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Chiral bands for a quasi-proton and quasi-neutron coupled with a triaxial rotor
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A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled with a triaxial rotor is developed
and applied to study chiral doublet bands with configurations of an h11/2 proton and an h11/2 quasi-neutron. With
pairing treated by the BCS approximation, the present quasiparticle PRM is aimed at simulating one proton and
many neutron holes coupled with a triaxial rotor. After a detailed analysis of the angular momentum orientations,
energy separation between the partner bands, and behavior of electromagnetic transitions, for the first time we
find aplanar rotation or equivalently chiral geometry beyond the usual one proton and one neutron hole coupled
with a triaxial rotor.
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I. INTRODUCTION

Since the pioneering work of Frauendorf and Meng [1], the
phenomenon of chiral rotation in atomic nuclei has attracted
significant attention. Chirality in nuclei offers direct evidence
for the existence of stable triaxial nuclear shapes, in which
there are a few high-j valence particles and a few high-j
valence holes. For a triaxially deformed rotational nucleus,
the collective angular momentum favors alignment along the
intermediate axis, which in this case has the largest moment of
inertia, whereas the angular momentum vectors of the valence
particles (holes) favor alignment along the nuclear short (long)
axis. The three mutually perpendicular angular momenta can
be arranged to form two systems with opposite chirality,
namely left- and right-handedness. They are transformed
into each other by the chiral operator that combines time
reversal and spatial rotation of 180◦, χ = T R(π ). The
spontaneous breaking of chiral symmetry thus happens in
the body-fixed reference frame. In the laboratory reference
frame, with the restoration of chiral symmetry resulting from
quantum tunneling, the so-called chiral doublet bands, a pair
of separated �I = 1 bands (normally regarded as nearly
degenerate) with the same parity, are expected to be observed
in triaxial nuclei.

Originally the pair of �I = 1 bands found in 134Pr with the
πh11/2 ⊗ νh11/2 configuration [2] was reinterpreted in Ref. [1]
as a candidate for chiral doubling. Thereafter, similar low-lying
doublet bands were reported in 55Cs, 57La, and 61Pm N =
75 isotones of 134Pr, and an island of chiral rotation was
suggested in the A ∼ 130 mass region [3]. So far, candidate
chiral doublet bands have been proposed in a number of
odd-odd nuclei in the A ∼ 130 [3–12] and A ∼ 100 mass
regions [13–15]. A few more candidates with more than one
valence particle and hole were also reported in odd-A [16–19]
and even-even nuclei [20].
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On the theoretical side, chiral bands were first predicted
in the particle rotor model (PRM) and tilted axis cranking
(TAC) approach for triaxially deformed nuclei [1]. Numerous
efforts have been devoted to the development of the PRM
and TAC approaches. Chiral rotation has been studied by
the Strutinsky shell correction TAC (SCTAC) method with
a hybrid potential that combines the spherical Woods-Saxon
single-particle energies and the deformed part of the Nilsson
potential [21,22]. Recently, chiral TAC solutions have also
been found in N = 75 isotones within the self-consistent
Skyrme Hartree-Fock cranking model [23,24]. Cranked rela-
tivistic mean-field (RMF) theory has been applied only in the
contexts of principle axis rotation [25,26] and planar rotation
[27]. The generalization thereof for searching for chiral
solutions (i.e., the aplanar rotation) is still under development.
In Ref. [28], the adiabatic and configuration-fixed constrained
triaxial RMF approaches were developed to obtain the nuclear
potential energy surface with the triaxial degree of freedom,
and the existence of multiple chiral doublets (MχD) was
predicted for the A ∼ 100 mass region based on their triaxial
deformations and their corresponding proton and neutron
configurations. The advantage of the cranked mean-field
approach to describe nuclear rotation bands is that it can
be easily extended to the multi-quasiparticle case. However,
the usual cranking approach is a semiclassical model, where
the total angular momentum is not a good quantum number,
and the description of quantum tunneling of chiral partners is
beyond the mean-field approximation [28–30].

In contrast, the PRM is a quantum-mechanical model
where total angular momentum is a good quantum number.
The model describes the system in the laboratory reference
frame and yields directly the energy splitting and tunneling
between doublet bands. Chirality for nuclei in A ∼ 100 and
A ∼ 130 regions has been studied with the PRM for
certain particle-hole configurations [30,31], or the core-
quasiparticle/core-particle-hole coupling model [9,32] fol-
lowing the Kerman-Klein-Dönau-Frauendorf method [33].
Selection rules of electromagnetic transitions for chiral doublet
bands have been proposed based on a simple particle-hole-
triaxial rotor model [34].
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Though various versions of PRM and TAC have been
applied to study chiral bands, the essential starting point for
understanding their properties is based on one particle and
one hole coupled with a rigid triaxial rotor. Based on this
scenario, a set of observable signatures has been suggested
as fingerprints of chiral bands [1,13,35–37]. Critical analyses
for the representative cases of candidate chiral bands, 134Pr in
A ∼ 130 [36] and 104,106Rh in A ∼ 100 [37], have been
carried out. It has been found that these candidate chiral
bands in 134Pr and 104Rh do not agree with all of those
expected for chiral bands, although these candidates have
been considered as the best examples of chiral rotation in
the A ∼ 130 and A ∼ 100 mass regions (owing to their
extremely small level discrepancy between the doublet bands).
Lifetime measurements are essential for extracting the absolute
B(M1) and B(E2) transition probabilities, which are critical
experimental observables in addition to the level energies.
Indeed, this has stimulated experimental programs aimed at
identifying chiral doublet bands [38,39].

Nevertheless, one should bear in mind that these finger-
prints of chiral bands are obtained mostly by assuming one
proton (neutron) particle and one neutron (proton) hole sitting
in a high-j shell coupled with a triaxial rotor with γ = 30◦. In a
realistic nucleus, it is more natural that there will be more than
one nucleon in a high-j shell [e.g., the candidate chiral doublet
bands reported for N = 75 isotones with Z = 55 (130Cs),
57(132La), 59(134Pr), 61(136Pm), and 63(138Eu) and for Z = 55
(Cs) isotopes with N = 69, 71, 73, 75, and 77]. The Fermi
energy of a proton (neutron) will undoubtedly change with
Z (N ) in these isotones (isotopes). Therefore it is interesting
and necessary to investigate the doublet bands with valence
nucleons sitting in the middle of a high-j shell, or alternatively
multi-particles sitting in a high-j shell. It is also important to
investigate the properties of doublet bands as functions of the
triaxial deformation degree of freedom.

To address these issues, in this paper a PRM with a
quasi-proton and a quasi-neutron coupled with a triaxial rotor
is developed and applied to study chiral doublet bands with
configurations of an h11/2 proton and an h11/2 quasi-neutron.
With the pairing correlations taken into account by the BCS
approximation, the configuration of multi-particles sitting in
a high-j shell can be simulated by adjusting the neutron
Fermi energy. Note that, in a former paper [40], the present
model has been applied to the doublet bands of 126Cs, and
good agreement with the data available was obtained, which
supports the chiral interpretation of these doublet bands. Here
the formalism is given in detail and the properties of the doublet
bands calculated are presented. The model is introduced in
Sec. II. The properties of the doublet bands thus obtained,
such as energy spectra, electromagnetic transitions, and the
orientation of angular momenta, are discussed in Sec. III.
Finally, a summary and conclusion are given in Sec. IV.

II. FORMALISM

The particle rotor model [41] for the triaxial deformed case
has been well used for the description of odd-A and odd-odd
nuclei [30,42–45]. Its Hamiltonian for an odd-odd nucleus can

be expressed as

H = Hcoll + H
p
intr + Hn

intr, (1)

where p and n refer to protons and neutrons, respectively. The
collective Hamiltonian takes the form

Hcoll =
3∑

i=1

R̂
2
i

2Ji

=
3∑

i=1

(Î i − ĵ pi − ĵ ni)
2

2Ji

, (2)

where R̂i, Î i , ĵ pi , and ĵ ni , respectively, denote the angular
momentum operators for the core and nucleus as well as for
the valence proton and neutron. The moments of inertia for
irrotational flow are adopted [i.e., Ji = J sin 2(γ − 2πi/3)].

The intrinsic Hamiltonian for valence nucleons is

H
p(n)
intr = Hsp + Hpair =

∑
ν>0

(εν − λ)(a+
ν aν + a+

ν̄ aν̄)

− �

2

∑
ν>0

(a+
ν a+

ν̄ + aν̄aν), (3)

where λ denotes the Fermi energy, � is the pairing gap
parameter, and |ν̄〉 is the time-reversal state of |ν〉. The
single-particle energy εν is obtained by the diagonalization
of the Hamiltonian Hsp. Similar to the approach in Ref. [30],
for a single-j shell, one has

Hsp = ±1

2
C

{
cos γ

[
j 2

3 − j (j + 1)

3

]
+ sin γ

2
√

3
(j 2

+ + j 2
−)

}
,

(4)

where the plus sign refers to a particle, the minus to a hole,
and the coefficient C is proportional to the quadrupole defor-
mation β [30,43]. The single-particle states are thus written
as

a+
ν |0〉 =

∑
	

c
(ν)
	 ψ

j

	, a+
ν̄ |0〉 =

∑
	

( − 1)j−	c
(ν)
	 ψ

j

−	, (5)

where 	 is the projection of the single-particle angular
momentum ĵ along the 3-axis and can be restricted to the
values . . . ,−7/2,−3/2,+1/2,+5/2, . . . because of time-
reversal degeneracy [44,45].

To obtain the PRM solutions, the total Hamiltonian (1)
must be diagonalized in a complete basis space, which
couples the rotation of the inert core with the intrinsic wave
functions of valence nucleons. When pairing correlations are
neglected, one can construct the so-called strong coupling
basis as

|IMKνpνn〉 =
√

1

2

√
2I + 1

8π2

[
DI

M,Ka+
νp

a+
νn

|0〉
+ ( − 1)I−KDI

M,−Ka+
ν̄p

a+
ν̄n

|0〉]
=

√
2I + 1

16π2

∑
	p

∑
	n

c
(νp)
	p

c
(νn)
	n

[
DI

M,Kψ
jp

	p
ψ

jn

	n

+ (−1)I−jp−jnDI
M,−Kψ

jp

−	p
ψ

jn

−	n

]
for K = ±1,±3,±5, . . . , (6)
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|IMKνpν̄n〉 =
√

1

2

√
2I + 1

8π2

[
DI

M,Ka+
νp

a+
ν̄n

|0〉
+ (−1)I−KDI

M,−Ka+
ν̄p

a+
νn

|0〉]
=

√
2I + 1

16π2

∑
	p

∑
	n

c
(νp)
	p

c
(νn)
	n

(−1)jn−	n

× [
DI

M,Kψ
jp

	p
ψ

jn

−	n
+ (−1)I−jp−jn

×DI
M,−Kψ

jp

−	p
ψ

jn

	n

]
for K = 0,±2,±4, . . . . (7)

The values of K are restricted because the basis states are
symmetrized under the point group D2, which leads to K −
	p − 	n in Eq. (6) and K − 	p + 	n in Eq. (7) being an
even integer [44]. The matrix elements of Hamiltonian (2)
and (4) can be evaluated in the basis (6) and (7), and then
diagonalization gives eigenenergies and eigenstates for the
PRM Hamiltonian. For a certain spin I , the dimension of the
basis space will be (1/4)(2I + 1)(2jp + 1)(2jn + 1).

To include pairing effects in the PRM, one should replace
the single-particle state a+

ν |0〉 in the basis states (6) and (7) with
the BCS quasiparticle state α+

ν |0̃〉 to obtain a new expansion
basis, where |0̃〉 is the BCS vacuum state. The quasiparticle
operators α+

ν are given by(
α+

ν

αν̄

)
=

(
uν −vν

vν uν

)(
a+

ν

aν̄

)
, (8)

where u2
ν + v2

ν = 1. In this new basis, the wave functions of
PRM Hamiltonian are written as

|IM〉 =
∑

K,νp,νn

(
CIK

νpνn
|IMKνpνn〉 + CIK

νpν̄n
|IMKνpν̄n〉

)
,

(9)

in which νp and νn represent the quasiparticle states α+
νp

|0̃〉 and

α+
νn

|0̃〉 instead. Furthermore, single-particle energies εν should

be replaced by quasiparticle energies ε′
ν =

√
(εν − λ)2 + �2.

The total Hamiltonian then becomes

H = Hcoll +
∑
νp

ε′
νp

(
α+

νp
ανp

+ α+
ν̄p

αν̄p

)

+
∑
νn

ε′
νn

(
α+

νn
ανn

+ α+
ν̄n

αν̄n

)
. (10)

To construct the matrix of this Hamiltonian, in comparison
with the case excluding pairing, each single-particle matrix
element needs to be multiplied by a pairing factor uµuν +vµvν

[43,45]. The occupation factor vν of the state ν is given by

v2
ν = 1

2

[
1 − εν − λ

ε′
ν

]
. (11)

The reduced electromagnetic transition probabilities are
defined as [41]

B(σλ, I → I ′) =
∑
µM ′

∣∣〈I ′M ′|� σ
λµ|IM〉∣∣2

, (12)

where σ denotes either E or M for electric and magnetic
transitions, respectively, λ is the rank of transition operator,
and � σ

λµ is the electromagnetic transition operator.
For electric quadrupole (E2) processes, the corresponding

transition operator is generally taken as

� (E2, µ) =
∫

ρe(	r)r2Y2µ(θ, φ)dτ, (13)

which is proportional to the electric quadrupole tensor operator
Q̂2µ with a factor

√
5/16π . The quadrupole moments in the

laboratory frame (Q̂2µ) and the intrinsic system (Q̂
′
2µ) are

connected by the relation

Q̂2µ = D2∗
µ0Q̂

′
20 + (

D2∗
µ2 + D2∗

µ−2

)
Q̂

′
22. (14)

For stretched E2 transitions, one has

B(E2, Iα → I ′α)

= 5

16π
Q2

0

∣∣∣∣∣∣
KK′∑
νpνn

CIK
νpνn

CI ′K ′
νpνn

[
〈IK20|I ′K ′〉cos γ

+ sin γ√
2

(〈IK22|I ′K ′〉 + 〈IK2 − 2|I ′K ′〉)
]∣∣∣∣

2

+ Term2, (15)

where Q0 is the intrinsic charge quadrupole moment and
the “Term2” term is the same as the first term but with the
replacement (νn → ν̄n).

For M1 transitions, the magnetic dipole transition operator
can be written as

� (M1, µ) =
√

3

4π

eh̄

2Mc
[(gp − gR)ĵ pµ + (gn − gR)ĵ nµ],

(16)

where gp, gn, and gR are, respectively, the effective gyro-
magnetic ratios for valence proton, valence neutron, and
the collective core, and ĵ µ denotes the spherical tensor in
the laboratory frame. The M1 reduced transition probability
B(M1) is expressed as

B(M1, Iα → I ′α)

= 3

4π

∣∣∣∣ ∑
µKK′

CIK
νpνn

CI ′K ′
ν ′
pν ′

n

∑
	′

p	′
n

c
(ν ′

p)
	′

p
c

(ν ′
n)

	′
n

∑
	p	n

c
(νp)
	p

c
(νn)
	n

× {〈IK1µ|I ′K ′〉〈	′
p	′

n|T̂ µ|	p	n〉 + (−1)I−jp−jn

× 〈I − K1µ|I ′K ′〉〈	′
p	′

n|T̂ µ| − 	p − 	n〉}|2

+ Term2 + Term3 + Term4, (17)

where terms “Term2,” “Term3,” and “Term4” are the same as
the first term but with the replacements (νn → ν̄n), (ν ′

n → ν̄ ′
n),

and (νn → ν̄n, ν
′
n → ν̄ ′

n), respectively. The operator T̂ µ in Eq.
(17) is given by

T̂ µ = f (p)(gp − gR)ĵ pµ + f (n)(gn − gR)ĵ nµ, (18)

044307-3



S. Q. ZHANG, B. QI, S. Y. WANG, AND J. MENG PHYSICAL REVIEW C 75, 044307 (2007)

with f (p) and f (n) the pairing factors uu′+vv′ for proton and
neutron, and jµ the rank-1 spherical tensor in the body-fixed
reference frame.

III. RESULTS AND DISCUSSION

A. Single-particle states in the single- j model

For the intrinsic Hamiltonian of valence nucleons, we apply
the simple single-j model, which is a good approximation
for high-j intruder orbitals [41]. The single-particle energy
ε corresponding to the Hamiltonian in Eq. (4) with a 1h11/2

j shell and C = 0.3 MeV is plotted in the upper panel of
Fig. 1 as a function of the γ deformation of the deformed
well. This C = 0.3 MeV corresponds to a quadrupole
deformation of β ∼ 0.28 for the 1h11/2 subshell in the
A ∼ 130 mass region. When γ = 0◦ (i.e., the axial
symmetrical case), there are six discrete states with good
quantum number 	( ± 1/2,±3/2, . . . ,±11/2). These states
are indexed by ν(ν = 1, 2, . . . , 6), and the corresponding
energies are denoted by εν . When axial symmetry is broken,
	 is not a good quantum number, and each single-particle
state ν is then a superposition of eigenstates of (j 2, j3) as

FIG. 1. (Upper panel) The single-particle energy ε with single-j
Hamiltonian in Eq. (4) (j = 11/2, C = 0.3 MeV) as a function of
γ deformation. The six degenerate levels are, respectively, indicated
by 1, 2, . . . , 6 and the corresponding third angular momentum
components are ±1/2, ±3/2, . . . , ±11/2 at γ = 0◦ (which is a good
quantum number only for γ = 0◦). The dashed line indicates the
Fermi energy λ, which is used to obtain the quasiparticle energy ε′ in
the lower panel. (Lower panel) Quasiparticle energy ε′ for the same
parameters as a function of γ deformation. The pairing parameters are
λ = 1.227 MeV, � = 1 MeV. Each level (1, 2, . . . , 6) corresponds
to that with the same number in the upper panel.

in Eq. (5) and changes smoothly with γ . It can be clearly
seen that for an h11/2 particle, a lower energy is obtained
for γ = 60◦ (i.e., an oblate shape is preferred), whereas for
a hole a prolate shape is preferred. Particularly, for a nucleus
with a πh11/2⊗νh−1

11/2 configuration, the sum of single-particle
energies will be fairly γ soft with a minimum around γ = 30◦,
and the γ degree of freedom will play an important role. Note
that the single-particle energies for levels 2 and 5 are nearly
γ independent.

With pairing taken into account by the BCS calculation,
the quasiparticle energy ε′ with λ = 1.227 MeV and
� = 1 MeV is given in the lower panel of
Fig. 1. The Fermi energy λ is very close to ε5, which is
shown by a dashed line in the upper panel. The label for
each level follows the corresponding one in the upper panel.
Since the Fermi energy is λ ≈ ε5, the state ε5 is now the lowest
quasiparticle state located at ∼1 MeV owing to the pairing gap
�. Another feature is that the quasiparticle energy ε′

ν becomes
more γ soft than the corresponding single-particle energy εν

owing to pairing.

B. Energy spectra

In the present PRM, if λn = ε6 and �n = 0 for
the neutron, and λp = ε1 and �p = 0 for the proton,
the model discussed here is equivalent to the model in
Refs. [1,30,34]. In the following calculation, λp = ε1

and �p = 0 are fixed for the proton (i.e., a pure h11/2

particle proton), while λn for the neutron changes from the
bottom to the top of the h11/2 shell. The coefficient C =
0.3 MeV, which corresponds to a quadrupole deformation of
β ∼ 0.28 for the A ∼ 130 mass region, and the moment of
inertia is J = 30 MeV−1. For the electromagnetic transition
probabilities, the intrinsic charge quadrupole momentum Q0

takes a value of 3.5 e b, and the g factors gp − gR = 0.7 and
gn − gR = −0.6, respectively, are adopted.

First we investigate the behavior of doublet bands for a
nucleus at the deformation γ = 30◦ in which the best chirality
of nuclear rotation is expected [1]. It should be noted that, for
an asymmetric configuration πg−1

9/2 ⊗ νh11/2, the best chirality
occurs at a deformation γ = 27◦ in Ref. [30].

The calculated rotational spectra for the yrast and yrare
bands1 with the configuration πh11/2 ⊗ νh11/2 for C =
0.3 MeV and J = 30 MeV−1 are plotted in Fig. 2. In the
calculations, the odd proton is fixed to be a pure h11/2 particle,
while the odd neutron is treated as a BCS quasiparticle with
� = 1 MeV and λn = ε1, ε2, . . . , ε6, respectively. The I = 9
state energies of the yrast bands are taken as reference points
and are separated by 2.0 MeV for display. From Fig. 2, the
energy difference between the yrare and yrast bands increases
from λn = ε6 to ε1. For λn = ε6, two nearly degenerate
bands can be clearly seen, especially for the spin interval
13 � I � 17, and the energy difference between the doublet

1In the paper, the yrast band denotes the rotational band that
connects the lowest energies with given spins I obtained from the
present PRM calculations, whereas the yrare band correspondingly
connects the second lowest energies.
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FIG. 2. Calculated rotational spectra for the yrast (solid circles)
and yrare (open circles) bands for the configuration πh11/2 ⊗ νh11/2

with C = 0.3 MeV,J = 30 MeV−1, and γ = 30◦. In the calculations,
the odd proton is fixed to be a pure h11/2 particle, whereas the odd
neutron is treated as a BCS quasiparticle with λn = ε1, ε2, . . . , ε6,
respectively, and � = 1 MeV. The I = 9 state energies of the yrast
bands, assumed to be 0 MeV, are separated by 2.0 MeV for display.

bands is below 100 keV. This is the classical case where the
chiral concept was proposed [1]. When λn = ε5, the two
bands are nearly degenerate with a constant energy separation
of ∼200 keV for the spin interval 11 � I � 15 and a gradually

increasing energy separation for higher spin. For λn = ε4 and
ε3, the spectra present very similar behavior: (1) At the low
spin region I < 14, a slight odd-even staggering with opposite
phase can be seen for yrast and yrare bands; (2) only at low
spins (I = 9, 11, 12) is the energy difference of the yrast
and yrare states smaller than 250 keV; (3) for spin I � 14,
the energy differences between yrast and yrare states increase
with I (e.g., ∼ 400 keV at I = 14 and ∼ 700 keV at I = 20).
For λn = ε1, odd-even staggering becomes more obvious
and the two bands are separated by an average energy of
∼800 keV. The case of λn = ε2 is in between that of ε3

and that of ε1.
The calculated energy difference E2(I ) − E1(I ) between

yrare and yrast bands at spins I = 12, 13, . . . , 17 as a function
of γ deformation is plotted in Fig. 3. The left panel displays
the results for a pure h11/2 proton particle and a pure h11/2

neutron hole (λn = ε6,� = 0) configuration. One can see
a symmetric E2(I ) − E1(I ) curve about γ = 30◦, which
in turn is associated with the symmetries of Hamiltonians
with respect to γ = 30◦. If we use � = 1 MeV instead
for neutrons, the symmetry will not strictly hold any more.
In detail, the smallest energy difference (<200 keV) takes
place at γ = 30◦ for all the shown spins, and particularly at
spins I = 15, 17, very good degeneracy is obtained; namely,
the energy differences are 7.2 and 4.1 keV, respectively. The
energy difference increases when the γ degree deviates from
30◦, and it presents a parabola-like curve. At γ = 20◦ and
40◦, the value of E2(I ) − E1(I ) varies from 100 to 250 keV,
whereas at γ = 15◦ and 45◦, the difference is around 450 keV.

In the right panel of Fig. 3, the results for a pure h11/2

proton particle and a neutron quasiparticle with λn = ε5 and

FIG. 3. Calculated energy difference E2(I ) − E1(I ) between yrare and yrast bands at I = 12, 13, . . . , 17 as a function of γ deformation.
In the calculations, C = 0.3 MeV, J = 30 MeV−1, and the odd proton is fixed to be a pure h11/2 particle, whereas the odd neutron is treated
as a BCS quasiparticle with � = 1 MeV and λn = ε6 (left panel) or λn = ε5 (right panel).
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FIG. 4. Calculated B(E2) and B(M1) values for the yrast and yrare bands. The same parameters as Fig. 2 are used.

� = 1 MeV are shown. The E2(I ) − E1(I ) curves are
still parabola-like, but their minima change with the spin
I . The tendency is for the γ deformation with the mini-
mum energy difference to decrease with spin. It is noted
that for γ ∈ (20◦, 30◦), a near-constant energy difference
(∼200–250 keV) is observed. Also, the energy difference
between the yrast and yrare bands is quite large (exceeding
450 keV) when the nuclear triaxiality is not prominent (i.e.,
γ � 15◦ or γ � 45◦).

Among the candidate chiral doublet bands observed ex-
perimentally, there are cases with a degeneracy point (e.g.,
134Pr with πh11/2 ⊗ νh11/2 [36] and 104Rh with πg9/2 ⊗ νh11/2

[13]) or cases with a near-constant energy difference (e.g.,
126,128,130,132Cs [9,12] and 106Rh [14]). Reference [9] suggests
that the near-constant energy difference may come from a
deviation of the core shape from maximum triaxiality and a
less favorable treatment for the valence proton and neutron as
a particle-hole configuration. Here our calculations show that
either a deviation of the core shape from maximum triaxiality
or a deviation of the Fermi energy surface from a particle-hole
configuration will hinder the level degeneracy and prefer a
near-constant energy difference.

It is also demonstrated that the small energy difference be-
tween the doublet bands suggests a triaxiality (20◦ < γ < 40◦)
for the nucleus, in comparison with a difference of more than
450 keV for γ � 15◦ or γ � 45◦.

C. Electromagnetic properties

Electromagnetic transition probabilities are critical observ-
ables that carry important information on the nuclear intrinsic
structure. Using a simple model for a special configuration in
triaxial odd-odd nuclei, Koike et al. suggested the selection
rules for electromagnetic transitions in chiral geometry [34].
The selection rules yield staggering of B(M1)/B(E2) and
B(M1)in/B(M1)out values for the partner band as a function
of spin I , where B(M1)in and B(M1)out refer to reduced
electromagnetic probabilities for intraband and interband
�I = 1 transitions, respectively. Such staggering behavior has

been regarded as a fingerprint for chirality in odd-odd triaxial
nuclei and has been extensively used to support the declaration
of chiral doublet bands [13]. It is also acknowledged that
in ideal chiral doublet bands the electromagnetic transition
probabilities must be identical or, in practice, very similar [36].
In the following, the electromagnetic transition probabilities
will be investigated with two quasiparticles coupled with the
triaxial rotor model to study whether such behavior of the
electromagnetic transition probabilities will be influenced by
variations in configurations and triaxial deformation.

Figure 4 shows the intraband B(E2) and B(M1) values of
yrast and yrare bands for different neutron Fermi energies with
γ = 30◦. In the left panel, when λn = ε6, the intraband B(E2)
values at spins I � 14 are nearly zero. This is because the
yrast and yrare bands are displaced in energy for the lower spin
region owing to less defined chiral geometry with insufficient
collective rotation, and these bands are mainly connected with
M1 transitions. Note that the interband B(E2) values from
yrare band to yrast band are large in this spin region. For spin
I � 15, the intraband B(E2) values increase gradually. For
λn = ε5, the behavior of intraband B(E2) is similar to the
case λn = ε6, which is small at low spins, then increases with
spin. When λn = ε4 or ε3, the intraband B(E2) values of the
yrare bands have large differences in comparison with those
of the yrast bands. In general, the B(E2) values of the yrast
bands are larger than those of the yrare bands, especially for
spin I � 17. Their values become close to each other with
I � 18, where the collective rotation of the deformed core
makes an important contribution to the total spin. For λn = ε2

or ε1, the intraband B(E2) values of the yrast band increase
with spin regularly, whereas those of the yrare band exhibit
many irregular oscillations.

For the intraband B(M1) in the right panel of Fig. 4, the
values of B(M1) systematically reduce as the neutron Fermi
energy surface λn decreases from ε6 to ε1. When λn = ε1, the
M1 transition almost vanishes because both the valence proton
and neutron are particle-like and their contribution to the
magnetic moment is canceled by similar angular momentum
orientations and different g-factor signs. Therefore the rotation
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FIG. 5. Calculated B(M1)/B(E2) values for the yrast and yrare
bands. The same parameters as Fig. 2 are used.

bands for λn = ε1 are mainly connected by E2 transitions
and correspond to the so-called doubly decoupled bands. For
λn = ε6 and ε5, the intraband B(M1) values of yrast and yrare
bands are similar to each other. It can also be seen that the
odd-even staggering of B(M1) for γ = 30◦ is obvious when
λn = ε6, but it is not so obvious in other cases.

Figure 5 shows the B(M1)/B(E2) ratios of yrast and yrare
bands for different λn with γ = 30◦; the ratios of “yrare bands”
for λn = ε2 and ε1 are not presented because of their irregular
B(E2) values. It is interesting to note that the B(M1)/B(E2)
values in partner bands are close to each other for λn = ε6, ε5,
and ε4, in particular for higher spins, although there are
noticeable differences, respectively, in B(E2) and B(M1)
values in Fig. 4. Next we examine the odd-even staggering
of B(M1)/B(E2) ratios. For λn = ε6, staggering can be found
for I > 16 in the partner bands because of the staggering of

B(M1) values. For λn = ε5, a delicate staggering for I > 16
can be also seen. Except for I < 18 in the yrare band for
λn = ε3, there is no staggering behavior of the B(M1)/B(E2)
ratios in the other yrast and yrare bands.

Figure 6 shows the B(M1)/B(E2) values for the yrast and
the yrare bands at different γ (i.e., γ = 15◦, 20◦, 25◦, 35◦, 40◦,
and 45◦) with neutron Fermi energy λn = ε6 (left panel) and
λn = ε5 (right panel), respectively. The results with γ =
30◦ have been presented in Fig. 5. One finds that (1) for all
γ degrees, the values of B(M1)/B(E2) for the yrast bands
are close to those in yrare ones, not only for λn = ε6, but
also for λn = ε5 (three neutron holes approximately); (2) the
staggering of B(M1)/B(E2) ratios sensitively depends on the
deformation γ .

D. Orientations of angular momenta

The key to the formation of chiral bands in triaxial nuclei
is the existence of aplanar total angular momentum. Using
wave functions obtained from the PRM, one can calculate the
expectation values of angular momenta, 〈Î i〉, 〈ĵ i〉, and 〈R̂i〉.
The expectation values for the three components of the angular
momenta 	I , 	R, and 	jp, 	jn are given as

Īi ≡
√

〈Î 2
i 〉, j̄i ≡

√
〈ĵ 2

i 〉, R̄i ≡
√

〈(Î i − ĵ i)
2〉. (19)

In Fig. 7, the average contributions of the three components

Īi
2
/I (I + 1), i = 1, 2, 3, to the total angular momentum, are

plotted for the yrast band (left panel) and yrare band (right
panel) with λn changing from ε6 to ε1. In the calculations,
γ = 30◦, 1-axis refers to the intermediate axis with the largest
moment of inertia, and the 2-axis and 3-axis are, respectively,
the short and the long axis with J2 = J3 = (1/4)J1. In all
panels, it can be seen that the average contributions from I1

increase globally with the total spin, whereas contributions
from the other two directions decrease globally.

FIG. 6. Calculated B(M1)/B(E2) values for the yrast and yrare bands. The same parameters as Fig. 3 are used; λn = ε6 (left panel) and
λn = ε5 (right panel).
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FIG. 7. (Color online) For the yrast and yrare bands, the average contribution of three components to the total angular momentum

〈Î 2

i 〉/I (I + 1), i = 1, 2, 3, in the intrinsic frame is plotted as a function of spin I . The same parameters as Fig. 2 are used. Open squares, open
circles, and open triangles correspond to the 1-axis, 2-axis, and 3-axis, respectively.

For λn = ε6, around I = 13, the contributions from the
three directions are comparable for both yrast and yrare bands.
This corresponds to a typical case of aplanar rotation. In
fact, the contributions to the total angular momentum from
all three directions are not negligible2 in the spin interval
(9 < I < 20). Therefore the aplanar solution is realized for
this spin interval and chiral doublet bands are expected. The
statement is also true for the case λn = ε5, with the exception
that the contribution from the third component is a little
smaller compared with the case λn = ε6. As the Fermi
energy surface λn decreases, the contribution from the third
component becomes smaller, the total angular momentum will
mainly lie in the 1–2 plane, and an aplanar rotation of the
nucleus becomes a planar one. For both λn = ε4 and ε3, aplanar
solutions can only be expected around I ∼ 11. For λn = ε2

and ε1, there exist only planar rotations. In Fig. 7, there are

some fluctuations of Īi
2
/I (I + 1) for λn = ε1, ε2, ε3, and ε4,

owing to the strong interactions between different bands.
The expectation values R̄i and ¯jpi, ¯jni have been inves-

tigated for λn = ε6, . . . , ε1 as functions of the spin I . For
simplicity, the cases for λn = ε6, ε5, and ε1 are shown in
Figs. 8, 9, and 10, respectively.

In Fig. 8, for λn = ε6, similar to the results in Refs. [1,3], the
collective angular momentum and valence-proton and valence-
neutron angular momentum align along the intermediate axis
(1-), the short axis (2-), and the long axis (3-), respectively.
Since these three angular momenta are mutually perpendicular,
a chiral picture results. In Fig. 9, for λn = ε5, the configuration
is similar to one proton plus three neutron holes in a single h11/2

shell. In this case, the orientations of 	R and 	jp are similar
to those in Fig. 8, while the third component of the angular

2According to quantum physics, the minimum contribution from
one direction to an angular momentum I is given by the value { 1

2 [I (I+
1) − I 2]}/I (I + 1), when the angular momentum is perpendicular to
this direction.

momentum 	jn is reduced. The total angular momentum 	I is
still aplanar, but its inclination angle to the 1–2 plane becomes
smaller. As the neutron Fermi energy surface decreases, the
hole-like odd neutron will switch to a particle-like one, and 	jn

will align from the 3-axis to the 2-axis. Then the valence proton
and neutron both align to the 2-axis, with the collective angular
momentum along the 1-axis, and together they give the total

FIG. 8. (Color online) For the yrast and yrare bands, the expec-
tation values for the three components of the collective, odd-neutron,

and odd proton angular momenta—defined by R̄i =
√

〈R̂2

i 〉, ¯jpi =√
〈ĵ 2

pi〉, and ¯jni =
√

〈ĵ 2

ni〉 (i = 1, 2, 3)—are plotted as functions of
spin I . The same parameters as Fig. 2 are used, except that λn = ε6.
Open squares, open circles, and open triangles correspond to the
1-axis, 2-axis, and 3-axis, respectively.

044307-8



CHIRAL BANDS FOR A QUASI-PROTON AND QUASI- . . . PHYSICAL REVIEW C 75, 044307 (2007)

FIG. 9. (Color online) Same as Fig. 8, except that λn = ε5.

angular momentum in the 1–2 plane. This is a planar solution
shown in Fig. 10. Noted that in all cases the expectation values
along the 1-axis for 	jn and 	jp increase with I because of the
rotational alignment of odd particles.

The average core contribution to the total angular momen-
tum can be seen in the upper panels of Figs. 8, 9, and 10. In
Fig. 8, we note that the core contribution for the 14+ state in
both the yrast and the yrare bands (R ∼ 6.5h̄) is comparable
with the contributions from the valence proton and valence
neutron. The latter is consistent with the result in Ref. [46].
In Figs. 8 and 9, R̄1 increases by 8h̄ (from ∼ 4 to ∼ 12h̄)
as the spin I changes from 12h̄ to 20h̄. This demonstrates
that the increase of the total angular momentum is mainly due
to the collective rotation for I � 12. Therefore the transition

FIG. 10. (Color online) Same as Fig. 8, except that λn = ε1.

probabilities B(E2, I → I−2) corresponding to the collective
rotation should be large for I � 14. These results are consistent
with the B(E2) values discussed in Fig. 4. For the lower
spin region near the bandhead (I � 12), the increase of I

comes mainly from the contributions of the valence proton and
neutron while the contribution from the core stays the same.
For λn = ε1 in Fig. 10, the collective angular momentum at
low spin range I < 16 exhibits odd-even staggering, which is
consistent with the energy spectrum in Fig. 1.

IV. CONCLUSION

A particle rotor model with a quasi-proton and a quasi-
neutron coupled with a triaxial rotor is developed and applied
to study chiral doublet bands with configurations of an h11/2

proton and an h11/2 quasi-neutron. With pairing correlations
taken into account by the BCS method, a proton and many
neutron holes coupled with a triaxial rotor can be simulated
by changing the neutron Fermi level from the top h11/2 orbit
ε6 to the lowest one ε1.

The energy spectra, electromagnetic properties, as well as
the orientations of the angular momenta of the doublet bands
have been investigated in detail. The results are summarized
as follows:

(i) Aplanar rotation exists at least for λn = ε6 and λn = ε5

in a certain spin interval. The contributions from the
three axes are comparable to each other for the partner
bands. This demonstrates that chiral geometry holds
even for the valence nucleons deviating from a pure
particle-hole configuration.

(ii) The near-constant energy separation (∼200 keV) be-
tween the partner bands, which has been observed in
many candidate chiral bands experimentally, has been
obtained for λn = ε6 and λn = ε5 for certain spin and
deformation γ intervals.

(iii) Either a deviation of the core shape from γ = 30◦ or a
deviation of the Fermi energy surface from a particle-
hole configuration will hinder the level degeneracy and
prefer a near-constant energy difference.

(iv) For 15◦ � γ � 45◦, λn lies between ε6 and ε5, the
B(M1)/B(E2) values together with B(E2) and B(M1)
values for the yrast bands are close to those in yrare
bands, which may hold for all chiral bands.

(v) The odd-even staggering of B(M1)/B(E2) values is
strongly influenced by the deformation γ as well as
the Fermi surface λ, which suggests that the odd-even
staggering of B(M1)/B(E2) values may not be a
general feature for the chiral bands.

With pairing treated by the BCS approximation, the present
quasiparticle PRM is aimed at simulating one proton and
many neutron holes coupled with a triaxial rotor. After
a detailed analysis of the angular momentum orientations,
energy separation between the partner bands, and behavior
of electromagnetic transitions, it is demonstrated that aplanar
rotation, or equivalently chiral geometry, does exist beyond
the simple one proton and one neutron hole coupled with
a triaxial rotor. While simulating multiple valence particles
here by adjusting the Fermi energy, one may argue that
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the valence particles dumped into the BCS vacuum in the
present model cannot contribute to the moments of inertia.
However, as the main focus is the nuclei in the A � 100 mass
region, the influence by such approximation should not result
in a serious problem. Of course, a model with multi-proton
particles (holes) and multi-neutron holes (particles) coupled
explicitly with a triaxial rotor is necessary. Future work should
also be devoted to replacing the present single-j shell by a more
realistic single-particle potential, such as the Nilsson potential.
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