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Spin distribution of nuclear levels using the static path approximation with the
random-phase approximation
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We present a thermal and quantum-mechanical treatment of nuclear rotation using the formalism of the static
path approximation plus the random-phase approximation. Naive perturbation theory fails because of the presence
of zero-frequency modes resulting from dynamical symmetry breaking. Such modes lead to infrared divergences.
‘We show that composite zero-frequency excitations are properly treated within the collective coordinate method.
The resulting perturbation theory is free from infrared divergences. Without the assumption of individual random
spin vectors, we derive microscopically the spin distribution of the level density. The moment of inertia is thereby
related to the spin-cutoff parameter in the usual way. Explicit calculations are performed for °Fe; various thermal
properties are discussed. In particular, we demonstrate that the increase of the moment of inertia with increasing
temperature is correlated with the suppression of pairing correlations.
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I. INTRODUCTION

The spin distribution of nuclear levels is important for
Hauser-Feshbach-type calculations of astrophysical reaction
rates [1]. Generally, the spin distribution of nuclear levels is
assumed to be given by
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where p(E, I) is the level density for a given spin / and o
is the spin-cutoff parameter [2—6]. It should be noted that the
total level density (summed over all spins) is given by p(E) =
¥ p(E, I), whereas the total state density given by W(E) =
;21 + 1)p(E, I) contains an additional factor 27 + 1 for
each level to take into account the m degeneracy. In deriving
the spin distribution, one typically assumes that the individual
nucleon spins are pointing in random directions; hence the
spin distribution becomes Gaussian and can be described by
only one parameter, the spin-cutoff parameter. This parameter
can be related to the moment of inertia Jgiq by
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=
where T is the thermodynamical temperature [7]. This result
can be derived within an independent-particle model with
individual nucleon spins but with correlations neglected [7].
Microscopic calculations of the spin distribution are difficult to
perform when correlations are present. Experimental data on
the spin-cutoff parameter are available only in a few cases [4].
Therefore, theoretical predictions of the spin-cutoff parameter
are greatly desired. Alhassid et al. have recently investigated
the spin distribution in the framework of the shell-model
Monte Carlo (SMMC) [8,9] and the static path approximation
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(SPA) methods [8]. Assuming that the spin distribution can
be described by Eq. (2), they found a significant suppression
of the moment of inertia and an odd-even staggering of
the spin-cutoff parameter from pairing correlations at low
excitation energies.

The SPA method [8,10-12] is a useful treatment to evaluate
approximately the partition function of finite systems with
separable interactions such as the pairing plus quadrupole-
quadrupole (P+QQ) interaction, and it provides exact result
at high temperatures. However, as temperatures decrease
the SPA becomes inaccurate because quantal fluctuations
around the mean field can no longer be neglected. In leading
order perturbation theory, small-amplitude fluctuations give
corrections to the partition function that can be treated by
random-phase approximation (RPA) [13-16].

However, such a perturbative treatment exhibits an infrared
problem in the case where the nucleus is modeled in terms
of independent nucleons moving in a deformed mean field:
There are zero-frequency modes among normal vibrational
modes. This can be understood because the SPA method
breaks the symmetry of rotational invariance for a deformed
nucleus. It operates in a body-fixed reference frame that
undergoes time-dependent transformations. The collective
(zero-frequency) excitation (i.e., the motion of the rotating
frame) is treated on an equal footing with other excitations.
This leads to a Lagrangian that displays local symmetry,
yielding the mechanical equivalent of gauge invariance. The
collective coordinate method developed by Gervais and Sakita
[17] treats the inherent symmetries of the problem consistently.
It separates the so-called spurious motions from the intrinsic
vibrations. In the laboratory frame, these zero-frequency
excitations are not really spurious; they represent a rotational
motion that has to be treated separately.

In the present paper, we describe microscopically the
nuclear rotation of a deformed nucleus including thermal
and quantal fluctuations using the SPA+RPA method, and
we derive the associated spin distribution of nuclear levels.
First, by using the collective coordinate method, the rotation
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is described in terms of the zero-frequency modes that emerge
from the breaking of rotational invariance of the deformed
mean field. Second, the spin distribution of nuclear levels
is calculated by a proper treatment of the zero-frequency
modes in the framework of the SPA+RPA method. In
Sec. II, the collective coordinate method is applied to
the partition function of an interacting fermion system. In
Sec. III we show how to calculate the partition function of the
P+QQ model using the SPA+RPA method. In Sec. IV, we
present a correct treatment of the zero-frequency modes and
derive the spin-dependent level density. In Sec. V, the model is
applied to °Fe and related thermal properties are investigated.
Concluding remarks are given in Sec. VI.

II. THE COLLECTIVE COORDINATE METHOD

According to the theory developed by Gervais, Jevicki,
and Sakita [18], a problem involving only fermion degrees
of freedom can be transformed into an equivalent, constraint
problem including both fermion and collective degrees of
freedom. Concerning the problem at hand, a perturbative
treatment of nuclear rotation within the path integral formalism
has been proposed by using the collective coordinate method
[19,20]. Let us consider a partition function of an interacting
fermion system given by the path integral after Wick rotation,

7 = / ]‘[D[cg]D[ca]e-SEW 4)

Here, the action Sg(f) is given by

B
Se(B) = / (chea + H(c', c)) dr, Q)
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where B = 1/T is the inverse temperature and the dot
indicates a derivative with respect to the imaginary time .
The antiperiodic boundary condition ¢(8) = —c(0) arises
since the fermionic nature of the field means the operators
¢ are Grassmann numbers. The action Sg(B) is rotationally
invariant with respect to the SO(3) algebra.

We shall now be concerned with the case in which the
fermion system becomes deformed and breaks the SO(3)
invariance. As mentioned in Sec. I, a naive perturbative
treatment fails because of the presence of zero-frequency
modes. A better way to tackle this problem is to introduce
collective coordinates. We therefore adopt the path integral
formulation of Gervais and Sakita [17]. To separate the
collective coordinates, we employ the equality

U= [[Iowamisssac: - ', o)

x 8(0;(b', by)det[J, Olpg, 6)

where ©;(bf, b) is an arbitrary function of the fermion fields
(bT, b) with the condition that the determinant of the Poisson
bracket [ Jpg does not vanish. The fermion fields in the body-
fixed frame (b', b) are obtained by a linear transformation from
the laboratory frame,

bo($i) = Pr(¢pi)ca Pr(d) ™", (7
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where Pr(¢;) is the rotational operator with the Euler angles
¢;(i = 1,2,3), and L; are the three components of the
collective angular momentum.

Inserting Eq. (6) into the right-hand side of Eq. (4) and
exploiting the constraint iL; = J; (bT, b), one finds

z = / [ 1ot} 1Dib.] f [1P1LaDie:

B .
xexp | =Se(B) + /0 Z H (1) ;(T)dT
JoJ
x 8(hL; — Ji(b', b))8(O®;(b', b))det(V)det[J, Olpg,
(8)

where I1; are conjugates of the angular variables ¢; defined by
the linear transformation

1_[ = ZViij, O]
J

i
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Let us now define Z; by imposing on Eq. (8) the boundary
condition L; — [; for t — 0 or B, where the total angular

W 2l iz' Then the path integral
over ¢; and L; can be computed by standard methods:

Z, = /d31/]_[D[b;]D[ba]e—Sﬁ<ﬂ>a - yr

x 8(hl; — J;(bt, b))s(©;(b', b))det[J, Olpg.  (11)

momentum / is given by I =

It is now useful to specify the ®;(b', b) as the conjugate
angular variables of the J;(b', b). Then, the gauge condition
8(©;(bt, b)) fixes the position of the intrinsic frame of refer-
ence relative to the rotating body. This eliminates rotations of
the system as degrees of freedom associated with the fermion
fields. However, the components /; of angular momentum in
the intrinsic frame depend upon the choice of the gauge angular
variables ©; (b, b).

III. MODEL

A. The P+QQ Hamiltonian

Let us consider the P+QQ Hamiltonian [21,22] as a model
Hamiltonian

X
H=Hyp ~GP'P 2% 05,0,  (12)
"

Hs.p. = Zsac:icota (13)
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P = Zc@ca, (14)
Qo = Y _(alr*YaulB)chep. (15)

where Hy , is a single-particle Hamiltonian, P is the monopole
pairing operator, G is the strength of the pairing interaction,
0, are components of the mass quadrupole tensor, and
x 1s the strength of the quadrupole-quadrupole interaction.
This model has been applied to the SPA+RPA method
including thermal and quantal fluctuations [23].

B. The Hubbard-Stratonovich transformation

By using the Hubbard-Stratonovich transformation [24]

const = /D;‘*D{HD[GZZ]D[UM]
"
B
X exp [/ drG(* — P — P)]
0

B
X exp |:/0 dr%Z(c{f - Q;t)(% - Qzu)] ,
y2

(16)

the partition function of Eq. (11) can be written as the auxiliary
field path integral [15,25]

Z, = / &1 / DD f HD[a;]D[aM]Tr[e*ﬁH’]
"
p |§|2 X 2
X exp [/0 dr <_G - 5|‘7u| >i|
xs|1- > 1

x 8l — J;(b', b)8(©;(b', b))det[J, Olpg, (17)

where

B
Tr[e P = f l—[D[bl]D[ba]exp [— f drH’], (18)
o 0
H' = Hy, —¢P =P — ) 0,0}, (19
"

C. The SPA+RPA method

In the perturbative expansion of the partition function Z;
around the static fields, the zeroth-order term gives the Hartree-
like solution, whereas the second-order terms lead to the RPA
corrections. This approximation may be largely improved by
applying it to all time-independent paths of ¢ and o,. We
therefore expand the partition function (17) around the static
paths ¢ and & . in Fourier series,

[ =04 Eeor, (20)
n#0
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Oop = 6/’“ + anlne_iwnr’ (21)
n#0

where w, = 27n/f are the Matsubara frequencies. Let us
now define the principal axis of the quadrupole potential
in the intrinsic frame by 6¢g = hwofrcosy, 0, = 065 =
hwofrsiny/+/2, and 6, = &6_; = 0, where hwy =
41MeV/A'/3. The pairing fields can be rewritten as ¢ = Ae™"
by using real values A and .

It is now convenient to introduce quasiparticles by diago-
nalizing the Hamiltonian of Eq. (19):

241 o1
YV B B A b
+ =T =T

al b 1% U bl

“ . (22)

where the matrix )V satisfies the unitarity condition
WIW = 1. According to the Bloch-Messiah theorem [26],
this unitary matrix can be decomposed into three matrices:

W = D 0 u v C 0 23

0 D Vv U 0 cC*

The first transformation D is determined by diagonalizing the
deformed term of Eq. (19):

Hdef - Hs,p. - XZO_—;L QLL
n

= Hs.p‘ —hawopa
On+ 020 .
X (ngcos y + %sm y)], @4
from which we obtain the deformed fermion fields
di =) Diaba. (25)

where Dy, are the matrix elements obtained by solving the
eigenvalue problem Hgerlk) = &i|k). Now, the Hamiltonian
H' of Eq. (19) can be simplified to

H' = edld — ACPT+ P). (26)
k

The matrices U and V of Eq. (23) diagonalize the pairing
term of Eq. (26). The matrices are diagonal and determined by
solving the Hartree-Fock-Bogolyubov equations

ék A U Uy

= Ey , (27)
A —& Vg Vk

where Ej are the quasiparticle energies.

In a small system such as the nucleus in which the particle
number is strictly fixed, the canonical partition function should
be employed. However, exact number projection is difficult to
implement in the SPA+RPA formalism; it is easier to apply
number-parity projection. Performing the Gaussian integral
over &, and 7,, in second-order perturbation theory and
introducing the number-parity projection Py = (1 +se™V)/2,

044304-3



K. KANEKO AND A. SCHILLER

where s denotes the even or odd number parity [15], we obtain
the partition function

) 52 oo
7., = B[P / dAA
’ G 27'[ 0
oo /3
< / dps} / dy lsin Gy)|
0 0

x 4 [%exp | — A—2+1Kﬁ2 B | Tr[ Pye™P1
P G 2P ;
x 8(hl; — Ji(a', a)8(®;(a’, a))det[J, Olpg Crpa,
(28)

where the parameter k = (fiwg/b?)*/x and b o A'/3 is the
harmonic oscillator length. The expression (28) contains both
the static mean-field contributions and the associated Gaussian
corrections. These small-amplitude quantal corrections are
included in the factor

Crra = Crea(Q)Crpa(A), (29)
where Cgrpa(Q) and Cgrpa(A) are the corrections from the
QQ and pairing correlations, respectively. The SPA partition
function is obtained by neglecting these RPA corrections.
Crpa(Q) is explicitly given by

Crpra(Q) = ndet(l — xR(@,)™". (30
n>0
Here R(w,) is the response function matrix given by
R(w,) = Z Ou Ou(Er + E1)2(1 - {k - 1)
7 (Ex + EDN" + oy
04 0u(Er — EN(fi —
" Z O Ou(Ex 2l)(fk fl)’ 31)
o (Ex — E))” + w2
Ou = quurv + viup), (32)
Ou = qu(ugu; — vevy), (33)

where ¢qi; are quadrupole matrix elements and f; are Fermi
occupation probabilities [ f; = (1 + e#+)~']. The response
function can be calculated by solving the dispersion equation
det(1—x R(iw,)) = 0. It can be also obtained by diagonalizing
the finite-temperature RPA equations [27,28]

([Hrpa(Q), O}1) = 72,(0]), (34)

where 2, are the RPA frequencies and the RPA modes are
defined by

OI = Z(X}:la,];a;[ - Yk"lalak) + Z(Z}jlazal - Zzla;ak).
kl ki

(35)
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The symbol () in Eq. (34) denotes thermal averaging with
respect to quasiparticles according to Wick’s theorem

(F) =Tr |:Fexp (-,BZEkaZak>:| /qu, (36)
k
Zp=Tr |:exp <—,BZEkaZak>:| )
k

where, as an an example, we give (a,ia;) = 0y fx. At this point,
it would be more correct to use thermal average and Fermi
occupation probabilities in number-parity projection instead,
but the corresponding corrections in the RPA are normally
small and would not change our conclusions. It would be
important for the odd-even effects in the moment of inertia [8].
The RPA Hamiltonian Hrpa(Q) can now be expressed in the
diagonal form

(37

Hrpa(Q) = Y 12,0 0,. (38)

There are, however, zero-frequency modes O,—y owing to the
symmetry breaking of the deformed Hartree solutions on the
static path. The correct treatment of these modes will be given
in the next section. The RPA correction Crpa(Q) can now be
written exactly in terms of the RPA frequencies €2, as

/ 1 s BEHED
[Ty ErEySinh==3

[1 &sinnfg:
where the prime in [T}, denotes the restriction of the product
to pairs (k, /) that satisfy the conditions k <[ and E; + E; # 0.
Note that for deformed or heavy nuclei there are many RPA
frequencies €2, in the numerator and many Ej; + E; pairs in
the denominator.

The pairing RPA correction Crpa (A) is obtained in a similar
way as Crpa(Q) by

Crea(Q) = (39)

a)ksinh[,BEk]

Crpa(A) = l_[

k

Here, w; are the conventional thermal RPA energies and E; =

JeR + A2 with e, = g — u — G/2.

IV. ROTATIONAL MOTION AND ZERO-FREQUENCY
MODES

We consider the two-body Hamiltonian A that is invariant
under a continuous rotational operation generated by the
angular momentum operators J;. However, the deformed
solutions on the static path violate this symmetry and lead
to zero-frequency modes that are regarded as spurious modes
in the intrinsic frame. Then, the rotational invariance must be
restored by the residual interaction, which is defined as the
difference between the exact and the mean-field Hamiltonian.
Proper inclusion of the residual interaction will therefore
restore the rotational invariance and will provide the rotational
energy. To achieve this goal, we present in this section
the correct treatment of zero-frequency modes within the
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finite-temperature RPA. It is shown that the zero-frequency
modes in the intrinsic frame are not spurious in the laboratory
frame and correspond to three-dimensional rotational motions.

A. Treatment of zero-frequency modes

For the calculation of the partition function of the constraint
system [see Eq. (28)], we follow the treatment proposed by
Marshalek and Weneser [29]. For the sake of simplicity, we
assume an axially symmetric mean field for the deformed
Hartree calculation with one violated symmetry and neglect the
y degree of freedom. In particular, we consider the case where
the symmetry is violated for rotations around the x axis, which
is perpendicular to the symmetry or z axis. Three-dimensional
rotation can be treated in a similar way.

When the eigenvalue equation (34) has zero-frequency
solutions because of the breaking of rotational invariance in
the intrinsic frame,! the usual treatment is known to cause
problems concerning the completeness and normalization.
Therefore, instead of O, and O, we define the following

Ve

coordinate and conjugate momenta:

Q, .
7 (0, +0)), (41)

— —_Of
v —1,129 0y — 0y)). (42)

The finite-temperature RPA equations are then expressed as

([Hrpa, gvlpg) = —ih(p,), (43)
([Hgpa, pylps) = ih22(q,). (44)

For the zero-frequency mode O, in the finite-temperature
RPA equations (34), the angular momentum J, and the
canonical conjugate angle coordinate ®, are defined by
Jy = 1/2 po and ®, = j{l/zqo, respectively, where 7,
is the moment of inertia. ®, and J, can be determined by
solving the equations of motion
—ih
([Hrpa, Oxlpp) = 7

(O, Jilpg) = ih, (46)

where Eq. (45) simply corresponds to the self-consistency
condition @ = [Hgrpa — J /2Ty, O, lpg = 0, and we impose
the gauge-fixing condition @x = 0 of Eq. (28). Hrpa(Q) can
now be separated into an intrinsic and rotational part:

(Jx), (45)

2

ZhQOO—i—J

Hrpa(Q) = 37

(47)

v>0
Thus, the zero-frequency mode can be eliminated from the
RPA equation and Crpa(Q) can be written as

Croa(Q) = Chpp(Q)e™ TP, (48)

!Note that the zero-frequency mode (Goldstone mode) in the mean
field plus RPA may become nonzero (imaginary or complex) in the
SPA+RPA.
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where Cipa (Q) is the correlation factor in the absence of zero-
frequency modes.

In a similar fashion, spurious modes should be eliminated
from the pairing RPA corrections of Eq. (40). This is not
done in the present work since (i) exact number projection is
needed for this procedure and (ii) the corrections are thought
to be small in our number-parity projection scheme.

B. Moment of inertia

To connect with the result of Thouless and Valatin [30], we
introduce the function

G =iT0:/h = Y [guluvalal — vauajay)
k.l
— gk,(ukulalial — vkvla;a,;]. (49)
Then the Thouless-Valatin equations become
([Hrpa, Glpp) = (Jx), (50)
(lJx. Glpp) = s (51

Inserting Eq. (49) in the Thouless-Valatin equations yields

h(jx)kl = (Ek + El)gkl - XZ[Qk/gmn - legmn
mn
+ Qugnn = Q] Qonns (52)
h(jx)kl = (Ek - El)gkl - XZ[angmn - angmn
+ ang:m - ang:;m]ék/’ (53)

and the moment of inertia
Te = 1Y (oulgwuv, — van) (1 = fi — fi)
k.l

+ &gy + viv)* (fi — I, (54)

where we used the relations

8k = —8il» g’lk = _glzﬂ (55)

U = U, Vg = — V.

Neglecting the two-body potential matrix elements in Egs. (52)
and (53), we can approximate g and g;; by

(Jdu ~ (U du
=h— =h——, 56
W= ey T Em—Ey O

and the moment of inertia at finite temperature simplifies to

n* Z (E(k]X)k]Ez)(”kU[ — v’ (1 = fi = fi)

k,[>0

+2h22 (JX)“ <ukuz+vkvz>2<fk—ﬁ>. (57)

k1>0
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In the T — 0 limit, the moment of inertia becomes the well-
known Belyaev formula [31]
Jo=m2)" %(ukv, — veuy)?. (58)
oo Bk + ED)

Inserting Eqs. (46)—(48) into the partition function (28) under
consideration of the gauge-fixing conditions 7/ = J, and
®, = 0, we obtain the partition function for an axially
symmetric nucleus,

B 28 (kB 5/2 poo o0 A
Zs = G(2n) A dAAA dp.B, Zs(A, B2)

x 47 I%ex —h212 59
p ZJXﬂ , (59)

where

A1,
Zy(A, By) = exp |:— (G + 2Kﬁ2> ﬂi|

X ZP Crpp(Q)Crpa(A), (60)

and Z," is the quasiparticle partition function with the number-
parity projection,

z® = e (1 +e 5 P[1 +s] Jtanh®(Ee B)].  (61)
k k'

with y, = & — u — Ey.

C. Level density

The level density for a system with a fixed number of
particles can be evaluated by an inverse Laplace transformation
of the partition function Z; ;:

Bo+ioo

1
p(E, )= — dBePEZ, 1(B). (62)

2mi Bo—ioco

In the saddle-point approximation, the level density is given
by

ZSJE'BE

E.I)~ .
PE D Iz, o]

(63)

We will now apply the saddle-point approximation? to the two
integrals in the partition function Z; ; of Eq. (5§9). However,
Eq. (59) still contains the 27/ + 1 degeneracy connected to
the magnetic quantum number. To determine the level density
(as opposed to the state density), we make the transformation
I — I+1/2and I> — I(I+1)inEq. (59) from a classical to
a quantal angular momentum and divide by 27 + 1.3 Entering

>The maximum in the saddle-point approximation leads to an
effective mean-field equation; hence, a sharp phase transition as
predicted by the ordinary mean-field equation is avoided.

3To keep in contact with experiment, we will consider this pseudo
partition function for the remainder of this work and determine
consistently all quantities from there.
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this modified partition function (59) into the saddle-point
approximation for the level density (63), we finally obtain

"B R+ 1)
p(E, )~ 'O(E)zjx (21 + Dexp (—mﬂ) . (64
where the total level density is given by
Z.ePE
P = iz, g1 ©
with
7 2 <f<ﬁ>5/2 APIZA(A B) (66)
G \ 27 J/det(B)
and B is the fluctuation matrix
- 3%In (AB3Zs(A, ,32))7 6

dyidy;
with y = (A, B2).

The level density (64) is the relevant spin-dependent micro-
scopic level density for reaction cross-section calculations in
the presence of correlations. By entering the partition function
(60) in Egs. (66) and (67), we can calculate this level density as
a function of excitation energy, where the thermal energy can
be calculated from £ = —0dInZ;/9f. Comparing this level
density with the spin-cutoff model given in Eq. (1), we can
relate the spin-cutoff parameter o to the moment of inertia

J, by

2 ST
O'th.

In the next section, we shall perform numerical calculations
and show that there is a notable difference between the shape
of the level density and the state density, which contains the
factor 21 + 1 because of the m degeneracy.

(68)

V. NUMERICAL CALCULATIONS

We consider *°Fe [5,32] as an illustrative example. Re-
cently, the level density in *Fe has been measured nearly up
to the neutron binding energy [33—35]. In our calculation, we
use the single-particle energies &; given by an axially deformed
Woods-Saxon potential with spin-orbit interaction [36]. The
Woods-Saxon parameters are chosen such as to approximately
reproduce the experimental single-particle energies extracted
from the energy levels of the odd nucleus *' Ca (a*°Ca core plus
one neutron). Fifteen doubly-degenerate single-particle levels
for neutrons and protons outside the “’Ca core are considered;
continuum levels are neglected since their contributions are
small [8]. We adjust the pairing-force strengths at G, =
25/A MeV and G, = 29/A MeV for neutrons and protons,
respectively, and the QQ-force strength at x = 240/A%3b*.
As mentioned, the SPA+RPA breaks down at low temperature.
However, it has recently been shown that in the monopole
pairing case the SPA+RPA with number-parity projection
reproduces well exact results even for low temperatures [15].
Therefore, number-parity projection is essential to describe
the thermal properties at low temperature. Calculations are
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56, 4

[ —
o O = N
T

log,,p (MeV")

—_ O = N W R N
T T T T T T T

S

10 20 30 40 50
Excitation energy (MeV)

FIG. 1. (Color online) Experimental (squares) and calculated
level densities p(E) as a function of excitation energy in °Fe. Full
circles and triangles denote the level and state density, respectively,
from SPA+RPA calculations. The solid line is a back-shifted Fermi-
gas model.

shown in Fig. 1. The level density calculated with the
SPA+4RPA reproduces fairly well the slope and magnitude
of the experimental data. However, besides the expected
difference in magnitude, the calculated state density, which
contains the m degeneracy, also shows a different slope on the
logarithmic plot. The calculations thus indicate an increase of
o o (I) with excitation energy; see also Eq. (68).

Figure 1 also shows a back-shifted Fermi-gas model [2—6]
according to

exp[2+/aU]
124/2a\/4USAo "

where the back-shifted energy is U = E — E; and the spin-
cutoff parameter o is o> = 0.0888A4%3/aU [3]. The level-
density parameter a and the parameter E; are given by a =
A/10 = 5.6 MeV~! and E; = 1.0 MeV, respectively. The
level density from SPA+RPA calculations is close to that of the
back-shifted Fermi-gas model for a wide range of excitation
energies.

Figure 2 shows the calculated heat capacity for Fe. The
SPA+RPA deviates from the SPA result for temperatures

pesrG(E) = (69)

40
35¢
30r
25+
20t
15}

Heat Capacity (k;)

00 05 10 15 20
T (MeV)

FIG. 2. (Color online) Heat capacities as a function of temper-
ature T in °Fe. The solid and dotted curves denote the calculated
heat capacities in the SPA+RPA and SPA, respectively. Both curves
exhibit clear S shapes.
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above T' = 0.9 MeV; quantal fluctuations become important
in this region. This behavior is consistent with the one found
in Ref. [37]. Both of our results exhibit a characteristic S
shape around 7, ~ 0.9 MeV. This critical temperature is
higher than the SMMC result* (~0.7 MeV) [38] but it is still
smaller than the experimental one (~1.3 MeV) [34]. Level
densities in several nuclei have recently been measured [39,40]
and the suppression of pairing correlations was studied in
detail [41,42]. S-shaped heat capacities with 7, ~ 0.5 MeV
were also observed in 92Dy, '°Fr, and '7>Yb [43,44]; they
were interpreted as a signature of the breaking of nucleon
Cooper pairs. We suggested that the suppression of pairing
correlations at finite temperatures should also appear in
the thermal odd-even mass differences [41,42]. In general,
the S shape of the heat capacity has been attributed to the
reduction of the pairing energy, which can be calculated
from G, (PTP) = GrTaanS/BGt [38]. In fact, this pairing
reduction can be seen in thermal odd-even mass differences
extracted from the experimental level densities [41,42,45].
However, it has been argued that the S shape might be
accounted for as an effect of particle-number conservation on
the quasiparticle excitations [46]. Nonetheless, even without
exact particle-number projection, the SPA gives an S-shaped
heat capacity. In this sense, we emphasize that this S shape
cannot be explained solely as an effect of the particle-number
projection.
Figure 3(a) shows the effective pairing gap defined by

g [Lamz )" (70)
eff — T ﬂ aGr .

Both A and A decrease in a similar fashion around 7 =
0.9 MeV, although the proton pairing is a little bit stronger
than the neutron pairing. We can now identify the inflection
point of the Ag curves as the critical temperature of a pairing
phase transition. To determine the position of the inflection
point precisely, we differentiate the A.g curves with respect
to the temperature [see Fig. 3(b)]. From the peaks of these
derivatives we read off a critical temperature around 7 =
0.9 MeV. Hence, the suppression of A is well correlated with
the S shape of the heat capacity. As pointed out in our previous
paper [41], the critical temperature 7, is proportional to the
pairing gap A. This is expressed by the relation 7, ~ 0.57A
from Bardeen-Cooper-Schrieffer (BCS) theory. The critical
temperature 7, ~ 1.0 MeV estimated from this relation is
close to the position ~0.9 MeV of the peaks in Fig. 3(b).

We will now apply a similar analysis to the moment of
inertia. Figure 4(a) shows the moment of inertia as a function
of temperature 7. For comparison we also show the rigid-body
value Jyigia = 0.0137A%3 MeV~! denoted by a dashed line.
The calculated moment of inertia is smaller than the rigid-
body value at low temperature. This strong suppression is a
well-known effect from the presence of pairing correlations in
low-lying, superfluid-like BCS states. For high temperatures,

“We would like to emphasize that, in contrast to the present
calculation and the experiment, the SMMC result is obtained from a
partition function that includes the m degeneracy.
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FIG. 3. (Color online) Effective pairing gaps (a) and their deriva-
tives (b) as a function of temperature for **Fe. The solid and dotted
curves are for neutrons and protons, respectively.

however, the calculation approaches the rigid-body value
because the nucleon Cooper pairs break with increasing
temperature. Again, we can define the critical temperature
of the pairing phase transition as the inflection point, which
is determined precisely by differentiation. Differentiation of
the J, curves reveals peaks around the critical temperature
of T = 0.9 MeV [see Fig. 4(b)]. Hence, the increase of 7,
is well correlated with both the S shape of the heat capacity
in Fig. 2 and the suppression of the effective pairing gaps in
Fig. 3.

To investigate more closely the relation between the effec-
tive gaps and the moment of inertia, we examine the correlation
of the average effective pairing gap Aer = (A% + ALp)/2
with the moment of inertia (see Fig. 5). Above J, =~
5.0 h?/MeV, which corresponds to 7 ~ 0.7 MeV, this cor-
relation is close to a straight line, whereas deviations from the
line become apparent below this temperature. The observation
of such a correlation across the critical temperature of 7 ~
0.9 MeV means that the increase of the moment of inertia can
be attributed to the suppression of the pairing correlation. This

r - fit

—_—
OO AN ONO NP~ ONX
P T

—

o

~

«

dI/dT (B/MeV?)

0 05 10 15 20
T (MeV)

FIG. 4. (Color online) Moment of inertia (a) and the derivative
(b) as a function of temperature for *Fe. The dashed line shows
the rigid-body moment of inertia, the solid curve is the result of the
SPA+RPA calculation, and the dotted curve is a fit to the calculation
according to Eq. (73).
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FIG. 5. Correlation of the average effective pairing gap with the
moment of inertia. The straight line is to guide the eye.

conclusion has already been obtained by Alhassid ez al. [8,9].
Thus the increase of the moment of inertia can be considered
as another signature of the pairing phase transition together
with the S-shaped heat capacity [43,44] and the suppression
of odd-even mass differences [41,42,45].

In the next step, we investigate the effect of the temperature-
dependent moment of inertia on the spin distribution of nuclear
levels for the °Fe case. For this purpose, we plot for the
temperatures 7 = 0.5, 0.67, 1.0, and 2.0 MeV the spin
distribution p(E, I)/p(E) from Eq. (64) in Fig. 6. Moreover,
we plot as a function of temperature the first ©; and second
o moments of this spin distribution, where

Z 1 fil
n ===, (71)
21

_ X it =)

i
and f; = p(E,I)/p(E) in Fig. 7, and finally, we plot
again as a function of temperature the relative components
of the spin distribution for the spins I = 0, 2, 4, and 6h.
Comparing the SPA+RPA results to the spin-cutoff model
based on a rigid-body moment of inertia, we observe from
Figs. 6, 7, and 8 that good agreement between the two is

12 (72)

p(E.D/p(E)

FIG. 6. (Color online) Spin distribution of level density at
different temperatures T for °Fe. The SPA+RPA results (solid
curves) are compared to the spin-cutoff model using the rigid-body
moment of inertia (dashed curves) and the results from the fit to the
moment of inertia according to Eq. (73) (dotted curves). The fit and
the SPA+RPA calculations are almost indistinguishable.
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FIG. 7. (Color online) First (circles) and second (triangles)
moments of the spin distribution as a function of temperature for *°Fe.
Results from the SPA+RPA calculation (full symbols) are compared
to a model using the rigid-body moment of inertia (open symbols).

achieved at high temperatures (T 2 2 MeV). Deviations
are, however, significant for lower temperatures. In particular,
the / = 0 component is much larger than all other [
components in the SPA4+RPA calculation, whereas for the
rigid-body spin-cutoff model, the largest component at low
temperature is / = 2 but the / = 0 component is quite small.
Around T ~ 0.5 MeV in the SPA+RPA calculation, the / =

0-5 T T T T T T T T T
I —E—I=0]
04l (a) SPA+RPA | —H— =l
03 B —A— =4 ||
3 "o\. —v—I=6 |-
0.2F o g
0 1 I AA-X_.\.t ;i
o Ulr ey VY
:;l 0.0} -lé-"?{'\'.‘l‘i
% 0-4_-(b) Rigid-body 7
03F .
02F _ .
L .“:‘: :A\'
0.1F = AL _'<1
0.0 - i
0.0 0.5 1.0 1.5 2.0
T (MeV)

FIG. 8. (Color online) Spin components of level density as a
function of temperature 7 for *°Fe. The relative components for spins
J =0, 2,4, and 6 are from SPA+RPA calculations (upper panel)
and from a spin-cutoff model using the rigid-body moment of inertia
(lower panel).
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0 component quickly decreases with increasing temperature
whereas the / = 2 component increases drastically up to
T = 0.7 MeV where it becomes dominant, in agreement with
the rigid-body spin-cutoff model. The / = 4 and 6 components
also exhibit small magnitudes at low temperature and increase
with increasing temperature.

To conclude the discussion, we would like to make two
remarks. First, the spin distributions in Fig. 6 can be very well
described by a phenomenological model for the moment of
nertia

~ Cl

= Jrigid — T 4. ) 73
T x = Jrigid T rexp@ld & (73)

with the parameters ¢; = 15.0h2/MeV, ¢, = 1.8 MeV—2,
and c; = 1.5h%/MeV. This model of the moment of inertia
includes the effect of the quenching of pairing correlations.
The three parameters of the model essentially determine the
moment of inertia at zero temperature (in the presence of
pairing correlations), the moment of inertia at very high
temperature (in the absence of pairing correlations), and the
critical temperature itself. Hence, the three parameters might
be connected to collective E2 transition rates within rotational
bands at low and high spin, respectively, and to odd-even
mass differences via 7, &~ 0.57A. This would be interesting
to investigate since a simple phenomenological model of the
moment of inertia based on experimental observables would be
valuable for many applications of the nuclear level density such
as Hauser-Feshbach-type cross-section calculations. Second,
we note the presence of an S shape in the second moment
of the spin distribution (see Fig. 7). This is in analogy to the
S shape of the heat capacity (see Fig. 2), which in itself is
proportional to the second moment of the excitation-energy
distribution for a given 7. We would therefore propose this
S shape of the second moment as another signature of the
pairing phase transition, and it would be interesting to look for
experimental evidence for it.

VI. CONCLUSION

We have presented a treatment of nuclear rotation by the
SPA+RPA method including thermal and quantal fluctuations.
By using the collective coordinate method and applying a
Marshalek-Weneser treatment, the RPA partition function is
separated into two parts: an intrinsic RPA and a rotational part.
We then can derive the spin-dependent level density p(E, I)
in the saddle-point approximation without the assumption of
individual random spin vectors. The spin-cutoff parameter
o can be identified with the moment of inertia 7, of the
generalized Belyaev formula. As an illustrative example, we
have applied this method to °Fe and investigated the thermal
properties, including the moment of inertia, with consideration
of thermal and quantal fluctuations. We obtained the same
conclusion as Alhassid et al. [8,9], namely that the increase of
the moment of inertia with increasing temperature is attributed
to the suppression of pairing correlations. The increase of
the moment of inertia can therefore be considered as one
of the signatures of the pairing phase transition in parallel
with the S shape of the heat capacity and the suppression of
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odd-even mass differences. The spin distribution of the level
density shows that the / = 0 component is dominant at low
temperatures owing to the presence of pairing correlation;
this component decreases with increasing temperature. At
high temperatures, the level density is governed by / # 0
components. In this work, we assumed an axially symmetric
nucleus with K = 0 although our formulation can be easily
extended to nonzero K quantum numbers. However, the K
quantum number is thought to disappear because of K mixing
at some excitation energy above the yrast line. For this

PHYSICAL REVIEW C 75, 044304 (2007)

mixing, another degree of freedom, namely y deformation,
is important. It would be very interesting to investigate this
issue in the future.
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