
PHYSICAL REVIEW C 75, 044310 (2007)

Damping of collective states in an extended random-phase approximation
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Applications of an extended version of the Hartree-Fock theory and the random-phase approximation derived
from the time-dependent density-matrix theory (TDDM) are presented. In this TDDM-based theory, the ground
state is given as a stationary solution of the TDDM equations and the excited states are calculated using the
small-amplitude limit of TDDM. The first application presented is an extended Lipkin model in which an
interaction term describing a particle scattering is added to the original Hamiltonian so that the damping of a
collective state is taken into account. It is found that the TDDM-based theory well reproduces the ground state
and excited states of the extended Lipkin model. The quadrupole excitation of the oxygen isotopes 16,20,22O is
also studied as realistic applications of the TDDM-based theory. It is found that large fragmentation of the giant
quadrupole resonance in 16O is reproduced, and it is pointed out that the effects of ground-state correlations are
quite important for fragmentation. It is also found that the quadrupole states in neutron-rich oxygen isotopes have
small spreading widths.
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I. INTRODUCTION

The random phase approximation (RPA) based on the
Hartree-Fock (HF) ground state and the quasiparticle RPA
(QRPA) based on the Hartree-Fock-Bogoliubov (HFB) ground
state have extensively been used as standard microscopic
theories to study collective excitation in stable nuclei [1] and
in unstable nuclei [2–5]. However, the RPA and QRA which
correspond to the small-amplitude limit of the time-dependent
mean-field theories, that is, the time-dependent HF theory
(TDHF) and the time-dependent HFB theory, respectively, do
not include higher-order correlations that cause the damping
of collective states. For a realistic description of nuclear
collective excitation, therefore, we must go beyond the mean-
field theories [6]. The time-dependent density-matrix theory
(TDDM) [7,8] which incorporates the effects of nucleon-
nucleon collisions into TDHF is one of such extended mean-
field theories. It was pointed out [9] that the small-amplitude
limit of TDDM (STDDM) is an extended version of RPA
which includes the effects of two-body correlations in both
the ground and excited states. However, this TDDM-based
approach (STDDM based on the TDDM ground state) has
become applicable only recently after a somewhat puzzling
problem [10] of finding the ground state in TDDM was solved
by introducing the gradient method [11]. We have applied the
TDDM-based approach to the Lipkin model [12] and to the
quadrupole excitation in neutron-rich oxygen isotopes [11,13].
Although the obtained results were encouraging, whether the
TDDM-based approach is appropriate for the description of the
damping of collective states has not been determined because
of the limitations in these applications: the Lipkin model
Hamiltonian [14] used in Ref. [12] does not have interaction
terms causing the damping of a collective state, and the number
of single-particle states used for the quadrupole excitation in
oxygen isotopes [13] was not sufficient to study the damping of
giant quadrupole resonances (GQRs). In this paper, we present
further applications of the TDDM-based approach and show

that our approach properly describes the damping properties
of collective states. First we show the results for an extended
Lipkin model in which an interaction term describing particle
scattering is added to the original Hamiltonian so that the
damping of a collective state is taken into account. Then we
present the quadrupole excitation including GQR in the oxygen
isotopes 16,20,22O calculated using much larger single-particle
space than used in Ref. [11,13]. We point out that the damping
properties of the quadrupole states in the neutron-rich isotopes
differ from those in 16O. The paper is organized as follows.
The formulation of the TDDM-based approach is presented in
Sec. II. Results for the extended Lipkin model and the oxygen
isotopes are shown in Sec. III, and Sec. IV is devoted to the
summary.

II. FORMULATION

A. Ground state in TDDM

In TDDM, the ground state |�0〉 is specified by the
occupation matrix nαα′ and the two-body correlation matrix
Cαβα′β ′ , that is,

nαα′ = 〈�0|a+
α′aα|�0〉, (1)

Cαβα′β ′ = 〈�0|a+
α′a

+
β ′aβaα|�0〉 − nαα′nββ ′ + nαβ ′nβα′ , (2)

where aα(a+
α ) is the annihilation (creation) operator of a

nucleon at single-particle state α. The matrices nαα′ and Cαβα′β ′

are determined by the stationary condition of the TDDM
equations, which is expressed by

F1(αα′) = 〈�0|[a+
α′aα,H ]|�0〉 = 0, (3)

F2(αβα′β ′) = 〈�0|[a+
α′a

+
β ′aβaα,H ]|�0〉 = 0, (4)

where H is the total Hamiltonian. Equations (3) and (4) are
explicitly given in Ref. [11], where the eigenstates of a mean-
field Hamiltonian h are used as single-particle states φα . To
obtain the ground state in TDDM means that all quantities,
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nαα′ , Cαβα′β ′ and φα , are determined under the conditions (3)
and (4). It was found that this difficult task can be achieved
using the gradient method [11]. Starting from a simple ground
state such as the HF ground state, where nαα′ and Cαβα′β ′ are
known, we iterate


 n(N + 1)

C(N + 1)


 =


 n(N )

C(N )


 − α


 a c

b d




−1 
 F1(N )

F2(N )


 (5)

until convergence is achieved. Here, n(N ), C(N ), F1(N ), and
F2(N ) imply nαα′ , Cαβα′β ′ , F1(αα′), and F2(αβα′β ′) at the N th
iteration step. Equation (5) is coupled to hφα = εαφα because
h depends on nαα′ . The matrix elements a, b, c, and d are given
as the functional derivatives of F1 and F2: a = δF1/δn, b =
δF1/δC, c = δF2/δn, and d = δF2/δC. These matrices are
identical to the matrix elements of the STDDM equation [11].
We show them explicitly in the Appendix. A small parameter
α is introduced to control the convergence process.

B. Small-amplitude limit of TDDM

The equations of STDDM are derived by linearizing the
TDDM equations with respect to the deviations of the one- and
two-body density matrices from their ground-state values [9].
The STDDM equations consist of the one-body transition
amplitude x

µ

αα′ = 〈�0|a+
α′aα|�µ〉 and the two-body transition

amplitude X
µ

αβα′β ′ = 〈�0|a+
α′a

+
β ′aβaα|�µ〉, where |�µ〉 is an

excited state with excitation energy ωµ. The equations in
STDDM can be written in matrix form [15] as


 a c

b d





 xµ

Xµ


 = ωµ


 xµ

Xµ


 , (6)

where the matrix elements on the left-hand side are the same as
those on the right-hand side of Eq. (5). The strength function
S(E) for an excitation operator Q̂

S(E) =
∑
ωµ>0

|〈�µ|Q̂|�0〉|2δ(E − ωµ) (7)

is calculated using the solution of Eq. (6). The detailed
expression of S(E) in terms of x

µ

αα′ and X
µ

αβα′β ′ is given in
Ref. [15]. Matrices a and d contain nαα′ , and matrix b has
both nαα′ and Cαβα′β ′ (see Appendix). Thus, various effects
of ground-state correlations—which may be classified as the
self-energy contributions, the modification of particle-hole
(p-h) interactions, and the vertex corrections [16]—are in-
cluded in Eq. (6). The omission of ground-state correlations
reduces STDDM to the second RPA [6], which has been
extensively used to study the damping properties of giant
resonances.

III. APPLICATIONS

A. Extended Lipkin model

The Lipkin model [14] describes an N -fermion system
with two N -fold degenerate levels with energies ε/2 and
−ε/2, respectively. The upper and lower levels are labeled

FIG. 1. (a) Two-particle–two-hole excitation described by the V

term. (b) Scattering of a particle or hole state given by the U term in
the extended Lipkin model. Dashed line denotes the interaction; solid
lines, either particle states or hole states.

by quantum numbers p and −p, respectively, with p =
1, 2, . . . , N . We consider the Hamiltonian

H = εJz + V

2
(J 2

+ + J 2
−) + U

2
[Jz(J+ + J−)

+ (J+ + J−)Jz], (8)

where an additional interaction term proportional to U is
introduced. The operators are given as

Jz = 1

2

N∑
p=1

(a+
p ap − a−p

+a−p), (9)

J+ = J+
− =

N∑
p=1

a+
p a−p. (10)

The V term describes the 2p-2h excitation and deexcitation
as shown in Fig. 1(a), while the U term allows a scattering
of a particle (hole) state to a 2p-1h (2h-1p) state [Fig. 1(b)].
Due to the U term, two effects which are not included in
the usual Lipkin model are introduced: One is the effect of a
mean-field potential which always mixes the lower and upper
levels as depicted in Fig. 2(a); the other is the damping of a
phonon state [Fig. 2(b)], where a p-h state couples to a 2p-2h
state. Therefore, this extended version of the Lipkin model is
relevant to testing theoretical models designed for the damping
of collective states. Similar extended versions of the Lipkin
model Hamiltonian have been used in Refs. [17,18].

Using an N = 4 system as an example, we solve Eq. (5)
for the ground states and Eq. (6) for the excited states. To
solve these equations, we use the original single-particle basis

FIG. 2. Extended Lipkin model describing the effects of (a) a
mean-field potential and (b) damping of a phonon state. Dashed line
denotes the interaction; solid lines, either particle states or hole states.
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FIG. 3. Ground-state energy E/ε as a function of |V |/ε for N = 4
and U = V/2. Solid, dotted, and dot-dashed lines depict the TDDM
results, HF results, and exact solutions, respectively.

specified by p and −p, whereas the HF basis is used for RPA
and SRPA calculations. First we present the results for the
ground states. We fix ε at 2 and change V for two cases,
U = V/2 and U = V . The case of U = 0 was reported in
our previous work [12]. The ground-state energies obtained
in TDDM (solid line) for various interaction strength |V | are
shown in Figs. 3 and 4 in comparison with the exact and
HF ones. The results in TDDM are very close to the exact
ones in both cases with different relative strength of |U |. With
increasing U (from V/2 to V ), the results in HF become
closer to the exact ones and two-body correlations become
less important. This is because the spacing between the two
single-particle states becomes larger with increasing U . This
feature of the extended Lipkin model has been pointed out in
Ref. [18].

Now we show the results for one-phonon states for U =
V/2 (Fig. 5) and U = V (Fig. 6) calculated at V/ε = −0.3.
The excitation operator used is Q̂ = J+ + J− + Jz. The solid
lines show the strength functions in STDDM. The strength
functions for the exact solution (dot-dashed line) and the
solutions obtained in RPA (dotted line) and SRPA (dashed line)
are also drawn for comparison. To facilitate easy comparison
among the various calculations, we smoothed the strength
functions with an artificial width (full width at half maximum)
�FWHM/ε = 0.125. RPA always gives a single state.

The one-phonon states in SRPA are split into two states.
The first and second excited states in SRPA mainly consist of
1p-1h configurations and 2p-2h configurations with respect to
the HF ground state, respectively.

STDDM gives fragmentation of strength into three states.
In the case of U = V/2, the transition strength of the third
exited state at E/ε = 3.1 is too small to be seen in the scale of

FIG. 4. Same as Fig. 3, but for U = V .

FIG. 5. Strength distributions of the one-phonon states calculated
in STDDM (solid line), RPA (dotted line), and SRPA (dashed line)
for N = 4 and U/ε = V/2ε = −0.15. The exact solution is shown
with the dot-dashed line. The strength functions are smoothed with
an artificial width �FWHM/ε = 0.125.

Fig. 5. The first and third excited states in STDDM have strong
mixing of two-body configurations, while the second excited
state has relatively small mixing of two-body configurations.

For the exact solutions, the transition strength is split into
four states. The fourth excited states have negligible strength,
and the third excited states have some strength. In the case
of U = V , the strength of the third excited state of the exact
solution located at E/ε = 4.1 is similar to that of the STDDM
solution; while for U = V/2, the corresponding state located
at E/ε = 3.8 is invisible in the scale of Fig. 5.

In the case of U = V/2, the first excited state in STDDM
has much larger transition strength than that in SRPA and
has large collectivity comparable to the exact solution which
also has strong mixing of two-phonon states. The difference
in the first excited state between STDDM and SRPA seen in
Fig. 5 demonstrates the importance of ground-state correla-
tions, though it is not easy in our approach to clearly distinguish
the various effects of ground-state correlations [16]. As far
as the second excited state shown in Fig. 5 is concerned,
however, STDDM (and also SRPA) poorly reproduces the
excitation energy and transition strength. This problem might
be understood by the fact that Eq. (6) does not properly
describe two-phonon states: For example, self-energy terms for
two-body configurations and also the coupling to three-phonon
states are missing in Eq. (6) [12].

In the case of U = V (Fig. 6) where the effects of
ground-state correlations are small, the strength function in
STDDM has better agreement with the exact one, while SRPA

FIG. 6. Same as Fig. 5, but for U/ε = V/ε = −0.3.
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cannot give the state corresponding to the first excited state of
the exact solution. This indicates the importance of two-body
configurations other than 2p-2h configurations considered in
SRPA. Thus, it is found that STDDM can properly describe
the fragmentation of a collective state in the extended Lipkin
model, though a better treatment of two-phonon states may
be required to reproduce the excitation energy and transition
strength of each fragmented state.

B. Oxygen isotopes

1. Calculation details

Since the number of the two-body matrices Cαβα′β ′ and
X

µ

αβα′β ′ rapidly increases with increasing number of single-
particle states, truncation of the single-particle space is
necessary. Assuming that the single-particle states around the
Fermi energy are most important for ground-state correlations,
we use the four single-particle states, 1p3/2, 1p1/2, 1d5/2, and
2s1/2, for both protons and neutrons, to calculate nαα′ and
Cαβα′β ′ . The same single-particle states are used to define the
two-body transition amplitude X

µ

αβα′β ′ in STDDM. In the case
of 20O and 22O where the neutron 1d5/2 is occupied, a few
more single-particle states are added to calculate X

µ

αβα′β ′ to
investigate the effects of expansion of the single-particle space.
To satisfy the energy-weighted sum rule, we use a large number
of single-particle states for the one-body transition amplitude
x

µ

αα′ . The continuum states are discretized by confining the
single-particle wave functions in a sphere of radius 20 fm, and
all single-particle states with εα � 40 MeV and orbital angular
momentum 	 � 4h̄ are taken. The effective interaction Skyrme
III [19] is used to calculate single-particle energies and wave
functions. To stabilize numerical calculations based on the
gradient method, we replace the surface energy terms by the
Yukawa interactions according to the same procedure as used
in TDHF calculations [20]. Because of this replacement, the
binding energies of the oxygen isotopes become slightly larger
than the values obtained with the original Skyrme III. Since
the calculation of matrix elements of the residual interaction
is quite time consuming, we use a simple interaction derived
from Skyrme III without the momentum-dependent terms,

v(r − r ′) = t0(1 + x0Pσ )δ3(r − r ′)

+ 1
6 t3(1 + Pσ )ρ(r)δ3(r − r ′), (11)

where Pσ is the spin exchange operator. A similar simple inter-
action has been used in recent QRPA calculations [21]. Since
the residual interaction is different from Skyrme III which
is used to calculate single-particle states, self-consistency is
violated. As a consequence, the spurious mode associated
with translational motion (isoscalar 1− state) does not have
zero energy in RPA. In fact, RPA with Eq. (11) gives pure
imaginary energy solutions for the spurious mode. We decrease
the strength of Eq. (11) using a renormalization factor f so that
the spurious mode has approximately zero excitation energy
in RPA. The factor depends on single-particle space and on
nuclei. The values of the renormalization factor f1 obtained for
16O, 20O, and 22O are 0.62, 0.68, and 0.69, respectively. These

values are used for the residual interaction in the matrix a in
Eq. (6). Such a renormalization procedure using RPA may not
be well defined for the residual interaction used in the matrix
d which acts on the two-body space. An RPA calculation for
the spurious mode in 16O using the same single-particle states
as used for Cαβα′β ′ gives the normalization factor f2 = 0.99.
We use this value as a common renormalization factor of the
residual interaction in matrix d for all the oxygen isotopes.
The reduction factor to be used for matrices b and c are
also not well determined. We use f1 for matrices b and
c. In 20O, the excitation energy of the first 2+ state (2+

1 )
which mainly consists of a two neutron hole configuration
of the 1d5/2 orbit, is sensitive to the residual interaction in
the particle-particle channel; matrices b and d have such
interaction terms. Since the residual interaction Eq. (11) does
not give the correct excitation energy of 2+

1 , we slightly modify
the particle-particle channel interaction for 20O by reducing
the value of x0 from 0.45 to 0.3 and adding the following
density-dependent interaction

v(r − r ′) = v0(1 − Pσ )(1 − ρ(r)/ρ0)δ3(r − r ′), (12)

which is commonly used in HFB calculations [4,21–24]. The
values of v0 and ρ0 used are −150 MeV fm3 and 0.16 fm−3,
respectively. The parameter v0 is determined so that the
experimental excitation energy (1.6 MeV) [25] of 2+

1 in 20O
is reproduced in STDDM. The same modified interaction in
the particle-particle channel is used also for 22O. High-lying
quadrupole states in 20O and 22O are little affected by this
change in the particle-particle channel interaction. The HF
ground state is used for 16O as the starting ground state of
the gradient method. The HF ground state where the neutron
1d5/2 is fully occupied is also used as the starting ground state
of 22O. In the case of 20O, the two-hole state where the four
last neutrons occupy the 1d5/2 is used as the starting ground
state [13]. We consider only 2p-2h configurations for Cαβα′β ′

and X
µ

αβα′β ′ and neglect two-body transition amplitudes whose
excitation energies are greater than 40 MeV. In the case of
20O, Cαβα′β ′ and X

µ

αβα′β ′ where all single-particle indices are
the neutron 1d5/2 orbit are also included to describe 2+

1 .

2. Ground states

The calculated occupation probabilities in 16O are tabulated
in Table I with the single-particle energies. The occupation
probabilities largely deviate from the HF values, nαα = 1
or 0, indicating strong mixing of 2p-2h configurations. Large

TABLE I. Single-particle energies εα and occupation proba-
bilities nαα in 16O.

Single-particle Protons Neutrons
orbits

εα (MeV) nαα εα (MeV) nαα

1p3/2 −18.3 0.90 −21.9 0.90
1p1/2 −12.3 0.88 −15.7 0.88
1d5/2 −3.8 0.10 −7.1 0.10
2s1/2 1.0 0.02 −1.5 0.02
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TABLE II. Same as Table I, but for 20O.

Single-particle Protons Neutrons
orbits

εα (MeV) nαα εα (MeV) nαα

1p3/2 −25.7 0.97 −21.7 0.97
1p1/2 −20.4 0.95 −16.6 0.97
1d5/2 −11.1 0.03 −7.5 0.69
2s1/2 −3.2 0.02 −2.2 0.03

mixing of 2p-2h configurations in the ground state of 16O has
been reported also by calculations in the shell model [26,27]
and the generator coordinate method [28]. The calculated
occupation probabilities do not agree with experimental
observation, however. For example, proton knock out reactions
16O(e, e′)15N suggest only 60% occupation of the 1p1/2

and 1p3/2 states and 2% occupation of the 1d5/2 and 2s1/2

states [29]. Such a discrepancy between measured occupation
probabilities and calculated ones seems to be common for a
wide range of nuclei [30]. To get an idea about the extent
to which ground-state correlations contribute to the binding
energy, we also calculate the total energy. The total energy
Etot in TDDM consists of the mean-field energy EMF and the
correlation energy Ecor defined by

EMF =
∑
αα′

〈α′|t |α〉nαα′ + 1

2

∑
αβα′β ′

〈α′β ′|v|αβ〉Anαα′nββ ′ , (13)

Ecor = 1

2

∑
αβα′β ′

〈α′β ′|v|αβ〉Cαβα′β ′ , (14)

where the subscript A means that the corresponding matrix is
antisymmetrized. In 16O, Etot = EMF+Ecor = −124.6 MeV−
23.8 MeV = −148.4 MeV, while the starting HF energy EHF

is −140.6 MeV. The increase in EMF due to the relaxation
of the occupation probabilities from the HF values is largely
compensated by the decrease in Ecor.

The calculated occupation probabilities in 20O and 22O
are tabulated in Tables II and III. The deviation of the
occupation probabilities from the HF values in 20O and 22O
is much smaller than that in 16O, indicating weak ground-
state correlations in these nuclei. The weak ground-state
correlations in 20O and 22O may be explained by the occupation
of the neutron 1d5/2 orbit which causes blocking of the 2p-2h
transitions involving the neutron 1d5/2 state. Such blocking
significantly reduces important proton-neutron correlations
in the ground states of 20O and 22O. This interpretation
may be justified by the fact that the deviation of nαα from

TABLE III. Same as Table I, but for 22O.

Single-particle Protons Neutrons
orbits

εα (MeV) nαα εα (MeV) nαα

1p3/2 −29.0 0.98 −21.8 0.995
1p1/2 −24.0 0.97 −17.1 0.995
1d5/2 −14.4 0.02 −7.8 0.998
2s1/2 −5.7 0.01 −2.6 0.023

the HF values in 20O where the 2p-2h transitions involving
the neutron 1d5/2 state is partially blocked is slightly larger
than that in 22O where such blocking is almost complete.
To investigate the effects of truncation of the single-particle
space on the ground-state correlations, we also performed a
calculation for 22O using two more single-particle states, that
is, the proton and neutron 1d3/2 states, to define nαα′ and
Cαβα′β ′ and found only a change of 0.003 ∼ 0.033 in the
occupation numbers. The largest increase of 0.033 occurs in
the occupation number of the neutron 1d3/2 state due to the
transitions from the neutron 1p3/2 and 1p1/2 states. Thus, this
calculation indicates that the weak ground-state correlations
in 20O and 22O are not artifacts caused by the truncation of
the single-particle space. The total energy in 20O is Etot =
EMF + Ecor = −160.7 MeV − 10.3 MeV = −171.0 MeV,
while EHF is −166.4 MeV. In the case of 22O, Etot =
EMF + Ecor = −177.6 MeV − 4.4 MeV = −182.0 MeV, and
EHF is −180.0 MeV. The correlation energy in 20O is much
larger than that in 22O. This is because the pairing correlations
originated in the neutron [(1d5/2)−1 × (1d5/2)−1] configuration
in 20O. The difference in the binding energy between 20O
and 22O is 11.0 MeV in TDDM, while it is 13.6 MeV in
HF. The binding energy difference in TDDM is closer to the
experimental value 10.6 MeV [25] than that in HF.

3. Quadrupole excitation

The strength functions for the quadrupole excitation
in 16,20,22O are shown in Figs. 7, 9, and 10. The excitation
operator used is r2Y20(θ ). The strength functions are smoothed
with an artificial width �FWHM = 0.5 MeV. The fraction of
the energy-weighted sum-rule values depleted below 40 MeV
in STDDM is 99% ∼ 102%. The energy-weighted sum rule is
not completely satisfied because our calculations are not fully
self-consistent. We first discuss the strength distribution in
16O. The RPA (dotted line) gives GQR as a sharp resonance,
similar to the result of the continuum RPA calculations [31].
SRPA (dot-dashed line) gives damping of GQR because
2p-2h configurations are mixed. However, the spreading of
the strength is modest compared with the result in STDDM
(solid line). In STDDM, a significant amount of strength is
located below 15 MeV. This is consistent with experimental
observation [32,33], which shows that the 2+ states (except

FIG. 7. Strength distributions of GQR in 16O calculated in
STDDM (solid line), RPA (dotted line), and SRPA (dot-dashed line).
Strength functions are smoothed with an artificial width �FWHM =
0.5 MeV.
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FIG. 8. (a) Damping process both in STDDM and SRPA.
(b) Process only in STDDM. Wavy line means an external field (the
quadrupole field in this case), dashed line is the interaction, and
vertical lines indicate either particle states or hole states. The double
line with C means Cαβα′β ′ .

for 2+
1 ) below 18.5 MeV have 32% of the energy-weighted

sum-rule value. The corresponding value in STDDM is
28%. Figure 8 shows coupling processes of a collective state
consisting of p-h pairs to 2p-2h states. The wavy line denotes
an external field (the quadrupole field in this case), the dashed
line indicates the residual interaction, and the vertical lines
mean either particle states or hole states. Figure 8(a) where
a p-h pair is coupled to 2p-2h states is a damping process
included in both SRPA and STDDM. Figure 8(b) represents
one of the processes included only in STDDM where the
external field is coupled to a 2p-2h configuration in the ground
state. The peaks located in the region 10 < E < 15 MeV is due
to the process given by Fig. 8(b). In fact, these peaks become
quite small when we neglect the terms corresponding to Fig.
8(b). The STDDM results demonstrate the importance of
ground-state correlations in the large fragmentation of GQR.
Main components of the peaks located in the region 10 < E <

15 MeV are either [1d5/2(p)1d5/2(n)(1p3/2(p))−1(1p1/2(n))−1]
or [1d5/2(p)1d5/2(n)(1p1/2(p))−1(1p3/2(n))−1], where (p) and
(n) denote proton and neutron states, respectively. This means
that proton-neutron correlations also play an important role in
the splitting of GQR in 16O. Shell-model calculations [34,35]
also give large fragmentation of GQR in 16O. However, the
strength in the shell-model calculations is distributed in the
region E > 20 MeV and the concentration of the strength in
the region 10 < E < 15 MeV is not reproduced. Some states
are seen below 10 MeV in Fig. 7. Most of them consist of
1p-1h excitation from the partially occupied 1d5/2 states.
These states could be components of the very collective 2+

1 .
However, the description of 2+

1 which is considered to be
4p-4h configurations [26,28] or an α+12C cluster state [36] is
beyond the scope of our approach.

In the following, we discuss the quadrupole states in 20O
and 22O shown in Figs. 9 and 10. The solid lines in Figs. 9
and 10 denote the results calculated using the proton and
neutron 1p3/2, 1p1/2, 1d5/2, and 2s1/2 orbits for X

µ

αβα′β ′ . The
dotted lines depict the results in RPA and the dot-dashed
lines indicate the results in STDDM obtained using a larger
single-particle space as will be explained below. We first
discuss 2+

1 . In RPA, the major component of 2+
1 is the

neutron-particle–hole configuration [2s1/2(n) × (1d5/2(n))−1].
STDDM gives much more collective 2+

1 for 20O than does RPA.
This is due to mixing of the two-neutron–hole configuration

FIG. 9. Strength distributions of the quadrupole states in 20O
calculated in STDDM (solid line) and RPA (dotted line). Dot-dashed
line depicts the STDDM result in which the neutron 1d3/2 and 2f7/2

states are added to define X
µ

αβα′β ′ . Strength functions are smoothed
with an artificial width �FWHM = 0.5 MeV.

[(1d5/2(n))−1 × (1d5/2(n))−1] represented by X
µ

αβα′β ′ . Thus,
the pairing correlations which are usually treated using the
pairing theories, HFB and QRPA, are taken into account also
in STDDM. In fact, the TDDM-based approach has a close
relation to HFB and QRPA as investigated in Ref. [37]. In
the case of 2+

1 in 22O, STDDM gives a result similar to the
RPA one except for a small energy shift due to the coupling
to two-body configurations, reflecting the weak ground-state
correlations in 22O. The excitation energy of 2+

1 in 22O is
3.5 MeV, which is close to the experimental value of
3.2 MeV [38]. The B(E2) values of 2+

1 calculated in STDDM
are 13e2 fm4 in 20O and 9e2 fm4 in 22O. These values are
smaller than the experimental values of 28 ± 2e2 fm4 for
20O [39] and 21 ± 8e2 fm4 for 22O [40]. The B(E2) values
in STDDM sensitively depend on the strength of the residual
interaction in the p-h channel and thus on the renormalization
factor f1, and it has also been pointed out [13] that the mixing
of two-body configurations other than the 2p-2h configurations
plays a role in enhancing the collectivity of 2+

1 in 22O. To
obtain more reliable B(E2) values for 2+

1 , therefore, we must
perform self-consistent calculations using the same residual
interaction as used for the mean-field potential and including
more two-body configurations.

Now we discuss higher-lying quadrupole states. In the case
of 20O and 22O, the strength functions in RPA show very

FIG. 10. Strength distributions of the quadrupole states in 22O
calculated in STDDM (solid line) and RPA (dotted line). Dot-dashed
line depicts the STDDM result in which the proton and neutron 1d3/2

states and the neutron 2f7/2 state are added to calculate X
µ

αβα′β ′ .
Strength functions are smoothed with an artificial width �FWHM =
0.5 MeV.
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fragmented distributions. The very collectives states in RPA
located at 21.1 MeV in 20O and 20.9 MeV in 22O consist of both
proton and neutron components and, therefore, correspond to
GQR in 16O. We call these states isoscalar modes [2]. Other
states below 20 MeV are the so-called neutron modes mainly
consisting of 1p-1h excitation from the neutron 1d5/2 orbit. The
isoscalar modes are damped when 2p-2h configurations are
mixed in STDDM, and the strength distribution becomes wider
than that in RPA. However, the spreading of the quadrupole
strength in 20O and 22O is not as large as that with GQR in 16O.
This may be explained by the blocking of 2p-2h configurations
involving the neutron 1d5/2 state, as is the case of the ground
states of these nuclei. This interpretation may be justified by the
fact that the strength distribution in 20O, where the blocking is
imperfect, is wider than that in 22O. The neutron modes in 22O
are little affected by the coupling to 2p-2h configurations. To
show that the small damping of the quadrupole states in 20O and
22O are not artifacts due to the truncation of the single-particle
space, we perform STDDM calculations (the dot-dashed lines
in Figs. 9 and 10) using a few more single-particle states:
for 20O, the first d3/2 (1d3/2) and second f7/2 (2f7/2) neutron
orbits are added to define X

µ

αβα′β ′ ; and for 22O, the proton
1d3/2 state is also included in addition to the neutron 1d3/2

and 2f7/2 orbits. The reason that the neutron 2f7/2 orbit is
included is that RPA calculations for negative-parity states (for
example 3− states) show strong coupling of the neutron 1d5/2

to the neutron 2f7/2 state. The first f7/2 (1f7/2) neutron orbit
is unimportant in our calculation, because its small continuum
energy makes the inner component of the wave function small.
The proton 1d3/2 state is not included in 20O, because the
number of X

µ

αβα′β ′ is already quite large because of the partial
occupation of the neutron 1d5/2 state. The number of X

µ

αβα′β ′
in the calculation shown by the dot-dashed line becomes 2.7
(5.7) times more in 20O (in 22O) than that shown by the solid
line. As seen in Figs. 9 and 10, the increase of the number
of single-particle states has only minor effects except for a
slight energy shift of the state at E = 8.3 MeV in 22O. To
explain the difference in the damping property between the
isoscalar modes and the neutron modes, we show in Fig. 11
the radial transition densities calculated in RPA for the neutron
mode at E = 18.5 MeV and the isoscalar mode at E =
20.9 MeV in 22O. Both transition densities have a peak at
the nuclear surface. However, the transition density of the
neutron mode has a smaller peak and a larger spatial extension

FIG. 11. Radial transition densities of the quadrupole states in
22O at E = 18.5 MeV (solid line) and E = 20.9 MeV (dotted line)
calculated in RPA.

FIG. 12. Proton strength distributions of the quadrupole states in
22O calculated in RPA (dotted line) and STDDM (solid line) with
larger single-particle space corresponding to the dot-dashed line in
Fig. 10. Strength functions for the excitation operator r2Y20(θ ) are
calculated using the proton components of the transition amplitudes.
Strength functions are smoothed with an artificial width �FWHM =
0.5 MeV.

than that of the isoscalar mode. The small damping of the
neutron mode may be explained by this large spatial extension
of the transition density, which reduces the coupling to 2p-
2h configurations. To get an idea about proton quadrupole
excitation, we show in Fig. 12 the proton strength function for
22O. The solid line depicts the large space STDDM calculation
corresponding to the result indicated by the dot-dashed line in
Fig. 10. The strength distribution above 25 MeV corresponds
to the components of the isovector quadrupole resonance. The
damping of the isoscalar mode and the isovector components
are seen in Fig. 12.

IV. SUMMARY

Applications of an extended version of the Hartree-Fock
theory (HF) and the random-phase approximation (RPA) de-
rived from the time-dependent density-matrix theory (TDDM)
were presented. In this TDDM-based formalism, the ground
state is given as a stationary solution of the TDDM equations,
and excited states are calculated using the small-amplitude
limit of TDDM (STDDM). The first application was to an
extended version of the Lipkin model designed to include the
damping of a one-phonon state. It was found that the ground-
state energies calculated in TDDM agree quite well with the
exact values, and that STDDM properly describes the damping
of a one-phonon state. As realistic applications, the ground
states and the quadrupole states including giant quadrupole
resonances (GQRs) of the oxygen isotopes 16,20,22O were
calculated. It was found that 16O has stronger ground-state
correlations than 20O and 22O. It was also found that GQR in
16O has a much larger spreading width than the corresponding
quadrupole states in 20O and 22O. It was pointed out that the
neutron modes have small damping effects. It was discussed
that the occupation of the neutron 1d5/2 state in 20O and 22O is
responsible for the weak ground-state correlations and for the
small damping of the quadrupole states in these nuclei. The
obtained results demonstrate that the TDDM-based approach
gives a much more realistic description of nuclear collective
excitation than do the RPA and QRPA approaches. However, a
self-consistent treatment of the residual interaction is required
to obtain more quantitative results.
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APPENDIX

Matrices a, b, c, and d are shown below. The single-particle
states are given by hφα = εαφα , where h is the mean-field
Hamiltonian.

a(αα′ : λλ′) = (εα − εα′)δαλδα′λ′ −
∑

β

(〈βλ′|v|α′λ〉Anαβ

−〈αλ′|v|βλ〉Anβα′ ), (A1)

b(α1α2α
′
1α

′
2 : λλ′)

= −δα1λ




∑
βγ δ

[(
δα2β − nα2β

)
nγα′

1
nδα′

2

+ nα2β

(
δγα′

1
− nγα′

1

)(
δδα′

2
− nδα′

2

)]

×〈λ′β|v|γ δ〉A +
∑
βγ

[〈λ′α2|v|βγ 〉

×Cβγα′
1α

′
2
+ 〈λ′β|v|α′

1γ 〉ACα2γα′
2β

−〈λ′β|v|α′
2γ 〉ACα2γα′

1β

]

 + δα2λ

×



∑
βγ δ

[(
δα1β − nα1β

)
nγα′

1
nδα′

2
+ nα1β

(
δγα′

1
− nγα′

1

)

× (
δδα′

2
− nδα′

2

)]〈λ′β|v|γ δ〉A
+

∑
βγ

[〈λ′α1|v|βγ 〉Cβγα′
1α

′
2
+ 〈λ′β|v|α′

1γ 〉ACα1γα′
2β

−〈λ′β|v|α′
2γ 〉ACα1γα′

1β

]

 + δα′

1λ
′




∑
βγ δ

[(
δδα′

2
− nδα′

2

)

× nα1βnα2γ + nδα′
2

(
δα1β − nα1β

)(
δα2γ − nα2γ

)]

×〈βγ |v|λδ〉A +
∑
βγ

[〈βγ |v|λα′
2〉Cα1α2βγ

+〈α1β|v|λγ 〉ACα2γα′
2β

− 〈α2β|v|λγ 〉ACα1γα′
2β

]



− δα′
2λ

′




∑
βγ δ

[(
δδα′

1
− nδα′

1

)
nα1βnα2γ + nδα′

1

× (
δα1β − nα1β

)(
δα2γ − nα2γ

)]〈βγ |v|λδ〉A
+

∑
βγ

[〈βγ |v|λα′
1〉Cα1α2βγ + 〈α1β|v|λγ 〉A

×Cα2γα′
1β

− 〈α2β|v|λγ 〉ACα1γα′
1β

]



+
∑

β

[〈α1λ
′|v|βλ〉ACβα2α

′
1α

′
2
− 〈α2λ

′|v|βλ〉A

×Cβα1α
′
1α

′
2
− 〈βλ′|v|α′

2λ〉ACα1α2α
′
1β

+〈βλ′|v|α′
1λ〉ACα1α2α

′
2β

]
, (A2)

c(αα′ : λ1λ2λ
′
1λ

′
2) = 〈αλ′

2|v|λ1λ2〉δα′λ′
1

−〈λ′
1λ

′
2|v|α′λ2〉δαλ1 , (A3)

d(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2)

= (
εα1 + εα2 − εα′

1
− εα′

2

)
δα1λ1δα2λ2δα′

1λ
′
1
δα′

2λ
′
2

+ δα′
1λ

′
1
δα′

2λ
′
2

∑
βγ

(
δα1βδα2γ − δα2γ nα1β − δα1βnα2γ

)

×〈βγ |v|λ1λ2〉 − δα1λ1δα2λ2

∑
βγ

(
δα′

1β
δα′

2γ

− δα′
2γ

nα′
1β

− δα′
1β

nα′
2γ

)〈λ′
1λ

′
2|v|βγ 〉 + δα2λ2δα′

2λ
′
2

×
∑

β

(〈α1λ
′
1|v|βλ1〉Anβα′

1
− 〈βλ′

1|v|α′
1λ1〉Anα1β

)

+ δα2λ2δα′
1λ

′
1

∑
β

(〈α1λ
′
2|v|βλ1〉Anβα′

2

−〈βλ′
2|v|α′

2λ1〉Anα1β

) + δα1λ1δα′
1λ

′
1

×
∑

β

(〈α2λ
′
2|v|βλ2〉Anβα′

2
− 〈βλ′

2|v|α′
2λ2〉Anα2β

)

+ δα1λ1δα′
2λ

′
2

∑
β

(〈α2λ
′
1|v|βλ2〉Anβα′

1

−〈βλ′
1|v|α′

1λ2〉Anα2β). (A4)
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