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Contribution of spin 1/2 and 3/2 resonances to two-photon exchange effects in
elastic electron-proton scattering
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We calculate contributions of hadron resonances to two-photon exchange effects in electron-proton scattering.
In addition to the nucleon and P 33 resonance, the following heavier resonances are included as intermediate
states in the two-photon exchange diagrams: D13, D33, P 11, S11, and S31. We show that the corrections due
to the heavier resonances are smaller than the dominant nucleon and P 33 contributions. We also find that there
is a partial cancellation between the contributions from the spin 1/2 and spin 3/2 resonances, which results in a
further suppression of their aggregate two-photon exchange effect.
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In the past few years, there has been a remarkable renewal
of interest in the nucleon electromagnetic form factors. Its
principal motivation has been an effort to interpret the results
of recent polarization transfer electron-proton scattering exper-
iments [1]: the form factors from these measurements are in
strong disagreement with those obtained from the unpolarized
scattering (Rosenbluth cross section) data [2,3] if one uses
the standard one-photon exchange approximation to extract
the form factors. This problem has to be resolved—not only
in view of the fundamental importance of the nucleon form
factors, but also in order that electron-proton scattering should
be used as a reliable tool to measure them. A comprehensive
up-to-date review of the subject can be found in Ref. [4] and
in references cited therein.

It was shown in Refs. [5–7] that by taking into account
two-photon exchange diagrams, one can reconcile the Rosen-
bluth and polarization transfer measurements of the proton
electromagnetic form factors. Since the � resonance plays an
important role in nucleon Compton scattering, its contribution
was investigated in Ref. [8], where it was demonstrated that
it is essential that both nucleon and � intermediate states
be included in evaluating two-photon exchange effects in
electron-proton scattering.

The present report extends the approach of Refs. [5,8],
generalizing it to include the full spectrum of the most
important hadron resonances as intermediate states in the
two-photon exchange box and crossed-box loop diagrams
for electron-proton scattering. We will use computational
techniques quite similar to those described in the earlier
papers [5,8]. Therefore, in this report we will give only the
details which are specifically relevant to the extension to
the general spin 1/2 and 3/2 resonances. We take the masses of
the resonances and their nucleon-photon coupling constants
based on dynamical multichannel calculations [9,10] of nu-
cleon Compton scattering at low and intermediate energies.
The resonance two-photon exchange effects turn out to be not
too sensitive to the details of these models.

We will show that in general the contributions of all
the heavier resonances are much smaller than those of the
nucleon and �(P 33) calculated earlier [8]. We will analyze
the contributions of the individual resonances in some detail.

In particular, the calculations presented below will reveal an
interesting interplay between the contributions of the spin 1/2
and spin 3/2 resonances, which is analogous to the partial
cancellation of the two-photon exchange effects of the nucleon
and � intermediate states, found in Ref. [8]. One of the results
of this report is that, notwithstanding the smallness of the
resonance contributions, their inclusion in the two-photon
exchange diagrams leads to a better agreement between the
Rosenbluth and polarization transfer data analyses, especially
at higher values of the momentum transfer squared Q2.

The differential cross section for elastic electron-proton
scattering can be written as

σ = σB(1 + δ), (1)

where δ stands for a two-photon exchange correction to the
Born one-photon exchange cross section σB . Throughout this
paper, we will consider the reduced cross section, defined in the
standard way [4,8], by omitting an irrelevant (for the present
purposes) factor describing the scattering on a structureless
spin 1/2 target. The Born contribution to the reduced cross
section is given in terms of the electric and magnetic form
factors of the proton, GE(Q2) and GM (Q2), as follows:

σB = G2
M (Q2) + ε

τ
G2

E(Q2). (2)

The two independent kinematic variables are the momentum
transfer squared Q2 ≡ −q2 ≡ 4τM2 (M is the nucleon mass)
and the photon polarization ε = [1+2(1+τ )tan2(θ/2)]−1, the
latter expressed in terms of the scattering angle θ . The various
contributions to the δ in Eq. (1) can be calculated from the
scattering amplitudes M using [5]

δN,R = 2
Re

(
M†

BM
γ γ

N,R

)

|MB |2 , (3)

where the subscript B (superscript γ γ ) denotes the Born (two-
photon exchange) contribution. The two-photon exchange box
and crossed-box diagrams can have nucleon and resonance
intermediate states, denoted in Eq. (3) by the subscripts N and
R. To leading order in the electromagnetic coupling, the total
two-photon exchange correction is given by the sum of the
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separate hadron contributions:

δ = δN + δP 33 + δD13 + δD33 + δP 11 + δS11 + δS31. (4)

The coupling of a spin 3/2 resonance (mass MR) to a
nucleon and a photon is described by the vertex1

�να
γR→N (p, q)

= i
eFR(q2)

2M2
R

{
gR

1 [gναp/q/ − pνγ αq/ − γ νγ αp · q

+ γ νp/qα] + gR
2 [pνqα − gναp · q] + (

gR
3

/
MR

)

× [q2(pνγ α − gναp/) + qν(qαp/ − γ αp · q)]
}
PRIR,

(5)

where pα and qν are the four-momenta of the resonance
and photon, respectively, and gR

1,2,3 are coupling constants
discussed below. The Lorentz factor PR = γ5 if R = P 33,
and PR = 1 if R = D13 or R = D33; and the isospin factor
IR = T3 if R = P 33 or R = D33, and IR = 1 if R = D13.

The vertices of the spin 1/2 resonances read

�
µ

γR→N (q) = −egRFR(q2)

2M
σµνqνPRIR, (6)

where for R = P 11, PR = 1 and IR = 1; for R = S11, PR =
γ5 and IR = 1; and for R = S31, PR = γ5 and IR = T3.

The phenomenological form factors FR(q2) account for
the nonlocal nature of the hadrons while ensuring ultraviolet
convergence of the loop integrals. We take the dipole form
factors

FR(q2) = �4
R(

�2
R − q2

)2 , (7)

where �R is the cutoff. To keep the number of the parameters
to the minimum, we choose �R = 0.84 GeV for all hadrons
in the model. This value is known to be consistent with the
mean square radius of the proton. Taking the same �R for
all hadrons can be justified since the dependence of the two-
photon correction on the form factors is partially canceled in
the ratio of Eq. (3).

The vertices in Eq. (5) are orthogonal not only to the photon
four-momentum qν (the usual gauge invariance property), but
also to the resonance four-momentum pα . The latter property
ensures the possibility of using only the physical spin 3/2 part
of the Rarita-Schwinger propagator for these resonances,

Sαβ(p) = −i

p/ − MR + i0
P3/2

αβ (p), (8)

with the spin 3/2 projection operator

P3/2
αβ (p) = gαβ − 1

3
γαγβ − 1

3p2
(p/γαpβ + pαγβp/), (9)

while the background spin 1/2 part of the general propagator
does not contribute to the amplitudes [12].

1We use the conventions of Ref. [11].

For the spin 1/2 resonances, we use the usual Dirac
propagators

S(p) = i

p/ − MR + i0
. (10)

At present, we neglect the widths of the resonances. While
entering into the imaginary part of the two-photon exchange
amplitude, these widths do not directly affect the real part,
and hence, by Eq. (3), they should not be significant in the
calculation of δR .

We use the following masses of the resonances
(in units of GeV) [10]: MP 33 = 1.232,MD13 = 1.52,MD33 =
1.7,MP 11 = 1.55,MS11 = 1.535,MS31 = 1.62, and M =
0.938 for the nucleon. As was done previously for the �

resonance [8], we choose the coupling constants in the vertices
of Eqs. (5) and (6) using the dressed K-matrix model (DKM)
whose essential ingredients are described in Ref. [9]. The
results discussed below were obtained using the following
coupling constants: gP 33

1 = 7, gP 33
2 = 9, gD13

1 = gD13
2 =

gD33
1 = gD33

2 = 0.1, gP 11 = 1.2, gS11 = −0.45, and
gS31 = −0.2. With these numerical values for the constants,
the DKM provides a good description of nucleon Compton
scattering at energies from zero up to the second resonance
region. Note, however, that a precise tuning of the resonance
coupling constants is unnecessary for the purposes of the
present calculation; this point will be explained in more detail
below. The chosen set of coupling constants implies that
the R → γN transitions are mostly of the magnetic type,
with the electric type being much smaller. As was shown in
Ref. [8] for the � intermediate state, the two-photon exchange
contribution of the Coulomb coupling gP 33

3 is about 10 times
smaller than that of the magnetic coupling. A similarly strong
suppression is anticipated for the other resonances as well.
Since our main focus is on the dominant two-photon exchange
effects, in this report we omit the Coulomb couplings for all
of the resonances.

Using the above vertices and propagators, we evaluate the
box and crossed-box two-photon exchange loop diagrams.
The calculation is fully relativistic and obeys the properties of
gauge invariance and crossing symmetry. The loop integrals
are finite: the infrared convergence is due to the masses of the
intermediate resonances being greater than the nucleon mass,
and the ultraviolet convergence is ensured by the presence
of the regularizing form factor FR(q2) in the vertices of
Eqs. (5) and (6). The loop integrals and their evaluation
involve obvious generalizations of the expressions given in
Ref. [8] where all technical details can be found. The sum
of the box and crossed-box loop integrals for each resonance
R constitutes the two-photon exchange amplitude Mγ γ

R . The
two-photon exchange correction to the unpolarized electron-
proton scattering cross section is then given by Eq. (3) for each
resonance R separately, and by Eq. (4) for the contribution of
all hadron intermediate states.

The calculated two-photon corrections to the reduced cross
section are displayed in Fig. 1. The one-photon exchange Born
cross sections are shown by the dotted lines. The cross sections
including additional two-photon exchange corrections are
shown by the dashed lines for the sum of the nucleon and P 33
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FIG. 1. Effect of adding the two-photon exchange correction to
the Born cross section, the latter evaluated with the nucleon form fac-
tors from the polarization transfer experiment [1]. The intermediate
state includes a nucleon and indicated hadron resonances. We show
the reduced cross section divided by the square of the standard dipole
form factor G2

D(Q2) = 1/[1 + Q2/(0.84 GeV)2]4. The data points at
four fixed momentum transfers are taken from Refs. [2,3].

contributions, and by the solid lines for the full result with all
resonances. In general, each resonance two-photon correction
is proportional to a sum of squares of the nucleon-photon
coupling constants of that resonance. This sets the scale of the
magnitude of the resonance contributions. Taking the example
of Q2 = 4 GeV2, the two-photon exchange corrections from
the included hadrons can be classified by their signs and orders
of magnitude as follows. As 0<ε<1, the corrections change
smoothly between the values

−4.7 � δN � 0%, 1.9 � δP 33 � 0%,

−0.7 � δD13 � 0%, (11)

−0.3 � δD33 � 0%, −0.15 � δP 11 � 0%,

0.06 � δS11 � 0%, 0.01 � δS31 � 0%, (12)

listed in the order of decreasing magnitude.

Figure 1 shows that at not too high Q2, the two-photon
exchange corrections are determined mainly by the nucleon
and P 33 intermediate states. Therefore, one does not have to
fine tune the coupling constants of the other resonances to get
a good estimate of the overall two-photon exchange effect. In
practice this means that results quite close to those presented
in Fig. 1 were obtained when we varied the resonance coupling
constants (except P 33) by as much as ±50%.

In addition to the dominant nucleon, P 33 contributions, the
D13 resonance gives the most important correction among the
remaining resonances. This is consistent with the well-known
prominence of the D13 in the second resonance region of
the Compton scattering cross section; see, e.g., Ref. [10] and
references therein. In fact, the fit of the full curves to the
data in Fig. 1 would not be noticeably worsened if we kept
only the nucleon, the P 33 and D13 resonances in the model.
Even though the nucleon and the P 33 resonance dominate
the two-photon effect, the results shown in Fig. 1 indicate that
the inclusion of the heavier resonances improves the agreement
with the data. This improvement is a genuine dynamical effect,
since we did not fit the calculated cross sections to the data in
Fig. 1; rather, the resonance coupling constants were obtained
from the description of Compton scattering, as described
above. It it also interesting to note that there is an additional
suppression of the aggregate two-photon exchange effect of the
heavier resonances. Its source is a partial cancellation between
the spin 1/2 and spin 3/2 resonance contributions.

It is worth pointing out that the calculation presented in this
report is complementary to two sets of existing approaches
to two-photon exchange effects in elastic electron-proton
scattering. The first approach [5,8] takes into account the
intermediate states of the nucleon and the lightest � resonance,
which are essential at all kinematic regimes, but are most
important at low energies. The second approach is based
on the generalized parton distribution techniques [7], whose
natural application is at relatively high energies. The energy
range between these two sets of models is governed by the
dynamics of the hadron resonances, which has been addressed
in the present calculation. We have shown that the two-photon
exchange effects with the inclusion of the hadron resonances
are indeed capable of bringing the Rosenbluth and polarization
transfer experiments into closer agreement with each other.
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