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Neutrino scattering rates in neutron star matter with � isobars
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We take the �-isobar degrees of freedom into account in neutron star matter and evaluate their contributions
to neutrino scattering cross sections and mean free paths. The neutron star matter is described by means of an
effective hadronic model in the relativistic mean-field approximation. It is found that � isobars may be present
in neutron stars. The electron chemical potential does not decrease and the neutrino abundance does not increase
with the increase of the density when neutrinos are trapped in the matter with � isobars. The large vector coupling
constant between the �− and neutrino and the high spin of the � influence significantly the neutrino scattering
cross section and lead the contribution of the �− to the dominance of the scattering rates. In neutrino-trapped
case, the presence of �s causes the neutrino mean free path to decrease drastically compared to that in the matter
in which baryons are only nucleons.
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I. INTRODUCTION

Theoretical investigations have shown rich structures in
hadronic matter at high densities or high temperatures that are
expected to be found in experiments of relativistic heavy-ion
collisions or some astronomical observables, such as neutron
stars. Some articles [1,2] have shown that there may exist stable
�-excited nuclear matter at high densities ρ ≈ (3 ∼ 5)ρ0 (ρ0

is the saturation density of nuclear matter) in the framework
of the nonlinear Walecka models and the influences of the
�-excited nuclear matter on the properties of neutron stars
have been discussed roughly in Ref. [3] within a chiral effective
Lagrangian.

It has been well established that neutron star matter is
not pure neutron matter, but probably with quite complicated
components, including hyperons, condensates of K−, and/or
π−, even quarks and so on (see, for example, Refs. [4–7] and
references therein). For � isobars, Glendenning and collab-
orators [8,9] once made a specific choice of the couplings,
i.e., the �-isobar-meson couplings are taken to be equal to
that between nucleon and the mesons, and showed that the �

isobars emerge at a too-high baryon density to affect neutron
stars. However, Jin’s work in the framework of finite-density
quantum chromodynamics (QCD) sum rules [10] predicts that
the coupling between the � isobar and the scalar meson is
stronger and that between the � isobar and vector mesons
is weaker than those between nucleon and the corresponding
mesons, respectively. Furthermore, a triangle relation for the
�-isobar coupling constants has been proposed by Kosov
and collaborators [11] and shown that the �-isobar coupling
constants can change in a proper range. It means then whether
stable �-excited nuclear matter exists and whether the �

isobars affect the property of neutron stars or not are still a
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controversial issue because little is known about the coupling
constants of the � with the scalar and vector mesons. In any
case, there have been some discussions on the existence of
the � isobars and the effects on the properties of neutron stars
(see, for example, Refs. [3,12,13]). It looks that it is imperative
to study the related problems with more profound coupling
constants given in fundamental investigations.

Conversely, it has been well known that ordinary matter
is transparent to neutrinos; however, the transport properties
of neutrinos may play an essential role in the core-collapse
supernova explosion and the formation of neutron stars. The
important theoretical input of the neutrino transportation is
the opacity to neutrinos. There have been lots of works to
study the neutrino opacity in dense matter involving both
the charged-current absorption and neutral-current scatter-
ing reactions on baryons and leptons (see, for instance,
Refs. [14–17] and references therein). The neutrino opacity
could be modified by interactions of the ambient matter.
Sawyer [18,19] and Iwamoto and collaborator [20] have
explored the mean free path of neutrinos in dense matter
with the nonrelativistic descriptions of nuclear medium and
the neutrino scattering cross section has been evaluated with
the relativistic framework based on effective Lagrangian
models in the mean-field approximation [21–23]. Reddy et al.
[15–17] have carried out some nonrelativistic and relativistic
calculations in protoneutron stars. The components of neutron
stars may also affect the opacity. And it has been shown that the
presence of hyperons influences the evolution of protoneutron
stars [16,24]. The � isobars, as new possible components of
neutron star matter, may affect the neutrino opacity and in turn
should be investigated as well.

In the present work, we study the existence of � isobars in
neutron star matter and its effects on the neutrino scattering
rates and the neutrino opacity in an effective hadronic model
with the coupling constants between the �s and the mesons
being taken as those given in finite-density QCD sum rules.
It is organized as follows. In Sec. II, we describe briefly
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the formalism for evaluating the composition of neutron
star matter and the neutral-current reactions of neutrinos. In
Sec. III, we represent our calculated results and give some
discussions. Finally, we summarize our work and give some
remarks in Sec. IV.

II. THE FORMALISM

It has been known that the relativistic mean-field approxi-
mation (RMFA) is quite successful in describing the property
of normal nuclear matter (see, for example, Ref. [25]). We
then describe the neutron star matter with � isobars by
implementing the RMFA in which baryons interact with each
other via the exchange of σ, ω, and ρ mesons. The full
Lagrangian density can then be written as

L = LN + L� + Ll. (1)

To highlight the effects of the �s, we incorporate here only
the �s and nucleons but do not include the hyperon degrees
of freedom in Eq. (1). Then the LN contains only nucleon and
meson sectors and reads [25]

LN = N̄ (iγµ∂µ − MN + gσNσ − gωNγµωµ

− gρNγµ�τ · �ρµ)N − 1
4wµνw

µν + 1
2m2

ωωµωµ

− 1
4 �ρµν �ρµν + 1

2m2
ρ �ρµ �ρµ + 1

2∂µσ∂µσ + 1
2m2

σ σ 2

− 1
3bMN (gσNσ )3 − 1

4c(gσNσ )4, (2)

where N (N = p, n) denotes the Dirac spinor of nucleon. �τ is
the isospin operator of the nucleon. The field tensors for the ω

and ρ mesons are wµν ≡ ∂µων − ∂νωµ, �ρµν ≡ ∂µ �ρν − ∂ν �ρµ,
respectively.

As for the � isobars, we take them as separate degrees of
freedom. It is well known that thus far there is no relativistic
quantum theory for the � as a spin 3/2 field without any
inconsistency when imposing other fields such as the ones
with electromagnetic interaction [26]. Moreover, following
the Rarita-Schwinger formalism [27], the spin 3/2 particle,
described by means of a vector spinor state, has off-shell spin
1/2 sector. To avoid these complicated problems, we take only
the on-shell �s into account and the mass of the �s can be
substituted by the effective one in the RMFA. The Lagrangian
density concerning the � isobars can then be expressed as

L� = �̄µ[iγ µναDα − (M� − gσ�σ )γ µν]�ν, (3)

where �µ(� = �++,�±, and �0) is the Rarita-Schwinger
spinor for the � [27]. Dα = ∂α + igω�ωµ + igρ�

�T · �ρµ with
�T being the isospin operator of the �. Here, two totally
antisymmetric products of γ matrices are involved, which read
explicitly

γ µν = 1
2 [γ µ, γ ν] ,

γ µνα = 1
2 {γ µν, γ α} = iεµναβγβγ5.

Correspondingly, the field equations are

[iγ αDα − (M� − gσ�σ )]�µ = 0, (4)

Dα�α = 0, γα�α = 0. (5)

Concerning leptons, we take them as noninteracting parti-
cles and the corresponding Lagrangian density reads

Ll =
∑

l

l̄(iγµ∂µ − ml)l. (6)

The energy-momentum tensor is defined by

Tµν = −gµνL +
∑

B=N,�

∂B

∂xν

∂L

∂(∂B/∂xµ)
, (7)

The propagators GN (p) and G�
αβ(p) can be derived from

Eqs. (2) and (3) in the mean-field approximation

GN (p) = ( /p + M∗
N )

(
1

p2 − M∗2
N + iε

+ iπ

E∗
N (p)

× δ{[p0 − E∗
N (p)]}fN (p)

)
,

(8)

G�
αβ(p) = ( /p + M∗

�)Dαβ

(
1

p2 − M∗2
� + iε

+ iπ

E∗
�(p)

× δ{[p0 − E∗
�(p)]}f�(p)

)
,

where fN and f� are the Fermi-Dirac functions for nucleon,
� isobars in thermal equilibrium, respectively, and Dαβ can
be expressed as [28]

Dαβ = gαβ − 1

3
γαγβ − 1

3M∗
�

(γαpβ − γβpα) − 2

3M∗2
�

pαpβ.

(9)
Then for a uniform system at rest, the thermodynamical

potential per unit volume for hadronic matter can be evaluated
from Eqs. (7) and (8), along the line proposed in Ref. [29], as

�

V
= −p = −1

3
〈Tii〉

= 1

2
m2

σ σ 2
0 + 1

3
bMN (gσNσ0)3 + 1

4
c(gσNσ0)4

− 1

2
m2

ωω2
0 − 1

2
m2

ρρ
2
0 + i

3

∫
d4k

(2π )4

× Tr
[
kiγi

(
GN + G�µ

µ

)]
= 1

2
m2

σ σ 2
0 + 1

3
bMN (gσNσ0)3 + 1

4
c(gσNσ0)4

− 1

2
m2

ωω2
0 − 1

2
m2

ρρ
2
0 − T

∑
B=N,�

γB

∫
d3k

(2π )3

× ln[1 + e−β(E∗
B−µ∗

B )], (10)

where σ0, ω0, and ρ0 are the expectation values of the σ, ω, and
ρ meson fields in the mean-field approximation respectively
and can be easily obtained by minimizing the �/V. γB is the
spin degeneracy factor with γN = 2 and γ� = 4. The inverse
temperature is denoted by β = 1/T . E∗

B = (k2 + M∗2
B )1/2 with

M∗
B = MB − gσBσ0 denoting the effective mass of baryon B.

The quantity µ∗
i is related to the usual chemical potential µi by

µ∗
i = µi − giωω0 − giρt3iρ0, where t3i is the third component

of the isospin for the baryon i = N,�. In the β equilibrium,
the chemical potentials for the baryons satisfy

µi = biµn − qi(µe − µνe
), (11)
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where bi is the baryon number of particle i and qi is its charge.
We take the lepton number density fraction YLe = Ye + Yνe

to be 0.4 to constrain µνe
in the case of that the neutrinos

are trapped [30]. If the neutrinos are not trapped, we have
µνe

= 0 in Eq. (11). There are two additional conditions that
are connected with the total baryon density nB and charge
neutrality and given as∑

i=N,�

ni = nB,

∑
i=N,�

qini = −
∑

l=e−,µ−
qlnl. (12)

Following Refs. [16,23], we have the neutrino scattering
differential cross section per unit volume of matter

1

V

d3σ

d2�′dE′
ν

= − GF

128π3

E′
ν

Eν

Im(Lµν�
µν)

1 − f (Eν ′)
1 + exp (−q0/T )

,

(13)
where Eν,E

′
ν are the initial and final neutrino energies,

respectively. GF = 1.023 × 10−5/M2
N is the weak coupling

constant with MN being the bare mass of nucleon. The function
f (E′

ν) denotes the final neutrino distribution function, which
in thermal equilibrium is given as the Fermi-Dirac function

f (E′
ν) =

[
1 + exp

(
E′

ν − µ′
ν

T

)]−1

. (14)

The neutrino tensor Lµν is

Lµν = 8[2kµkν + (k · q)gµν − (kµqν + qµkν) − iεµναβkαqβ ],
(15)

where k is the initial neutrino four-momentum and q = (q0, �q)
is the four-momentum transfer. The polarization tensor �µν for
nucleon can be found in Refs. [15,16,23]. Taking Eq. (5) into
account, one can infer that most of the �-neutrino couplings
are canceled. The polarization tensor �µν for � can then be
written as

��
µν(q) = −i

∫
d4p

(2π )4
Tr

[
G�

αβ(p)JµG�αβ(p + q)Jν

]
, (16)

where the form of current operator of the � is similar to that
used for the nucleon, Jµ = γµ(CV − CAγ5), where CV and CA

for each � species are listed in Table I. One can decompose
the polarization into the contributions of vector, axial, and

TABLE I. Neutral-current vector and
axial coupling constants of the �s with
sin2 θW = 0.23. The vector coupling con-
stants of the �s are obtained from con-
stituent quark models. The magnitudes of
axial couplings of �s are taken to be 1 for
simplicity.

Reaction CV CA

ν�++ → ν�++ 3 − 8 sin2 θW 1
ν�+ → ν�+ 1 − 4 sin2 θW 1
ν�0 → ν�0 −1 −1
ν�− → ν�− −3 + 4 sin2 θW −1

vector-axial as

��
µν = C2

V ��
µνV + C2

A��
µνA − 2CV CA��

µνV A. (17)

According to the principles of vector current conservation and
translational invariance, one can expand the ��

µνV in terms
of two independent components, referred to as ��

L and ��
T .

��
µνA and ��

µνV A can be expressed as

��
µνA = ��′

µνV + gµν�
�
A,

(18)
��

µνV A = iεµ,ν,α,0q
α��

V A,

where the related ��′
µνV can also be written in terms of

two independent components, referred to as ��′
L and ��′

T .
The derivations and the expressions of these two polarization
factors are lengthy and some of them are listed in the Appendix.

The total cross section per unit volume can be obtained by
integrating Eq. (13) over the final neutrino energies and scatter-
ing angles with a transformation 2πqdqdq0 = EνE

′
νd

2�′dE′
ν

and given as

σ

V
= 2π

∫ Eν

−∞
dq0

∫ 2Eν−q0

|q0|
dq

q

EνE′
ν

1

V

d3σ

d2�′dE′
ν

. (19)

III. RESULTS AND DISCUSSION

In this work, we take a set of parameters from the so-called
GM3 model [4], listed in Table II, from which the properties
of nuclear matter in equilibrium are given as follows: the
incompressibility, the symmetry energy, the saturation density,
the binding energy per nucleon in the matter, and the ratio of
the effective mass of nucleon to the bare one are 240 MeV,
32.5 MeV, 0.153 fm−3,−16.3 MeV, and 0.78, respectively.
The �-σ coupling is related to the N-σ one by gσ� = 1.3gσN

according to the result of QCD sum rules [10] or from the
assumption that gσ�/gσN ∼ M�/MN [1]. Moreover, gω� and
gρ� are taken to be identical with gωN, gρN , respectively.

In Fig. 1, we illustrate the calculated results of the particle
populations as a function of density in neutrino-free matter at
β equilibrium and zero temperature. The upper panel shows
the result of the matter in which the baryons are only nucleons.
The lower panel corresponds to the case that the � degrees of
freedom are included. The upper panel of Fig. 1 shows that
the fractions of proton and leptons grow smoothly with the
increase of the matter. It implies that the electron chemical
potential increases monotonically as a function of the density.
However, when the �s are taken into account, the result shown
in the lower panel of Fig. 1 presents evidently a threshold
behavior, i.e., �−s emerge suddenly at the density ρ �
0.3 fm−3. Because of the negativity of their charge, they replace
the electrons to a certain extent to achieve the charge neutrality.
As a consequence, the electron fraction decreases a little with

TABLE II. Nucleon-meson coupling constants in the GM3 model.

gσ /mσ (fm) gω/mω (fm) gρ/mρ (fm) b c

3.1507 2.1954 2.1888 0.008659 −0.002421
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FIG. 1. Calculated results of the fractions of the ingredients of
neutron star matter at T = 0 MeV in the GM3 model of parameters
(The upper, lower panel corresponds to the matter without, with the
� degrees of freedom, respectively).

the increase of the density until the �++s appear where the
electron fraction turns to increase again. Moreover the fraction
of proton reaches its maximum at ρ � 0.62 fm−3. Comparing
the presently obtained results with those of the calculations
for neutron star matter, including hyperons (see, for example,
Ref. [31]), an obvious distinction is that the fraction of µ− does
not decrease with the increase of the density even after �−s
appear. It indicates that the electron chemical potential grows
monotonically. This may mainly result from the high isospin
of the �− that could have significant effects on the condensate
of the negatively charged mesons in neutron stars [30]. In
addition, it is also worth mentioning that the presently obtained
sequence of the appearance of the � species is consistent with
the notion of charge-favored or unfavored species [8], that
is, the first � species to appear is the �−, followed by the
�0 and the �+, then the �++.

To show the effects of neutrino trapping on the property of
neutron star matter, we have evaluated the fractions of various
species in the neutron star matter at temperature T = 30 MeV
in the cases without and with neutrinos being trapped. The
obtained results are illustrated in the left and right panels of
Fig. 2, respectively. Furthermore, the upper panels present the
results for the matter in which the baryons are only nucleons,
and the lower panels correspond to those in the matter with
�s. Comparing Fig. 2 with Fig. 1, one can recognize easily
that the finite temperature smooths the threshold behavior and
favors the presence of �s (lower left panel). The increase of the
density weakens the effects of temperature. Moreover, in the
case of with neutrinos being trapped (as shown in the lower
right panel), the neutrino trapping delays the appearance of
the negatively charged � species (i.e., it emerges at higher
density). In addition, the fraction of the neutrino νe decreases
smoothly with the increase of density at finite temperature,
which is different from the behavior in the matter including
hyperons [30].

From the above discussion, one can notice that the �

species appear at moderate density in the case of presently

FIG. 2. Calculated fractions of the composition of neutron star
matter without (upper panels) and with (lower panels) the � degrees
of freedom at T = 30 MeV in the GM3 model of parameters; (left)
results for neutrino-free matter; (right) results for neutrino-trapped
matter.

used parameters and become more important components
of neutron star matter at high density. Hence they may
contribute to the neutrino scattering rates. We calculate then
the differential cross sections per unit volume of the scatterings
between neutrino and the baryons and other leptons and the
mean-free paths of neutrinos in the matter as well in the
cases mentioned above. The obtained results of the neutrino
scattering differential cross sections with each ingredient in
the matter at ρ = 4ρ0 = 0.612 fm−3 and zero temperature for
a neutrino with energy Eν = 5 MeV and fixed momentum
transfer |q| = 2.5 MeV, as a function of q0/|q|, are shown in
Fig. 3. Because the calculations indicate that the influence
of the µ− is negligibly small, we do not illustrate the
corresponding results in Fig. 3 and the following. Considering
the matter with the baryons being only nucleons, one can
see from the left panel of Fig. 3 that the scattering between
neutrino and neutron is the dominate process in the low q0

region and that between neutrino and electron becomes the
dominate one in high q0 region. In the matter that includes �s,
the results shown in the right panel of Fig. 3 manifest that the
contribution of the scattering between neutrino and �++ to the
cross section is absent and those from �−,�0, and �+ are all
in the low q0 region. Such a phenomenon arises from the kinetic
restriction and Pauli blocking. In more detail, comparing the
right panel with the left panel, one can recognize evidently that
the �− replaces the neutron to dominate the contributions to
the cross section. Such a result is quite similar to that of the
�− in the matter with hyperons [15]. Along the line proposed
in Ref. [15], one can understand such a feature as mainly
the consequence of the greater effective chemical potential
of the �− for its negative charge and larger vector coupling
constant with neutrinos. To understand such results more
thoroughly, we look through the longitudial and the transverse
polarizations −Im�L and −Im�T of the ingredients n, p,
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FIG. 3. Calculated differential cross sections of the scatterings
between neutrino and the ingredients of neutron star matter without
(left panel) and with (right panel) the � degrees of freedom at
T = 0 MeV.

e−, and �s in the matter. The calculated results are displayed
in Fig. 4. In this figure the curves labeled � with no superscript
represent the polarizations of a fictitious particle with the spin
of � but with the mass and effective chemical potential of
neutron. The figure manifests apparently that the polarization
magnitudes of such a hypothetical particle are almost two
times of those of neutron. Comparing the characteristic of
this fictitious particle and that of neutron, we can infer that

FIG. 4. Calculated imaginary parts of the lognitudinal and trans-
verse polarizations for n, p, e−, and �s at temperature T = 0. The
curves labeled � without any superscript represent the results of
a fictitious particle with the spin of � but the mass and effective
chemical potential of neutron.

the great enhancement of the polarization comes from the
high spin (s� = 3/2, sN = 1/2). These indicate that the much
larger scattering cross section on the �− results from both
the phase space (or the degeneracy of the spin space) and the
effective chemical potential and the vector coupling constant
with neutrinos. Note that the � polarizations are also sensitive
to the � effective masses and effective chemical potentials.
One can expect that, when we impose the practical values
of the effective masses and effective chemical potentials on
the �s, the polarizations will shrink to lower energy transfer
q0. The variation characteristic of the curves displayed in
Fig. 4 confirms such an understanding evidently. The obvious
suppression of the transverse responses (shown in the lower
panel of Fig. 4) provides also an understanding of the weak
response of the �+ and the approximately same magnitude of
the �0 as that of the neutron in the low q0 region.

To investigate the medium effects of matter more thor-
oughly, we have also calculated the differential cross sections
of the neutrino scattering on the particles in the neutron star
matter at temperature T = 30 MeV. The obtained results are
illustrated in Fig. 5, in which the upper and lower panels show
the results of “free" neutrinos (here the “free" means that
with zero chemical potential but the matter is still in thermal
equilibrium) and those of trapped neutrinos, respectively, the
left and right panels display the results in the matter with
the baryons being only nucleons and with both nucleons and
�s, respectively. From the upper panels, one can notice that
finite temperature opens the q0 < 0 responses and increases the
neutrino reaction energy to about πT , enhancing considerably
the neutrino scattering cross section in comparison with those
at zero temperature. In the case of that neutrinos are trapped
and degenerate, the energies of the scattering neutrinos are
mainly concentrated in the region close to their chemical
potential (µνe

∼ 250 MeV, corresponding to the typical density
of neutron star matter), and the differential cross sections are
enlarged compared to those in the neutrino-free case in which
the neutrino reaction energy is about 100 MeV (smaller than
the µνe

). Furthermore, as the � degrees of freedom are taken
into account, the � isobars enhance the scattering cross sec-
tions obviously, where the contribution from �− is dominate,
that from �0 is comparable to that comes from nucleon.

Another quantity characterizing the neutrino transportation
is its mean free path λ, which is simply related to Eq. (19)
by λ = (σ/V )−1. One can expect that, as the � degrees of
freedom are included, the mean free path will decrease and
the opacity of the neutron star matter will increase, because
the �s open additional channels for neutrino scattering to
take place. The calculated results of the mean free path of the
neutrinos in the matter at temperature T = 0 with neutrino
energy E = 5 MeV and that at T = 30 MeV with E =
100 MeV are represented in the top, middle panels of Fig. 6
respectively, and those of the trapped neutrinos in the matter at
T = 30 MeV and with E = µνe

are shown in the bottom panel.
From Fig. 6, one sees apparently that the mean-free paths of
the neutrinos at finite temperatures is substantially reduced
compared to the corresponding values at zero temperature.
And that in the neutrino-trapped case decreases more rapidly
with increasing density in the presence of the �s (lower panel)
than those in the other two cases.
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FIG. 5. Calculated differential cross sections of
the scatterings between neutrino and the ingredients
of neutron star matter without (left panels) and with
(right panels) the � degrees of freedom at T = 30
MeV; (upper panels) results for neutrino-free matter;
(lower panels) results for neutrino-trapped matter.

IV. SUMMARY

In summary, we have investigated the components of neu-
tron star matter and the scattering cross sections of neutrinos on
the ingredients of the matter in an effective hadronic theory in
this article. Although there exists uncertainty in the �-meson
coupling constants, our calculation indicates that the � isobars
may emerge in neutron star matter if the coupling constants are
taken to be those predicted in the finite-density QCD sum rules.
The appearance of the �s does not cause a decline of the elec-
tron chemical potential as the matter density increases, even
in the presence of negatively charged particle (i.e., the �−).
Neutrinos, when trapped, delay the appearance of the �s. The
large vector coupling between �− and neutrino and the higher

FIG. 6. Calculated mean free path of neutrinos in neutron star
matter with and without the � degrees of freedom at T = 0 MeV
(upper panel) and T = 30 MeV (middle and lower panels). The upper
and middle panels refer to the cases in which neutrinos are free. The
lower panel corresponds to that the neutrinos are trapped.

spin of �s affect greatly the neutrino scattering cross section
and induce the contribution of �− to be dominate at high
density. The calculations also manifest that finite temperature
influences the components of neutron star matter slightly but
enhances the neutrino scattering cross sections significantly.
Moreover, neutrino trapping leads to drastic decline of the
mean free path of neutrinos in the neutron star matter including
� isobars.

Because hyperons have the similar masses of the �s, they
should be included in the investigation of the properties of
neutron stars for completeness. Moreover, we have taken only
the neutral-current reaction effect of the �s into account when
calculating the neutrino scattering cross sections in this work.
In fact, the charged-current reactions may contribute to the
neutrino scattering and the opacity of the matter as well. The
studies on these aspects are necessary and in progress.
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APPENDIX

In this appendix we present the imaginary parts of the
polarizations of the � isobars used in this article

Im��
L (q0, q) = λ�

36π

q2
µ

|q|3
∫ ∞

ε−
dE

[(
9 − 2q2

µ

M∗2
�

+ q4
µ

2M∗4
�

)

×
(
E + q0

2

)2
−

(
5 − 2q2

µ

M∗2
�

+ q4
µ

2M∗4
�

)
|q|2

4

]
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× [F+(E,E + q0) + F+(E + q0, E)],

Im��
T (q0, q) = λ�

72π

q2
µ

|q|3
∫ ∞

ε−
dE

{(
9 − 2q2

µ

M∗2
�

+ q4
µ

2M∗4
�

)

×
[(

E + q0

2

)2
+ |q|2M∗2

�

q2
µ

]

+
(

1 − 2q2
µ

M∗2
�

+ q4
µ

2M∗4
�

)
|q|2

4

}

× [F+(E,E + q0) + F+(E + q0, E)],

Im��′
L (q0, q) = λ�

36π

q2
µ

|q|3
∫ ∞

ε−
dE

[(
5 − 2q2

µ

M∗2
�

+ q4
µ

2M∗4
�

)

×
(
E + q0

2

)2
−

(
4 − 2q2

µ

M∗2
�

+ q4
µ

2M∗4
�

)
|q|2

4

]

× [F+(E,E + q0) + F+(E + q0, E)],

Im��′
T (q0, q) = λ�

72π

q2
µ

|q|3
∫ ∞

ε−
dE

{(
5 − 2q2

µ

M∗2
�

+ q4
µ

2M∗4
�

)

×
[(

E + q0

2

)2
+ |q|2M∗2

�

q2
µ

]

+
(

3 − 2q2
µ

M∗2
�

+ q4
µ

2M∗4
�

)
|q|2

4

}

× [F+(E,E + q0) + F+(E + q0, E)],

Im��
A (q0, q) = λ�

72π

M∗2
�

|q|
∫ ∞

ε−
dE

(
9 − 4q2

µ

M∗2
�

+ q4
µ

M∗4
�

)

× [F+(E,E + q0) + F+(E + q0, E)],

Im��
V A(q0, q) = λ�

72π

q2
µ

|q|3
∫ ∞

ε−
dE

(
E + q0

2

)

×
(

5 − 2q2
µ

M∗2
�

+ q4
µ

2M∗4
�

)
[F−(E,E + q0)

+F−(E + q0, E)], (A1)

where the spin degeneracy factor λ� = 4. The lower cutoff ε−
and the function F±(E1, E2) appeared above are the same as
those given in Ref. [15].
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