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α transitions to coexisting 0+ states in Pb and Po isotopes
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The α-transitions (�� = 0) to ground and first excited 0+ states in neutron deficient Pb and Po isotopes
are systematically analyzed by the density-dependent cluster model. The magnitude of nuclear deformation of
the coexisting 0+

1 and 0+
2 states is extracted directly from the experimental α-decay energies and half-lives.

The phenomenon of shape coexistence around the Z = 82 shell closure is clearly demonstrated in our present
analysis. The obtained deformation values from Rn → Po → Pb decay chains are generally consistent with both
the available experimental and theoretical studies.
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The phenomenon of shape coexistence in the vicinity of
Z = 82 proton shell closure has received particular attention
in recent years [1,2]. Extensive experimental studies have been
carried out to identify low-lying excited 0+ states in even-mass
nuclei around the shell closure by means of α-decay, β-decay,
in-beam measurements, and so on [3–14]. The occurrence
of these low-lying intruder states is mainly due to the
multiparticle multihole excitations across the proton shell gap
in a shell model picture. Considerable theoretical researches
have been devoted to pursuing a quantitative description of
shape-coexisting structure in Pb and Po region, such as the
Nilsson-Strutinsky approach, the Hartree-Fock-Bogoliubov
calculation, the interacting boson model, etc. [15–21]. The
spherical, oblate, and prolate minima of the potential energy
surfaces calculated by various theoretical approaches are
generally consistent with the experimental facts, while the
calculated excitation energies of the low-lying 0+ states
reasonably agree with the experimental data.

The α-decay fine structure of Pb and Po nuclei has also
been studied extensively from the theoretical side [22–25].
This is because α-decay is a very effective method to provide
internal structure information on nuclei close to the proton
drip line. For many even-mass nuclei around the Z = 82
region, the low-lying excited 0+ states in their energy spectra,
corresponding to different configurations, respectively, were
populated by α-decay fine structure in experiments [9]. Half-
lives ratio (HR), which is defined as the ratio between measured
and calculated α-decay half-lives, is a sensitive probe to see
whether an α-transition occurring between two states with the
same spin and parity is hindered or not [26–31]. The significant
deviation of this quantity from the value 1.0 often implies a
change of configuration between two states. For this reason,
the α-decay is well suited to analyzing shape-coexisting
phenomena in the ground and excited states of a given nucleus,
especially for the light Pb and Po isotopes. Previous theoretical
studies basically concerned with reproducing the experimental
α-decay hindrance factors by using deformation parameters
from the potential energy surface calculations [25].

The main purpose of this paper is to study shape-coexisting
structure in even-mass neutron deficient Pb and Po isotopes by
combining the ideas of α-decay analysis and potential energy

surface calculation together. The α-transitions (�� = 0)
to ground and excited 0+ states in 186,188,190,192,194Pb and
190,192,194,196,198Po are systematically studied by the density-
dependent cluster model. The variation of α-decay width, i.e.,
the half-lives ratio, as a function of nuclear deformation is
analyzed for each �� = 0 α-transition. The magnitude of
deformation of the ground and excited 0+ states in these nuclei
is extracted directly from their α-decay energies and half-lives.
Our present analysis on shape-coexisting nuclei is totally based
on the measured α-decay fine structure data, which provides
a novel way to deduce deformation parameters because the
collective bands built on the excited 0+ states of these nuclei
are rather difficult to identify in experiments.

Firstly we briefly introduce the framework of the density-
dependent cluster model (DDCM). In DDCM, the α-cluster is
considered to penetrate the deformed Coulomb barrier after its
formation in the parent nucleus. The α-decay width is mainly
determined by the product of α-cluster preformation factor
and penetration probability. The later one is very sensitive to
the details of the α-core interaction, which is the sum of the
nuclear potential, the Coulomb potential, and the centrifugal
potential [32]

VTotal(R, θ ) = VN(R, θ ) + VC(R, θ ) + h̄2

2µ

(
� + 1

2

)2

R2
, (1)

where R is the distance between the mass centers of the
α-particle and the core. θ is the orientation angle of the
α-particle with respect to the symmetry axis of the daughter
nucleus. � is the angular momentum carried by the α-particle
and µ is the reduced mass of the α-core system. The nuclear
potential is obtained from the double-folding integral of the
renormalized M3Y nucleon-nucleon potential with the matter
density distributions of the α-particle and the daughter nucleus
[33]. The Coulomb potential is also obtained from the well
established double-folding model by including the effect of
finite size of the α-cluster. We assume a spherical α-particle
interacts with an axially-symmetric deformed daughter nu-
cleus. The mass density distribution of the spherical α-particle
is taken as the widely-used Gaussian form [33]. The mass
density distribution of the daughter nucleus is a deformed
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Fermi distribution with standard parameters [32]

ρ2(r2, θ ) = ρ0

/{
1 + exp

[
r2 − R0[1 + βY20(θ )]

a

]}
, (2)

where the parameters R0 = 1.07A1/3
d fm and a = 0.54 fm.

β is the deformation parameter of the daughter nucleus. In
DDCM, the double-folding potential can be evaluated by a
sum of different multipole components [32]

VN or C(R, θ ) =
∑

l=0,2,4...

V l
N or C(R, θ ), (3)

and the multipole component of the double-folding potential
is written as

V l
N or C(R, θ ) = 2

π
[(2l + 1)/4π ]1/2

×
∫ ∞

0
dkk2jl(kR)ρ̃1(k)ρ̃2

(l)(k)ṽ(k)Pl(cos θ ),

(4)

where ρ̃1(k) is the Fourier transformation of the density
distribution of the α-particle and ρ̃2

(l)(k) is the intrinsic form
factor corresponding to the daughter nucleus. ṽ(k) is the
Fourier transformation of the effective M3Y interaction or the
proton-proton Coulomb interaction. Pl(cos θ ) is the Legendre
function of degree l. The M3Y nucleon-nucleon interaction
is given by two direct terms with different ranges, and by an
exchange term with a delta interaction [33]

v(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00δ(s),

J00 = −276(1 − 0.005 Eα/Aα),

(5)

where the quantity |s| is the distance between a nucleon in
the core and a nucleon in the α-particle (s = R + r2 − r1).
Eα is the α-decay energy and Aα is the mass number of the
α-particle. The depth of the nuclear potential is determined
separately for each decay in order to generate a quasibound
state by employing the Bohr-Sommerfeld condition. Once
the α-core potential has been determined, the polar-angle
dependent penetration probability of α-decay in the deformed
version of DDCM can be given by [32]

Pθ = exp

[
− 2

∫ R3(θ)

R2(θ)

√
2µ

h̄2 |Qα − VTotal(R, θ )| dR

]
, (6)

where R2(θ ) and R3(θ ) are the second and third classical
turning points of a certain orientation angle θ . The total
penetration probability PTotal is obtained by averaging Pθ in
all directions [32]

PTotal = 1

2

∫ π

0
Pθ sin(θ )dθ. (7)

Finally, the α-decay width in the deformed version of DDCM
is given by [32]

� = Pα F
h̄2

4µ

1

2

∫ π

0
Pθ sin(θ )dθ, (8)

where F is the normalization factor and Pα is the α-cluster
preformation factor in the parent nucleus. The microscopic
description of the preformation amplitude is still an open
problem in physics. Experiments have shown that the pre-
formation factor varies smoothly in the open-shell region and
has a value smaller than 1.0. We have recently performed
a global calculation on favored α-decay half-lives where a
constant preformation factor Pα = 0.38 is found for all even-
even α-emitters [32]. This value is consistent with both the
experimental facts and the microscopic calculations [34,35].
In present calculations, we still adopt the constant value
(Pα = 0.38) for α-transitions to ground 0+

1 states in the neutron
deficient Pb and Po isotopes. As compared with the ground
state transitions, the situation of α-transitions to the excited
0+

2 states in the daughter nucleus is much more complex.
According to the nP-nH picture, such transitions often involve
the removal of a pair of protons below the proton shell closure
to form an α-cluster in the parent nucleus. So the α-cluster
preformation factor in these cases should be smaller than that
of the ground-state transitions where only the valence nucleons
are involved. This is also evidenced by our previous analysis
of α-decay branching ratios where the excitation probabilities
of the daughter nucleus after disintegration were found to obey
the Boltzmann distribution approximately [36]

w�(E∗
�) = exp[−cE∗

�], (9)

where E∗
� is the excitation energy of � state in the daughter

nucleus and c is a free parameter. The excitation probability
is directly related to the α-cluster preformation factor in
the parent nucleus. We stress that our assumption of the
Boltzmann distribution is reasonable in physics and it leads
to good agreement between experimental and calculated
α-decay branching ratios [36]. In present study, we describe the
α-cluster preformation probabilities for different α-transitions
by the product of the constant formation factor and the
Boltzmann distribution function [Pα × w�(E∗

�)]. It is easy to
find that the preformation factor of the α-particle is fixed to a
constant value of 0.38 for the ground-state transitions (0+ →
0+

1 ). For α-transitions to the excited 0+ states, a smaller value
of the formation factor is automatically determined from the
experimental excitation energy E∗

� . The value c = 1.5 is taken
directly from previous analysis [36] and we do not modify any
parameter in our calculations.

We perform a systematic study of even-mass neutron
deficient 194−202Rn → 190−198Po → 186−194Pb decay chains
by the deformed version of DDCM. Let us take the α-emitter
194Rn [α⊗190Po] as an example to illustrate the details of
our calculations. The α-decay of 194Rn with a decay energy
of 7.862 MeV and a half-life of 0.78 ms was reported by
Andreyev et. al very recently [13]. It is the lightest even-mass
Rn isotope identified in experiment so far [13]. In Fig. 1, we
plot the variation of the theoretical α-decay half-life of 194Rn
as a function of the deformation parameter β (corresponding
to the daughter nucleus 190Po). The solid line represents the
experimental α-decay half-life [T1/2(Exp)] and the dotted line
stands for the calculated one [T1/2(Cal)]. It is seen from
Fig. 1 that the calculated half-life of 194Rn is much higher than
the experimental one in the spherical case [β = 0]. By taking
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FIG. 1. The variation of the theoretical α-decay half-life of 194Rn
as a function of parameter β.

the deformation freedom into account, the theoretical α-decay
half-life decreases smoothly with increasing nuclear deforma-
tion. The deformation parameter for 190Po can be extracted at
the intersection point of two lines where the calculated half-life
by DDCM is exactly equal to the experimental one, i.e., the
half-lives ratio HR = T1/2(Exp)/T1/2(Cal) = 1.0. Through
a careful analysis of the experimental α-decay half-life, we
obtain a deformation value of β = 0.364 for the ground 0+
state of 190Po. This is in accord with the potential energy
surface calculations where 190Po was also predicted to be
deformed in its ground state [18].

In Fig. 2, the α-transitions from the ground state of 190Po to
the ground 0+

1 and excited 0+
2 states of 186Pb are plotted in the

same way. The experimental partial half-lives of α-transitions
to these two states are 2.5 ms and 74 ms, respectively [8].
Obviously, the 0+ → 0+

2 α-transition is hindered as compared
with the ground state transition. Thus the residual daughter
nucleus after disintegration has the highest probability to stay

in its ground state. It is shown in Fig. 2 that the ground 0+
1

state in 186Pb has a nearly-spherical shape and we deduce
a deformation value of β = 0.097 from the experimental
α-decay half-life [T1/2(Exp) = 2.5 ms]. This spherical ground
state in 186Pb is caused by the Z = 82 proton shell effect.
In contrast, the excited low-lying 0+

2 state in 186Pb is mainly
the deformed configuration with a large extracted β value of
0.328. The occurrence of the deformed excited 0+

2 states in
186Pb is strongly associated with proton excitations across the
Z = 82 shell closure. Although it is difficult to distinguish
the prolate or oblate shape for the deformed state due to the
overall effect of nuclear deformation on the α-decay half-lives,
the phenomenon of coexisting spherical and deformed shapes
in 186Pb is clearly demonstrated in Fig. 2.

The numerical results of other neutron-deficient Pb and
Po isotopes are given in Table I. In Table I, the parent and
daughter nuclei are listed in the first column. The second
column denotes the spin and parity of the parent nucleus
ground state. The third column denotes the spin and parity
of the ground and excited states in the daughter nucleus.
The experimental α-decay energies and half-lives are given
in columns 4 and 5, respectively [9,10,13]. The extracted
deformation parameters are listed in the last column of
Table I. It is seen from Table I that the variation of the
experimental α-decay half-lives is as large as 1010 times
[7.8×10−4 s ∼ 1.4×10+7 s]. As a consequence, it is extremely
difficult to reproduce the experimental data at the level
of HR = T1/2(Exp)/T1/2(Cal) = 1.0. In fact, the experimental
half-lives of the neutron-deficient Rn and Po isotopes are
more or less underestimated in the spherical calculations.
However, the agreement between the experimental data and
the spherical results can be greatly improved by taking nuclear
deformation freedom into account. This is because the overall
effect of nuclear deformation will result in a higher α-cluster
penetration probability through the deformed Coulomb barrier.
We note that the penetration factor is more sensitive to nuclear
deformation than other terms of the decay width and thus
the nuclear deformation mainly affects the barrier penetration
probability. Fortunately, the α-core interaction in DDCM is
calculated from the microscopic double-folding model [32].
Based on the popular M3Y nucleon-nucleon interaction and

FIG. 2. The variation of the theoreti-
cal α-decay half-life of 190Po as a function
of parameter β.
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TABLE I. The theoretical deformations extracted from the experimental α-decay energies
and half-lives. The unit of the α-decay half-lives is in seconds.

Decay Iπ (p) Iπ (d) Q (MeV) Tα (Expt.) β (Theo.)

194Rn →190Po + α 0+ 0+
1 7.862 7.8 × 10−4 0.364

196Rn →192Po + α 0+ 0+
1 7.616 4.4 × 10−3 0.360

198Rn →194Po + α 0+ 0+
1 7.354 6.4 × 10−2 0.267

200Rn →196Po + α 0+ 0+
1 7.043 1.1 × 100 0.213

→196 Pom + α 0+ 0+
2 6.485 1.3 × 102 0.347

202Rn →198Po + α 0+ 0+
1 6.775 9.9 × 100 0.221

→198Pom + α 0+ 0+
2 5.959 5.5 × 103 0.302

190Po →186Pb + α 0+ 0+
1 7.695 2.5 × 10−3 0.097

192Po →188Pb + α 0+ 0+
1 7.319 3.2 × 10−2 0.141

194Po →190Pb + α 0+ 0+
1 6.986 4.2 × 10−1 0.147

196Po →192Pb + α 0+ 0+
1 6.657 6.2 × 100 0.162

198Po →194Pb + α 0+ 0+
1 6.307 1.8 × 102 0.131

190Po →186Pbm + α 0+ 0+
2 7.162 7.4 × 10−2 0.328

192Po →188Pbm + α 0+ 0+
2 6.731 2.3 × 100 0.344

194Po →190Pbm + α 0+ 0+
2 6.328 1.8 × 102 0.273

196Po →192Pbm + α 0+ 0+
2 5.888 2.8 × 104 0.212

198Po →194Pbm + α 0+ 0+
2 5.377 1.4 × 107 0.200

the standard proton-proton Coulomb interaction, the deformed
Coulomb barrier in DDCM are well defined in physics. The
total penetration probability of the α-particle through the
deformed Coulomb barrier is obtained by a careful averaging
procedure along different orientation angles [32]. Therefore
the influence of the core deformation on the α-decay half-lives
is properly included in the deformed version of DDCM
[32]. For the α-emitters in Table I, we have also performed
systematic calculations on their partial α-decay half-lives.
Similarly, the deformation parameters of the ground and
first excited 0+ states in these nuclei are deduced by the
deformed version of DDCM. In principle, the extracted β value
represents an average deformation after configuration-mixing
for the even-mass Pb and Po isotopes. To illustrate the variation
of these extracted β values clearly, we plot in Fig. 3 the
deformation parameters of the coexisting 0+

1 and 0+
2 states

of Pb and Po isotopes by full and hollow circles respectively.
It is seen from Fig. 3 that the ground state deformation

parameters in 188,190,192,194Pb are very small [β ∼ 0.10],
while the deformation parameters of the low-lying excited
0+

2 states in these nuclei are relatively much larger [β ∼ 0.25].
This closely resembles the case of 186Pb and agrees with
the experimental facts. It is also seen from Fig. 3 that the
even-mass Po isotopes are deformed in their ground states
and the β values range from 0.213 to 0.364. Experimentally
the low-lying excited 0+

2 states in 196,198Po have also been
identified by α- and β-studies. DDCM yields slightly larger
deformation parameters for these two states as compared
with the ground state ones. The magnitude of these extracted
deformation parameters of Pb and Po isotopes is generally
consistent with the available experimental and theoretical
studies [14–20]. More importantly, several interesting features
of these shape-coexisting nuclei are clearly shown in Fig. 3:
(i) Pb isotopes: spherical in their ground 0+

1 states and

deformed in the excited 0+
2 states; (ii) Po isotopes: deformed

in both the ground and excited 0+ states; (iii) decreasing of
nuclear deformation with increasing neutron number for the
ground states of 190,192,194,196,198Po. Notice that our present
analysis is totally based on the measured α-decay energies
and half-lives. The values of deformation parameters are
obtained without adjusting any parameter in DDCM. The
overall agreement with the experiment is satisfactory and our
present analysis provides an alternative way to study nuclear
deformation in these shape-coexisting nuclei.

In conclusion, the α-transitions to ground and first excited
0+ states in the neutron-deficient Pb and Po isotopes are
systematically calculated by the density-dependent cluster
model. The influence of nuclear deformation on the α-decay
half-lives is properly taken into account by averaging the

FIG. 3. The deformation parameters of the ground 0+
1 and excited

0+
2 states in even-mass Pb and Po isotopes.
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α-cluster penetration probability along different orientation
angles. The α-cluster preformation factor is approximately
characterized by the Boltzmann distribution for α-transitions
to the coexisting 0+

1 and 0+
2 states. The deformation param-

eters, which are extracted directly from the experimental
α-decay data, are in satisfactory agreement with both the
experimental facts and theoretical calculations. The shape-
coexisting phenomenon in the neutron-deficient Pb and Po
nuclei is successfully described by the deformed version of
DDCM. The present analysis confirms that α-decay is a

powerful tool to investigate the shape-coexisting nuclei around
the Z = 82 shell closure.
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