of
the energy-weighted sum rule is also considered in the analysis. The transverse part of the nuclear polarization
and the enhancement effect play an important role in improving the fine structure splitting of muonic p-states in
both nuclei. Furthermore, introducing a pygmy dipole resonance in the excitation spectrum, the final fit drastically
improves in 208Pb. However, there remains a discrepancy in 90Zr, for which the structure of the nuclear excitation
spectrum is insensitive to the nuclear-polarization energy shift. Therefore, the remaining discrepancy might be
caused by effects other than the nuclear polarization.
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I. INTRODUCTION

The energy level of muonic atoms contains various informa-
tion regarding quantum electrodynamics (QED), atomic and
nuclear physics. The uncertainty of muonic levels in heavy
nuclei is mainly ascribed to the nuclear structure, and thus it
has been considered that muonic atoms could be one of the
tools for investigating the electromagnetic properties of nuclei.
For instance, the muonic atom has been shown to contribute to
the determination of nuclear charge radii [1]. As the precision
of measurement has increased, however, it has been found
that there is a discrepancy between experimental results and
theoretical results of the nuclear polarization (NP) correction.
The discrepancy of the NP correction for the muonic x-ray
analysis was first reported in the �2p splitting energy of
208Pb [2]. In that analysis, the charge distribution determined
from elastic electron scattering and muonic x-ray data was used
and muonic transition energies with all corrections other than
the NP correction were evaluated, and then the experimentally
allowable values of the NP corrections were deduced. The
analysis gave the opposite result from the theoretical NP
prediction of those days: while the calculation predicted a
larger NP energy for 2p1/2 than for 2p3/2, the experimental
analysis gave a smaller NP energy for 2p1/2 than for 2p3/2 [3].
The same kind of discrepancies were pointed out in the muonic
2p level of 90Zr [4]. Furthermore, a serious problem has been
found in the new x-ray measurement for muonic 208Pb; that
is, there is a discrepancy also in the �3p splitting energy. It
amounts to 300–500 eV, which is almost the same magnitude
as that of the �2p splitting energy [5].

The analyses of the NP correction described above were
performed with the longitudinal nuclear response function
only, which never provides a muon-spin dependence, under
the assumption that the nuclear-muon dynamics would be
nonrelativistic. An attempt to cure discrepancies of muonic
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levels with the transverse part of the nuclear response has been
done recently in 208Pb by respecting the gauge invariance of
the NP correction [6]. The transverse NP correction drastically
reduces the binding energy for the p1/2 state, and as a result, it
has improved about half of the anomaly in the �2p splitting.
However, the discrepancy has still remained. In addition, the
calculation has shown that the �3p splitting was not improved
because the absolute value of the NP correction in 3p states
is three-times smaller than that in 2p states [3,6,7]. Thus,
these discrepancies remain long-standing unsolved anomalies
in the observed heavy muonic data: the experimental analysis
requires NP energy shifts for the fine structure opposite to
those of the theoretical prediction, and the 3p splitting energy
of 208Pb due to NP correction should be of the same order of
magnitude as the 2p splitting energy.

In this paper, we report on the reanalysis of the muonic
energy levels in 90Zr and 208Pb, including two other effects in
addition to the transverse effect for the NP correction; one is
the effect of the enhanced energy-weighted sum rule (EWSR)
and the other is the resonance effect with newly found nuclear
states; pygmy dipole resonances (PDR) [8–10]. The former
increases the overall energy shift due to the NP correction.
Consequently, this makes the effect of the transverse NP
correction large. The latter, the NP correction due to the PDR,
is a promising candidate to resolve the anomaly that the 2p and
3p NP corrections in 208Pb have almost the same magnitude,
since the muonic 3p levels with excitation energy of about
8.5 MeV are able to resonate with this nuclear mode. On the
other hand, the PDR cannot resonate with the muonic levels of
lighter nuclei, hence it should have a minor role in Zr. Thus,
it is interesting to investigate this effect in both Zr and Pb
simultaneously.

In the present analysis, we employ collective models in the
calculation of NP effects. There are some advantages in using
collective models: It is crucial for the quantitative description
in the energy shift of muonic levels to use the information
obtained from the observed data such as the experimental
excitation energy of, and transition strengths to the lowlying
nuclear states. We can incorporate these effects in collective
models without much computational effort, compared with the
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microscopic calculations such as random-phase approximation
(RPA). The disadvantage is that the transverse NP correction
may be gauge-dependent, since we do not know how to
construct gauge-invariant collective models. As has been
verified in hydrogenlike atoms, however, the degree of this
violation would be negligibly small with a suitable form of the
transition density [11]. In the present paper, we will employ
the three forms for the transition density and will confirm, by
calculating both in the Feynman and Coulomb gauges, that the
gauge dependence is negligible in the analysis of the muonic
transition energies. These matters are discussed in some detail
in Sec. II.

The muonic levels are affected by the QED and recoil
corrections, and we have explained our treatment of these
corrections in Sec. III. This would also be useful for conducting
future work in this direction, since it is not clear to us at
present whether or not improvement in the QED corrections
may solve a part of the anomalies. In Sec. IV, we perform χ2

fit to the experimental data for the muonic transition energies
of Refs. [4] and [5] with respect to the parameters of the
Fermi-type charge distribution of the nucleus, and discuss the
anomalies in the �p splittings. Finally, we give a summary of
our analysis in Sec. V.

II. NUCLEAR POLARIZATION WITH COLLECTIVE
MODELS

The diagrams of the leading-order NP corrections are
depicted in Fig. 1, where the nuclear vertex has no diagonal
matrix elements for the ladder [Fig. 1(a)], the cross [Fig. 1(b)],
and the nuclear polarization combined vacuum polarization
(NP-VP, Fig. 1(d) [12]) diagrams, and no nuclear intermediate
state for the seagull [Fig. 1(c)] diagram. The seagull diagram,
which does not polarize a nucleus, should be regarded as
a part of the “nuclear polarization” correction because it

Muon Nucleus

e- e+

(a) (b)

(c) (d)

Muon Nucleus Nucleus

NucleusMuon

Muon

FIG. 1. Lowest-order nuclear polarization diagrams: (a) ladder,
(b) cross, (c) seagull, and (d) NP-VP diagrams. The wavy line denotes
photon.

plays a crucial role in retaining the gauge invariance of the
NP correction [6,11,13–15]. While each correction due to
Figs. 1(a)–1(c) is gauge-dependent, the sum of their cor-
rections is gauge-invariant. The NP-VP correction is gauge-
invariant itself. The effect of the NP-VP diagram to the muonic
levels is different from that of the others, that is, the interaction
with the muon is represented by the local potential. Therefore,
it is expected that its contribution can be taken into account
by renormalization of the parameters of the nuclear charge
distribution. However, we will also treat the NP-VP diagram
explicitly in order to make the analysis complete within a
second-order perturbation by nuclear polarization.

The energy shift due to the diagrams of Figs. 1(a)–1(c) is
expressed as

�ENP = i(4πα)2
∫

d4x1 . . . d4x4ψ̄n(x1)γ µSF (x1, x2)

× γ νψn(x2)Dµξ (x1, x3)	ξζ

N (x3, x4)Dζν(x4, x2),

(1)

while the energy shift due to the diagram of Fig. 1(d) is
expressed as

�ENPVP = −i(4πα)2
∫

d4x1d
4x2d

4x3ψ̄n(x1)γ µψn(x1)

×Dµξ (x1, x3)	ξζ

N (x3, x2)VU (x2)δ0ζ δ(t2), (2)

where ψn is the muon wave function of nth state and SF is
the muon Green’s function, both constructed with the static
Coulomb field from the nuclear charge together with the
QED corrections due to the Uehling and Källen-Sabry effects.
VU denotes the Uehling potential. The nuclear-polarization
tensor 	

ξζ

N of Eq. (1) contains the contact term due to the
seagull diagram, while the contact term does not contribute
to the energy shift due to the NP-VP diagram since the time
(longitudinal) component of the NP tensor only contributes in
Eq. (2). The Feynman and Coulomb gauges are employed
in the photon propagator Dµξ to investigate the gauge
dependence on nuclear models employed. In Eqs. (1) and
(2), the photon propagator could be the dressed one by the
electron-positron loops rather than the free one, in order to
include the higher-order corrections associated with the NP
one. So far, such a contribution has not been considered in the
study of the nuclear polarization, and we have also neglected
its correction in the present analysis. However, it should be
noted that in the future it will be necessary to at least estimate
the next leading-order contribution to confirm the convergence
of the NP correction of the spin-orbit splittings.

The polarization part of 	
ξζ

N is constructed using the
collective model. As for the transition densities of charge,
the same forms are assumed for both high-lying resonances
and low-lying states identified by experiment. For monopole
vibrations, we employ the familiar form [16]

ρ0
tr (r) =

√
B(E0)

(3 + d/dr)ρ0(r)∫ ∞
0 r2dr(3 + d/dr)ρ0(r)

, (3)

where ρ0(r) denotes the charge density of nuclear ground
states. For other modes with the multipolarity λ �= 0, we
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employ the following three transition densities of Tassie-
Goldhaber-Teller (TGT) [17,18], Rinker (RIN) [3], and
Jensen-Steinwedel (JS) [18,19] models,

ρλ
tr (r) =

√
B(Eλ)

rλ−1(d/dr)ρ0(r)∫ ∞
0 drr2λ+1(d/dr)ρ0(r)

, (4)

ρλ
tr (r) =

√
B(Eλ)

rλ+1ρ0(r)∫ ∞
0 drr2λ+3ρ0(r)

, (5)

ρλ
tr (r) =

√
B(Eλ)

jλ(kr/R0)ρ0(r)∫ ∞
0 drrλ+2jλ(kr/R0)ρ0(r)

, (6)

respectively. For the JS model, Eq. (6), jλ(kr/R0) is a spherical
Bessel function and k is a solution of (d/dr)jλ(kr)|r=R0 = 0
with R0 = 1.2A1/3. The transition densities of current for the
corresponding charge densities can be obtained with the help
of the continuity equation

iωNρ
λ(r)
tr = −

√
λ

2λ + 1

(
d

dr
− λ − 1

r

)
jλλ−1
tr (r)

+
√

λ + 1

2λ + 1

(
d

dr
+ λ + 1

r

)
jλλ+1
tr (r), (7)

where ωN is the nuclear excitation energy. Using this relation,
one can derive the current densities of the collective models
for λ �= 0 assuming jλλ+1

tr (r) = 0 and for λ = 0 assuming
jλλ−1
tr (r) = 0.

The excitation energies and the strengths of the transition
for the nuclear low-lying states are taken from the experimental
data [20,21]. For the high-lying states, we assume that the
response concentrates on the isoscalar and isovector giant
resonances. The B(Eλ) values for these collective states are
then calculated from the EWSR values and the observed
peak energies [22–29]. Although the EWSR values are first
estimated by the classical sum rule of Ref. [18], in the present
model we allow to increase them with an enhancement factor
compatible with the observed data [30]. This enhancement
factor, which makes the NP corrections from the giant
resonances increase, will be determined by χ2 fits, as discussed
in Sec. IV.

The PDR, which is produced by the oscillation of the
neutron skin out of the phase with the core composed of
equal numbers of protons and neutrons, has been identified
in 208Pb around 9 MeV with the strength of less than 10%

of the E1 sum rule [8–10]. The fragment of the E1 strength
can also be seen theoretically in 90Zr around 11–12 MeV [31].
The PDR with energies 11.0 MeV in 90Zr and 8.7 MeV in
208Pb, are included as entries in the nuclear dipole responses
in the estimation of the NP correction. We assumed that
the strength ratio B(E1; PDR)/B(E1; GDR) = 0.1. Then,
we found that the PDR gives large energy shifts in 208Pb;
−170(TGT), −213(RIN), and −247(JS) eV for the 3p1/2

states, and −288(TGT), −359(RIN), and −416(JS) eV for
3p3/2 states, respectively, while the other muonic states are
not affected as much. The reason is explained by the resonance
between the muonic transition from the 3p to 1s state and the
PDR mode; the muon transition energy from the 3p to 1s

state in 208Pb, about 8.5 MeV, canceling the excitation energy
due to the PDR, provides the small energy denominator of
the second-order perturbed calculation. This gives large NP
energy shifts for the 3p states, and the �3p splitting energy
in muonic 208Pb is reproduced, as will be shown in Sec. IV.

A similar resonant effect occurs in another muonic level
of 208Pb. For example, the lowlying-octupole state of 208Pb
at 2.617 MeV with B(E3) = 0.612e2b3 lies between the
3d3/2−2p3/2 transition energy and the 3d5/2−2p1/2 one. Then,
the NP corrections of the muonic 3d3/2 and 3d5/2 states give a
contribution with an opposite sign to each other, and therefore
this nuclear state seriously affects the �3d splittings. In fact, it
has been known that opposite energy shifts between the muonic
3d3/2 and 3d5/2 states are essential to reproduce the �3d

splitting energy [5]. In the same manner as in the 3d levels, the
dipole state of 208Pb at 5.940 MeV with B(E1) = 0.00007e2b,
observed in (p, p′γ ), can resonate with the muonic 2p − 1s

transitions, and it produces the NP corrections to 2p1/2 and
2p3/2 with an opposite sign. In this case, however, the resonant
effect makes the situation of the �2p anomaly worse.

In contrast to muonic 208Pb, the resonant nuclear state is
not provided in muonic 90Zr. Since the binding energy for
muonic 1s1/2 state in 90Zr is about 3.6 MeV, the nuclear states
with the excitation energy far from it, including the PDR,
cannot resonate with muonic transitions. Moreover, even for
the low-lying states observed with excitation energy less than
3.6 MeV, their energies are still too large to resonate with
the muonic transitions [20]. Hence, the muonic levels in 90Zr
should be explained without the resonant effect.

In Table I, we now show the net NP energy shifts for the
muonic levels of 90Zr and 208Pb, obtained by using the nuclear

TABLE I. NP corrections for muonic 90Zr and 208Pb (eV), in which the gauge dependencies are also shown in the parentheses. The
parameters (c, a) = (4.9608, 0.5234) and (6.6577, 0.5234) in the Fermi-charge distribution are used for 90Zr and 208Pb, respectively.

90Zr 1s1/2 2s1/2 2p1/2 2p3/2 3p1/2 3p3/2 3d3/2 3d5/2

TGT model −1047(1) −144(0) −69(0) −66(0) −22.4(0.1) −21.9(0.0) −1.7(0.0) −1.6(0.0)
RIN model −1124(1) −156(0) −71(0) −67(0) −22.9(0.0) −22.5(0.0) −1.7(0.0) −1.6(0.0)
JS model −1733(7) −243(2) −86(0) −81(0) −28.2(0.0) −27.3(0.0) −1.7(0.0) −1.6(0.0)

208Pb 1s1/2 2s1/2 2p1/2 2p3/2 3p1/2 3p3/2 3d3/2 3d5/2

TGT model −2727(4) −463(1) −1357(7) −1425(9) −561(4) −749(1) −226(0) −43(0)
RIN model −3599(10) −611(4) −1590(10) −1656(10) −690(3) −914(1) −239(0) −42(0)
JS model −5721(28) −930(8) −2178(13) −2214(7) −929(3) −1179(2) −280(0) −38(0)
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TABLE II. QED corrections for muonic 90Zr and 208Pb (eV). The parameters in the Fermi-charge distribution are the
same as those in Table I.

90Zr 1s1/2 2s1/2 2p1/2 2p3/2 3p1/2 3p3/2 3d3/2 3d5/2

eU + eKSa −25764 −5009 −5956 −5624 −1818 −1736 −1439 −1411
WKb +50 +16 +19 +19 +7 +7 +8 +7
mUc −82 −12 −2 −1 −1 0 0 0
SEd +1168 +199 −4 +37 +1 +12 −3 +2
hSEe +60 +10 +5 +4 +2 +2 0 0
ESf 0 −2 −1 −1 −8 −8 −6 −6
Recoilg −149 −21 −11 −10 −3 −2 −2 −2

208Pb 1s1/2 2s1/2 2p1/2 2p3/2 3p1/2 3p3/2 3d3/2 3d5/2

eU + eKSa −67864 −19537 −32648 −30082 −10871 −10334 −10605 −9941
WKb +492 +244 +348 +335 +160 +160 +186 +180
mUc −248 −43 −45 −34 −14 −11 −1 −1
SEd +3220 +696 +348 +649 +149 +224 −44 +51
hSEe +153 +25 +65 +58 +21 +20 +8 +6
ESf −5 −25 −13 −13 −52 −54 −37 −39
Recoilg −382 −87 −111 −95 −30 −26 −15 −14

aThe corrections due to the unperturbed electronic Uehling and Källen-Sabry potentials.
bThe electronic Wichman-Kroll corrections.
cThe muonic Uehling corrections.
dThe leading self-energy corrections.
eThe higher-order self-energy corrections.
fThe electron screening effect.
gThe recoil correction.

models explained above. The nuclear charge distribution
is assumed with the two-parameter Fermi distribution. All
diagrams depicted in Fig. 1 are considered in the calculation,
where the multipolarities up to 5− are taken in Figs. 1(a)–
1(c) and 0+ only contributes in Fig. 1(d). The averages of
the Feynman and the Coulomb gauges are listed and the
differences between them are also indicated in the parentheses.
In general, the gauge invariance of the NP correction is
achieved separately by Fig. 1(d) only and the sum of the
contributions from Figs. 1(a)–1(c), provided that the nuclear
model employed is consistent. However, there is no guarantee
of retaining the gauge invariance in the present calculation
with collective models, where the excitation energies and
B(EL) values fitted to the observed data are used for both
low-lying and high-lying states. Nevertheless, one can find
that each model satisfies the gauge invariance within 1%
in all muonic levels. Such a small gauge dependency is
not so serious in comparison with that in Ref. [6] where
the nonrelativistic RPA is used for the nuclear model. In
addition, it would be very difficult to reproduce precisely the
experimental low-lying states with the microscopic model,
which are crucial for the NP corrections of 208Pb, as discussed
above. For the moment, thus, the application of the collective
model rather than the microscopic nuclear model might
be recommendable in the analysis of precise experimental
data of muonic atoms. However, further studies with the
microscopic nuclear models would be useful and should be
attempted.

III. CORRECTIONS DUE TO QUANTUM
ELECTRODYNAMICS

In fitting the nuclear charge parameters to the experimental
transition energies, one needs to evaluate the QED corrections
as well as the NP correction. The QED corrections used in
our analysis are based on previous studies (see Ref. [32] and
references therein). We shall summarize their treatment and
numerical results below for completeness in order to make our
analysis clearer.

The most important QED correction for muonic atoms is the
virtual production and annihilation of the electron-positron (or
particle-antiparticle) pair, the so-called vacuum-polarization
(VP) correction. The VP correction arising from the electron-
positron field is usually estimated by decomposing into two
parts; one is the Uehling part [order α(αZ) [33], and the other
is the Wichman-Kroll (WK) one [order α(αZ)n, n � 2 [34].
The Uehling potential and the electronic Källen-Sabry (KS)
potential [order α2(αZ)], which gives a part of the second-
order correction [35], are added to the static Coulomb potential
generating from the nuclear charge. In the present analysis,
the Dirac equation of a muon is solved with the potential
including the electronic Uehling and KS effects, and its muonic
eigenstates are used in the perturbed calculation of the NP and
self-energy (SE) corrections.

The VP corrections due to the other leptonic and the
hadronic fields can also contribute for the muonic level shifts
[5,32]. For example, the Uehling contribution arising from the
muon-antimuon field is shown in Table II. In refitting on the
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muonic transition energies, we also found that this correction
can be encoded into the charge parameters, that is, we can
obtain an almost same χ square value whether or not this
correction is considered in the analysis. Due to this fact, the
other corrections such as the muonic WK correction and the
hadronic VP one are neglected. Also, we neglect the mixed
µ − e and hadronic−e VP corrections [32]. On the other
hand, the NP-VP correction of Fig. 1(d) [12], which is one
of the mixed VP corrections when the vacuum loop of the
electron-positron field is approximated by the Uehling part as
we have done, gives a large energy shift in the muonic levels.
We have already included this contribution to the muonic levels
as a part of the NP correction shown in Table I.

The SE correction becomes a non-local potential and it
has to be calculated as a perturbation. To estimate it with
less computational effort, the nonrelativistic reduction is quite
useful [36]. This method introduces a fictitious photon mass
mA chosen to satisfy the relation (αZ)2mµ � mA � (αZ)2mµ

where mµ is a muon mass. Then, the energy shift due to
the SE correction is estimated by dividing into two terms,
a high-energy term in which one may consider only a lowest
order of the external field, and a low-energy one for which
one may use the nonrelativistic multipole expansion, the main
contribution of which is given by the dipole. We employ
this method to calculate the SE correction. Although the
formula is obtained by the nonrelativistic prescription, we
use the relativistic matrix element to evaluate the formula
in our analysis (this was already done in previous analysis
using MUON2 [39]). It is well known that the mean-value
method [37] employed here for the Bethe logarithm has some
uncertainty [32]. Thus, the SE correction might lead to some
uncertainty in the present analysis. The uncertainty of our
estimate for the SE correction will be further discussed in the
next section. The higher-order SE corrections are considered
up to α2Zα order, corresponding to the diagrams depicted in
Fig. 22 of Ref. [32].

One should consider not only the vacuum correction but
also the one arising from the electrons which occupy the
Fermi sea. The dominant effect in such the corrections is
the static electron screening between the muon and the
nucleus. In the present work, we take into account only the
first-order correction, in which the electron screening potential
is calculated with the electron density constructed by means of
the relativistic Hartree-Fock-Slater method assuming the “Z-1
approximation” [38,39].

The center-of-mass correction due to a finite nuclear mass
cannot be removed rigorously in the relativistic picture. In
the present analysis, the recoil effect is partially taken into
account by the reduced mass of a muon and the rest is estimated
approximately by the term of the Breit equation of Ref. [40].

All corrections calculated in the present analysis are
summarized in Table II, where the energy shifts due to these
corrections to the muonic levels in 90Zr and in 208Pb are shown.
The energy shifts in the χ2 analysis will vary depending on
the nuclear charge parameters.

IV. RESULTS OF χ 2 ANALYSIS AND DISCUSSION

In this section, we show the results of the χ2 analysis for the
lowlying muonic transition energies with two parameters (c, a)

of a Fermi charge distribution, where c denotes the half-density
radius and a denotes the diffuseness parameter. Theoretical
estimate of the transition energy has been done with the NP
and the QED corrections described in Secs. II and III. Varying
the charge parameters, these corrections, in principle, may be
changed. The difficulty in performing this procedure arises
from the fact that the static nuclear charge distribution is not
known before the NP corrections are evaluated. Therefore, a
simultaneous fit of the NP values and the charge distribution is
required. Fortunately, we have been able to verify that the NP
corrections are almost unchanged within the searched region
of the parameters of the Fermi-type charge distribution, except
for the correction due to the NP-VP diagram which is a first-
order correction to the muon line. We assume here that the
NP corrections due to Figs. 1(a)–1(c) are constant during the
fit with respect to parameters (c, a). On the other hand, the
NP-VP correction of Fig. 1(d) and all QED corrections are
evaluated with the renewal of the nuclear-charge distribution.

We also consider the effect of the enhanced EWSR in
the present analysis. The excessive sum rule strength is
experimentally likely, though it is a difficult task to extract
its value quantitatively [30]. Theoretically, the excessive
strength in the observed data may be, for example, provided
by the relativistic nuclear model, where the EWSR in the
mean-field approximation or in the RPA is enhanced over
the nonrelativistic one owing to the nucleon Dirac mass
m∗ = mN − gσσ (mN free nucleon mass and σ scalar meson
field) [41,42]. A momentum-dependent interaction and the
exchange current effects in nonrelativistic models would also
explain the enhancement of the EWSR.

From these viewpoints, we assume that the NP correction
from the giant resonances is enhanced by a factor of xen relative
to the estimate of the classical EWSR values, while the NP
corrections from the lowlying states are normalized by the
observed transition rates. Thus the NP correction with the
collective model is written as

�ENP = �EGNPxen + �ELNP, (8)

�ENPVP = �EGNPVPxen + �ELNPVP, (9)

where �EGNP and �EGNPVP (�ELNP and �ELNPVP) are the
energy shifts arising from giant resonances (low-lying states).
The total energy shift due to the NP correction is given by
the sum �ENP + �ENPVP. The energy shifts of each muonic
level shown in Table I are the results calculated with xen = 1.0
and the charge parameters indicated in the caption. The χ2 fit
with respect to the charge parameters is performed for each
value of the enhancement factor. Figures 2(a) and 2(b) are the
results of such a χ2 analysis (per degrees of freedom). There
are nine transition energies utilized in the present analysis:
2s1/2 → 2p3/2, 2s1/2 → 2p1/2, 3p1/2 → 2s1/2, 3p3/2 →
2s1/2, 3d3/2 → 2p3/2, 3d5/2 → 2p3/2, 3d3/2 → 2p1/2,

2p1/2 → 1s1/2, and 2p3/2 → 1s1/2, given in Ref. [4] for
muonic 90Zr and in Ref. [5] for muonic 208Pb. The previous fits
using the Coulomb NP correction (CNP at xen = 1.0) without
the transverse response and PDR are very poor; χ2 = 9.6 for
90Zr [4] and 188 for 208Pb [5]. Considering the transverse
response of nuclei, the pygmy dipole resonances, and the
enhanced EWSR, discussed in Sec. II and in the present
section, on the other hand, χ2 minimums have been drastically
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FIG. 2. (Color online) χ 2 values as a function of the enhancement factor for the EWSR (see text).

reduced to the values 3.9(TGT), 3.9(RIN), and 3.3(JS) for
90Zr and 21(TGT), 27(RIN), and 30(JS) for 208Pb, as seen in
Fig. 2. The interesting feature in these results is the fact that
the main origin of the improvement of the χ2 fit for muonic
90Zr is different from that for muonic 208Pb: In 208Pb, both of
the transverse and the PDR effects to the nuclear polarization
are quite important, while χ2 value decreases, at most, to 180
without them, as shown by the CNP result in Fig. 2. In 90Zr,
on the other hand, the enhanced EWSR can decrease χ2 of the
CNP to 4.9, and the inclusion of the PDR does not change χ2

while the transverse effect reduces χ2 slightly.
Further, one can see in Fig. 2 that while the model-

dependence of the χ2 minimum is small, the enhancement
factor giving the χ2 minimum (optimized enhancement factor)
seems to depend on the nuclear model. Actually, however, the
experimental fact is simply to demand the large NP energy
shifts, because, as shown in Table I and Fig. 2, the model
providing the larger NP correction needs the smaller optimized
enhancement factor. If the excessive strength is parametrized in
terms of the effective nucleon mass, its magnitude is estimated
as around 0.6mN ∼ 0.7mN for TGT and RIN models and
0.75mN ∼ 0.9mN for the JS model. In comparison with the
analysis of the β-decay lifetimes [43] and the quadrupole
resonances [44], which leads to the effective mass around
0.8mN ∼ 0.9mN , the result for JS model is reasonable, while
the results for TGT and RIN models are inconsistent. On
the other hand, the gauge dependence is least for the TGT
model, while, according to the previous study comparing the
collective model with the nonrelativistic RPA calculation, the
RIN model gives the transition density of the charge which is
nearly indistinguishable from the RPA density [3], as far as
208Pb is concerned. Such behaviors of the employed models
may indicate that the χ2 minimum in the present analysis is
still insufficient and that further refinement of the model would
provide better results.

In order to reduce χ2 more, it is necessary to reproduce
the 2p splitting energy. In Table III, we compare the �2p

and �3p splittings in the χ2 minimum with the experimental
ones. Indeed, the calculated �2p splittings fall outside of
the experimental error bars while the �3p splittings agree
within the experimental errors in both nuclei. We stress here
that the PDR in 208Pb has a crucial role to reproduce �3p

splittings. If we neglected the contribution from the PDR, the
�3p splitting in muonic 208Pb could never be reproduced and
the discrepancies of more than 50 eV would still remain for all
models employed in the present calculation. Since one of the

two anomalies, the anomaly in the �3p splitting 208Pb, has
been resolved, the muonic 208Pb is now in the same situation
as the muonic 90Zr, qualitatively.

For an explanation of the remaining discrepancy of �2p
splitting, an accidental resonance with an unobserved nuclear
excitation state cannot be excluded a priori in 208Pb. However,
although the tendency in �2p discrepancy is similar, the
existence of such a resonant state is definitely excluded in 90Zr.
Therefore, the chance that such a resonant effect only could
be responsible for the �2p anomaly is small. In reducing
the �2p anomaly, the transverse NP effect due to the electric
dipole transition with the 1s1/2 muonic intermediate state plays
an important role. For 2p levels in 208Pb, it provides a larger
NP energy shift for 2p3/2 than that for for 2p1/2 state, which is
necessary in order to explain the anomaly. For 90Zr, however,
it is not so large and the NP contribution for 2p3/2 state is still
smaller than that for 2p1/2 state. As for the other NP effects
which may affect the �2p splitting, it remains to investigate
the transverse effect of high-lying nuclear states, such as
quasifree excitation and the �-hole resonances. While we have
no reason to believe that the higher multipole contribution in
the quasifree region may contribute favorably to 2p splittings,
the effect of the �-hole state remains as an open question. Also,
it might be important to take into account the higher-order
corrections of the nuclear polarization. Such a correction is
the electronic vacuum-loop correction in the virtual photon
lines in Figs. 1(a)–1(c) as mentioned in Sec. II. It should be
noted that, for the �p splitting, not the absolute value but the
different one of the correction between the respective states
has to be discussed. Hence, the higher-order NP correction
also remains as an open question.

As is shown in Table III, the remaining discrepancies
for �2p splittings are, considering the experimental error
bar, about 5 eV for Zr and 50 eV for Pb, respectively. We
should also consider the possibility that the discrepancies
are caused by effects other than the nuclear polarization. In
this context, one may suspect that the charge distribution
of the nucleus yields model-dependence in fitting the data.
The dependence on the model of charge distribution, however,
seems to be negligible in the data analysis of muonic transition
energies; one can verify that the χ2 value is not reduced
by using the three-parameter Fermi distribution instead of
the two-parameter one. Regarding the QED corrections, the
SE correction should be reexamined as is mentioned in
Sec. III. From Table II, one can see that the SE correction
(dSE in Table II) is crucial for the �p splitting energies.
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TABLE III. Theoretical and experimental �p splitting
energies (keV) in muonic 90Zr [4] and 208Pb [5].

90Zr level TGT RIN JS Exp.

�2p 21.130 21.130 21.127 21.118(8)
�3p 6.041 6.041 6.040 6.052(28)

208Pb level TGT RIN JS Exp.
�2p 184.858 184.846 184.829 184.788(27)
�3p 47.231 47.208 47.225 47.197(45)

In particular, in 90Zr, there is no other contribution that
affects the splitting energy between 2p1/2 and 2p3/2 states. We
have used the mean-value method [37] to estimate the Bethe
logarithm in the present calculation. To see the ambiguity
of this method, we have compared it with the result of the
Bethe logarithm calculated by duly taking the summation
over the intermediate state. The difference was at most a
few percent and did not contribute to the �2p fine structure
splittings. Also, we have compared the relativistic matrix
element used in the mean value method in the present analysis
with the nonrelativistic matrix element which should be, in
principle, used in the expression obtained from nonrelativistic
reduction. The difference in the total magnitude of the dSE is
similarly small for each level. However, the spin dependent
anomalous-moment part in the SE correction is sensitive to
the nonrelativistic approximation. As a result, the theoretical
fine structure splittings with nonrelativistic matrix elements
become larger than those given in Table III; about 20 eV for 2p,
7eV for 3p in 208Pb, and 2 eV for 2p, less than the last digit for
3p in 90Zr. In order to resolve these ambiguities, it is desirable
to perform the rigorous relativistic SE calculation developed
in the study of highly-charged ions [45,46]. On the other hand,
since the correction due to the anomalous magnetic moment
is crucial to the fine structure level splittings, we have also
performed the nonperturbed calculation of the level shifts by
solving the Dirac equation, as has been done for anti-protonic
atoms [48]. For the muon’s anomalous moment, we have used
the experimental value (0.0011659214(8)(3) [47]) rather than
α/4π corresponding to the lowest-order diagram considered
in the present SE correction. Having performed its calculation,
however, we have also verified that the present result is still
unchanged. As for the QED correction of order α2(Zα)n, the
α2(Zα) self-energy combined vacuum-polarization correction
(hSE in Table II) has been taken into account, while the
virtual Delbrück effect of order of α2(Zα)2 has been neglected
in the present analysis. The virtual Delbrück effect has a
correction of order of 10 eV in muonic heavy atoms [32]. It
might also be required to perform the α2(Zα)n SE calculation
rigorously [45,49]. As for the recoil correction, it is well
known that the Breit correction we employed is correct up
to O((αZ)4). The formalism to carry out O(m/M) correction
including all orders of αZ with finite charge distribution has
been recently proposed in [50], and numerical results are
given for 1s1/2, 2s1/2, and 2p1/2 hydrogenlike atoms [51].
The higher order recoil correction may also affect the �2p

splitting, particularly in 208Pb. Such a reexamination of the
QED corrections would bring clarification of the problems in
muonic heavy atoms.

V. SUMMARY

There has been a longstanding discrepancy between theory
and experiments with regard to the fine-structure splitting
energies in muonic heavy atoms. The discrepancy has been
characterized by two phenomena; one is that the theoretical NP
correction gave the opposite contribution to the experimentally
predicted NP energy shift, and the other is that the 3p splitting
energy of 208Pb due to NP correction had to be of the same order
of magnitude as the 2p splitting energy. In the present work
our strategy to cure the former problem has been to enhance
the effect of a transverse NP correction which provides a
spin-dependent interaction. This is possible if the transition
strengths to the high-lying states are enhanced more than the
previous calculations, which is reasonable, since the observed
EWSR values are larger than the classical values used in the
previous analysis. For the latter problem, we have taken into
account the newly established PDR, which can resonate with
the muonic states through the virtual transition to 1s1/2 state.
As expected, the PDR has contributed significantly to the
energy shift for muonic 3p states in 208Pb, while it has not
affected the other muonic states in 208Pb and all muonic states
in 90Zr.

Including these effects, the muonic transitions have been
reanalyzed. The χ2 minima have drastically reduced to 3.3–3.9
for 90Zr and to 21–30 for 208Pb. The results with the χ2

minima in the present analysis, however, cannot be said to
have reproduced all of the experimental data reasonably well.
In both nuclei, particularly in 208Pb, the 2p level splittings are
not reproduced. Furthermore, the fact that the 2p splitting
in muonic 90Zr apparently could not be explained by the
transverse NP effect and the excessive EWSR effect is serious
since the low-lying nuclear spectra are well known and the
resonant effect, which could cure the �p anomalies, is no
longer possible for 90Zr. The remaining possible improvement
within the NP calculation would be to evaluate the QED
correction to the NP one and the correction coming from the
quasifree region. A possible explanation may be found in the
QED corrections performed traditionally. In particular, the SE
correction has to be estimated without approximation. It is
desirable to carry out all of the QED corrections consistently
with a finite nuclear-matter density distribution with the same
efforts as in the hydrogenlike ions, which is in principle less
ambiguous than NP calculation.
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