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Variational theory of hot nucleon matter
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We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to
study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization
of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and
pair correlation operators. The present approach uses microcanonical ensembles and the variational principle
obeyed by the free energy. In this paper we show that the correlated states of the microcanonical ensemble at
a given temperature T and density ρ can be orthonormalized preserving their diagonal matrix elements of the
Hamiltonian. This allows for the minimization of the free energy without corrections from the nonorthogonality
of the correlated basis states, similar to that of the ground state energy. Samples of the microcanonical ensemble
can be used to study the response, and the neutrino luminosities and opacities of hot matter. We present methods
to orthonormalize the correlated states that contribute to the response of hot matter.
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I. INTRODUCTION

Ab initio theories of strongly interacting hot matter are
extremely challenging. In principle the properties of hot matter
can be calculated starting from a realistic Hamiltonian with
the path integral Monte Carlo method [1]. Calculations are
practical for simple systems of interacting spin zero bosons
such as atomic 4He liquids and solids [2–4]. They become
more difficult even for simple systems of fermions interacting
by spin independent potentials, such as atomic liquid 3He [5],
and hydrogen plasma [6] due to the fermion sign problem. The
path integral Monte Carlo treatment is expected to become
much more difficult due to the strong spin-isospin dependence
of nuclear forces and their tensor and spin-orbit components.
In the traditional Monte Carlo approaches these complexities
of the nuclear forces make computations more expensive by
a factor �2A, where A is the number of nucleons and the
equality applies for pure neutron matter. With the present state
of the art computing facilities traditional quantum Monte Carlo
calculations have been carried out for cold neutron matter using
a periodic box containing 14 neutrons [7]. Attempts are also
being made to eliminate this 2A factor using the auxiliary field
diffusion Monte Carlo method [8,9], however the fermion sign
problem is more acute for this method.

Cold nuclear matter has traditionally been studied with
variational methods [10,11] and Brueckner theory [12,13].
There is close agreement between these two methods, and
comparison with the essentially exact Green’s function Monte
Carlo calculations suggests that the errors in present variational
calculations of pure neutron matter are only ∼8% at densities
�ρ0 = 0.16 fm−3 [7]. In the case of symmetric nuclear matter
the errors have been estimated to be <10% [14].

In this paper we develop the formalism for a variational
theory for nuclear matter at finite temperature using correlated
basis states (CBS) defined in the next subsection. The corre-
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lated basis states and the thermodynamic variational principle
used to calculate the free energy of matter is discussed in
the following subsections. In these subsections we review the
scheme suggested in Ref. [15] to develop a variational theory
of hot matter, and comment on the concerns expressed in its
early applications [16,17] due to the nonorthogonality of the
CBS.

In Sec. II we show that these problems can be resolved if one
works in a microcanonical ensemble. We show that there are
no orthogonality corrections to the free energy in this scheme.
In Sec. III we consider the CBS that contribute to the response
of the hot matter, and conclude in Sec. IV.

A. Correlated basis states

Let the stationary states of a noninteracting Fermi gas
be denoted by |�I {nI (k, σz)}〉, where {nI (k, σz)} are the
occupation numbers of single particle states labeled with
momentum k and spin projection σz, in the many-body state I .
The single-nucleon states of a non interacting nucleon gas
have isospin τz as an additional quantum number. We have
suppressed it here for brevity. For each of the states I , we can
construct a normalized correlated basis state (CBS) [18–20]
which is conventionally defined as

|�I ) = G|�I 〉√
〈�I |G†G|�I 〉

, (1)

where G is a many-body correlation operator. Many problems
in the variational theory of strongly interacting quantum
liquids originate from the fact that useful forms of G are not
unitary operators. In recent studies G has been approximated
by a symmetrized product of pair correlation operators Fij

[11,14,20] where i and j label the nucleons:

G = S
∏
i<j

Fij . (2)

Here S stands for the symmetrization of the product of the
pair correlation operators. In the present work we will assume
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this form of G, however, improvements such as the inclusion
of three-body correlations can be easily accommodated. The
CBS obtained with this G are not orthogonal to each other. The
bras and kets with rounded parentheses, (| and |) are used to
denote these non orthogonal states, while the standard 〈| and |〉
imply orthonormal states.

At zero temperature the parameters of G or Fij are
determined variationally by minimizing the expectation value
of the Hamiltonian, H , containing realistic interactions, in
the ground state of the correlated basis |�0) obtained from
the Fermi-gas ground state |�0〉. The CBS are assumed to
provide a good approximation for the stationary states of the
interacting system. Note that this is in accordance with an
important assumption of the Landau theory of Fermi liquids,
i.e., the stationary states (at least the low lying ones) of
an interacting, normal Fermi liquid can be written in one
to one correspondence with those of the non interacting
one.

If the n0(k, σz) be the occupation numbers of the single
particle states in the ground state of the free Fermi gas,
the |nI (k, σz) − n0(k, σz)| can be interpreted as the quasipar-
ticle (k > kF ) and quasihole (k < kF ) occupation numbers
of the CBS |�I ). When the number of quasiparticles is finite
the energy of the state I, EI can be expressed as the sum of the
ground state energy E0, and a sum of quasiparticle and hole
energies:

EI = (�I |H |�I )

= E0 +
∑
k,σz

[nI (k, σz) − n0(k, σz)]ε0(k, σz). (3)

We assume that both the number of particles N and the volume
of the liquid �, go to ∞ at a fixed finite density ρ = N/�.
The density of quasi-particles and holes goes to zero when
their number is finite. The single particle energies ε0(k, σz),
have significant dependence on k near kF at low temperature,
in addition to that absorbed in the k2

2m∗ term [16], with m∗
being the effective mass of the quasiparticle. They are difficult
to calculate ab initio.

A correlated basis perturbation theory (CBPT) can be
developed using the non orthogonal CBS [18,19] to study
various properties of quantum liquids [21,22] at zero
temperature. Much later in the development of CBPT, a
scheme to orthonormalize the CBS preserving their one
to one correspondence with the Fermi gas states and the
validity of Eq. (3) was found [23]. It simplifies CBPT
considerably.

The difference between the internal energies of a liquid
at T > 0 and T = 0 is extensive, i.e., proportional to N ,
and thus infinite in the thermodynamic limit. This implies
that at T > 0 there is an extensive number of quasiparticle
excitations, and the orthonormalization scheme of Ref. [23]
can not be used without modifications. The present work can
also be considered as an extension of that orthonormalization
scheme to hot matter. At very low temperatures, the density
of quasiparticles is small, and the T = 0 formalism can be
used neglecting the interaction between quasiparticles, as in
Landau’s theory. However, the domain of the applicability of
that approach is very limited [16].

B. The thermodynamic variational principle

Let F (T ) be the free energy of a quantum many body system
at temperature T . All other arguments such as the density
ρ and spin-isospin polarizations, etc., have been suppressed
for brevity. The Gibbs-Bogoliubov thermodynamic inequality
[24] states that

F (T ) � Tr(ρV H ) − T SV (T ), (4)

where ρV is any arbitrary density matrix (not to be confused
with the density of the system ρ = N/�) satisfying

TrρV = 1 (5)

and SV (T ) is the entropy of the density matrix ρV at
temperature T . The equality holds when ρV is the true density
matrix of the system. Typically ρV is chosen to have the
canonical form

ρcan = exp(−βHV )

Tr exp(−βHV )
, (6)

where β is the inverse temperature and HV is chosen as a
suitable, simple and variable variational Hamiltonian. In this
case Eq. (4) becomes

F (T ) �
Tr(exp(−βHV )H )

Tr(exp(−βHV ))
− T SV (T ). (7)

The minimum value of

Tr(exp(−βHV )H )

Tr(exp(−βHV ))
− T SV (T ), (8)

obtained by varying HV , provides an upper bound to the free-
energy F (T ).

Schmidt and Pandharipande (Ref. [15], henceforth denoted
by SP) proposed to use this variational principle to calculate
properties of hot quantum liquids. They essentially ignored
the nonorthogonality of the CBS and assumed that they are the
eigenstates of HV :

HV |�I {nI (k, σz)})

=

∑

k,σz

nI (k, σz)εV (k, σz)


 |�I {nI (k, σz)}). (9)

The eigenvalues of this HV can be varied by changing the
single-particle energy spectrum εV (k, σz) and the eigenfunc-
tions by varying the correlation operator G, or the pair
correlation operators Fij . Note that the single particle energies
depend on τz, ρ, T , etc., but these dependencies are suppressed
here.

HV has the spectrum of a one body Hamiltonian, since its
eigenvalues depend only on the occupation numbers nI (k, σz).
It can therefore be easily solved. At temperature T the average
occupation number of a single-particle state is given by

n(k, σz = ±1) = 1

eβ(ε(k,σz)−µ±) + 1
, (10)

where the chemical potential µ± is required to satisfy

ρ± =
∫

d3k

(2π )3
n(k, σz = ±1). (11)
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In the above equation ρ± is the density of particles with
σz = ±1. The entropy SV (ρ, T ) is given by [25]

SV (ρ, T ) = −kB�
∑
σz

∫
d3k

(2π )3
[n(k, σz) ln(n(k, σz))

+ (1 − n(k, σz)) ln(1 − n(k, σz))]. (12)

where kB is Boltzmann’s constant.
Since the CBS are not mutually orthogonal, Eq. (12) is only

an approximation if the variational Hamiltonian, HV , is defined
by Eq. (9). Equation (12) will be exact if orthonormalized
correlated basis states (OCBS) are used instead of the
nonorthogonal CBS. If all the CBS are orthonormalized by
a democratic procedure (like the Löwdin method) [26], which
treats all the CBS equally, the diagonal matrix elements of the
Hamiltonian H change by an extensive (∝ N ) quantity.

The diagonal matrix elements of the Hamiltonian, H ,
can be evaluated using the standard techniques of cluster
expansion and chain summation; these techniques have been
developed and studied extensively in the variational theories
of cold (zero temperature) quantum liquids. On the other
hand, if all the CBS are orthonormalized using the democratic
procedure mentioned above, the diagonal matrix elements of
the Hamiltonian, H , in the corresponding OCBS are more
difficult to evaluate systematically because of the extensive
(∝ N ) orthogonality corrections. As such, the variational
theory of hot (finite temperature) quantum liquids so developed
using the orthonormalization scheme discussed above, loses
much of the simplicity of the corresponding zero temperature
theory.

At zero temperature a similar problem was addressed
by identifying the ground state and the excitations about
the ground state with a finite number of quasiparticles and
quasiholes, as the important states which contribute to the equi-
librium properties and linear response of cold quantum liquids.
It was shown in Ref. [23] that a combination of democratic
(Löwdin) and sequential (Gram-Schmidt) orthonormalization
methods can be used to orthonormalize the CBS, such that
the diagonal matrix elements of the Hamiltonian, H , are
left unchanged, in the ground state and in the quasiparticle-
quasihole excitations from the ground state.

At a finite temperature, the many body states which
contribute to the equilibrium properties (free energy, specific
heat, etc.) and linear response of a quantum liquid are the many
body states in the microcanonical ensemble at the correspond-
ing temperature and the quasiparticle-quasihole excitations
from them. (Zero temperature is a special case when the
microcanonical ensemble consists of just one state viz. the
ground state.)

In this paper we will show that for a given (finite)
temperature a statistically consistent microcanonical ensemble
can be defined, such that when the CBS are orthonormalized
using a combination of democratic and sequential orthonor-
malization methods, the diagonal matrix elements of the
Hamiltonian, H , are left unchanged for the many body states in
the microcanonical ensemble and the quasiparticle-quasihole
excitations from the microcanonical ensemble. This means that
these matrix elements can be evaluated by borrowing methods
directly from the zero temperature theory.

As mentioned earlier, this work can be considered to be an
extension of the orthonormalization scheme of of Ref. [23] to
finite temperatures. However, it serves a more general purpose
of introducing a variational theory at finite temperatures which
has the same simplicity of formulation and efficiency in
calculation as the corresponding zero temperature theory.

II. VARIATIONAL THEORY IN A MICROCANONICAL
ENSEMBLE

In the previous section we have defined the non interacting
Fermi gas states |�I 〉 and the CBS |�I ). Let us call the
corresponding OCBS |�I 〉. Note that the actual definition of
|�I 〉 will depend on how we choose to orthonormalize the
CBS. We will denote any of these OCBS by |�I 〉 and the
actual orthogonalization procedure used to obtain them will
hopefully be obvious from the context. Let us also define
a ‘microcanonical’ subset M(T ), from the set of all labels
I of the many body states (CBS, OCBS or non interacting
Fermi gas) previously defined. We will call this set the
‘microcanonical ensemble’ at temperature T . Henceforth the
argument T will be suppressed for brevity. Note that as yet
we have not really said anything about which elements are
included. We tackle this slightly nontrivial problem in detail
later in this section. For now, we assume that M is a suitably
defined ‘microcanonical’ ensemble at the given temperature.
We can legitimately define a density matrix,

ρMC = 1

NM

∑
I∈M

|�I 〉〈�I |, (13)

where NM is the number of elements in the set M.
It is well known in statistical mechanics that the ther-

modynamic averages of the densities of extensive quantities
are the same in all ensembles; grand canonical, canonical or
microcanonical [27]. In Eq. (8) we have used the canonical
ensemble for the average value of H .

With the microcanonical ensemble we obtain a simpler
expression,

〈H 〉 = 1

NM

∑
I∈M

〈�I |H |�I 〉. (14)

In order to develop the variational theory of hot quantum
liquids we have to orthonormalize the CBS in the microcanoni-
cal ensemble, M. This can be easily achieved with the Löwdin
transformation [26],

|�I 〉 = |�I ) − 1

2

∑
J∈M

|�J )(�J |�I )

+ 3

8

∑
J,K∈M

|�K )(�K |�J ) (�J |�I ) + · · · . (15)

The coefficients 1,− 1
2 , 3

8 , . . . that occur in the Löwdin
transformation are those which are found in the expansion
of (1 + x)−1/2. The overhead bar signifies

(�J |�K ) = (�J |�K )(1 − δJK ). (16)
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The orthonormal states |�I 〉 are in one to one correspon-
dence with the CBS |�I ) and the Fermi-gas states |�I 〉, and
we are then justified in defining a variational Hamiltonian HV

such that

HV |�I {nI (k, σz)}〉

=

∑

k,σz

nI (k, σz)εV (k, σz)


 |�I {nI (k, σz)}〉, (17)

= EV
I |�I {nI (k, σz)}〉 (18)

thus removing the approximation inherent in Eq. (9). The CBS
�∈ M are not orthonormalized by the transformation (15). Most
of these states have little effect on the thermodynamic proper-
ties of the liquid in equilibrium at temperature T and density ρ.
Formally these states should be first orthonormalized to those
∈ M by Gram-Schmidt’s method, and then orthonormalized
with each other using combinations of Gram-Schmidt and
Löwdin methods [23]. This way their orthonormalization will
have no effect on the states ∈ M. In the next section we will
have occasion to discuss the orthogonalization of a subset
of these states, viz. states with one (quasi)particle and one
(quasi)hole with respect to the states in the microcanonical
ensemble.

In the variational estimate of the free energy [Eq. (4)] we
should use the OCBS rather than the CBS. In the remaining
part of this section we show that

1

N
〈�I |H |�I 〉 = 1

N
(�I |H |�I ) = 1

N
EI , (19)

i.e., if we define

δEI = [〈�I |H |�I 〉 − (�I |H |�I )] (20)

and

δeI = 1

N
δEI (21)

then,

δeI = 0 (22)

for I ∈ M, in the limit N → ∞. Therefore the variational
free energy calculated with the SP scheme does not have any
orthogonality corrections.

At this point it is necessary to define the microcanonical
ensemble (M) more carefully. Typically, a microcanonical
ensemble is defined as

M ≡
⋃

All states I with EMC � EV
I � EMC + δEMC.

(23)

The actual value of δEMC is unimportant as long as δEMC �
EMC. In our case it proves necessary that it takes a nonzero
value. In the next subsection we will show that the simplest
definition of M, i.e., with δEMC = 0, gives a divergent
expression for the diagonal matrix elements of H . This
exercise will nevertheless help to illustrate some of the simplest
elements of the calculations that follow and will serve as a
motivation for the following subsection where we formulate
the problem slightly differently, which makes calculations

more convenient, but is similar to defining M with a nonzero
δEMC.

A. Energy conserving microcanonical ensemble

Let us define a set M0, which we will call the energy
conserving microcanonical ensemble (ECMC), as the set of
all states with

EV
I = EMC. (24)

Consider a many body state I ∈ M0 with,

EI = (�I |H |�I ). (25)

Then the change in the diagonal matrix elements of the
Hamiltonian due to Löwdin orthonormalization is given by

δEI = 〈�I |H − EI |�I 〉
= −1

2

∑
J∈M0

[(�I |H − EI |�J ) (�J |�I )

+ (�J |H − EI |�I ) (�I |�J )] + · · · , (26)

where the dots denote higher order terms which can easily be
obtained from Eq. (15). The nondiagonal CBS matrix elements
(�J |H − EI |�I ) and (�I |�J ) can be evaluated with cluster
expansions [23]. The leading two-body clusters contribute to
the nondiagonal matrix elements only when two quasiparticles
in J are different from those in I . Let quasiparticle states with
momenta k1 and k2 be occupied in I and unoccupied in J ,
while states k1′ and k2′ be occupied in J but not in I .

We will denote the CBS |�J ) and the OCBS |�J 〉 by

|�J ) ≡ |k1′ , k2′ : I − k1, k2), (27)

|�J 〉 ≡ |k1′ , k2′ : I − k1, k2〉. (28)

Note that in this notation |�I ) can be written as |k1, k2 : I −
k1, k2).

The I → J transition occurs via the scattering of two
quasiparticles from states (k1, k2) → (k1′ , k2′ ). Momentum
conservation implies

k1 + k2 = k1′ + k2′ . (29)

Unless this condition is satisfied, the nondiagonal CBS matrix
elements are zero.

The two-body cluster contributions to (�J |H − EI |�I )
and (�I |�J ) are respectively given by

〈k1′ , k2′ − k2′ , k1′ |veff
ij |k1, k2〉

and

〈k1′ , k2′ − k2′ , k1′ |(F2
ij − 1

)|k1, k2〉, (30)

where the two-body effective interaction is given by

veff
ij = Fij

[
vijFij − h̄2

m
(∇2Fij + 2∇Fij · ∇)

]
, (31)

the bare two-body interaction is denoted by vij , and the non
interacting two-particle states are

〈ri, rj|k1, k2〉 = 1

�
ei(k1·ri+k2·rj ). (32)
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k1′

k2′k1

k2

(a)

k1k1′

k2 k2′

(b)

k1′

k2′k1

k2

(c)

k1k1′

k2 k2′

(d)

FIG. 1. All two body cluster diagrams.

The factor 1/� comes from the normalization of the plane
waves. We have suppressed the spin wave functions for
brevity.

The CBS matrix elements can be represented by diagrams,
such as those in Figs. 1, 2 and 3, which have been analyzed
in detail in [23]. We will adopt their notation and use their
results. In all the diagrams we use the following conventions.

(i) The points in these diagrams denote positions of the
particles: ri , rj , . . ..

(ii) The dashed lines connecting points i and j represent
correlations, i.e., terms originating from F2

ij − 1. When
Fij = f (rij ) this notation is sufficient, however, a more
elaborate notation for the correlation lines is needed
when F is an operator with many terms [20]. For
brevity we will show diagrams assuming Fij = f (rij ),
commonly called the Jastrow correlation function.

(iii) The solid lines represent veff
ij . There can only be one solid

line in a diagram representing matrix elements of H .
(iv) The lines with one or two arrowheads represent state

lines. The arrowheads are labeled with quasiparticle
states. A state line with a single arrowhead labeled k�

going from point i to point j indicates that the particle i

is in state k� in the ket |�I ) and particle j is in k� in the
bra (�J |. Diagrams representing diagonal CBS matrix
elements can have state lines with only one arrowhead,
since the state k� is occupied (or unoccupied) in both the
bra and the ket.
Diagrams contributing to the nondiagonal CBS matrix
elements have state lines with two arrowheads. The
number of these lines equals the number of quasiparticle
states that are different in (�J | and |�I ). A state line
with arrowheads k� and k�′ , going from i to j indicates
that i is in state k� in the ket, while j is in state k�′ in the
bra, and that k� and k�′ are unoccupied in the bra and the
ket, respectively.
Only one state line must emerge from a point and only
one must end in a point because each particle occupies
only one quasiparticle state in the bra and the ket. This
implies that the state lines form continuous loops. In
direct diagrams the state lines emerge from and end
on the same particle, while in exchange diagrams they
connect pairs of particles.

(v) The contribution of a diagram is given by an integral
over all the particle coordinates ri in the diagram.
The integrand contains factors of (f 2(rij ) − 1) for each

k1′

k3′

k2′ k1

k2

k3

(a)

k1′

k3′

k2′ k1

k2

k3

(b)

FIG. 2. Examples of three body connected dia-
grams.
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k2′

k4′

k1′

k3′

k1

k3

k4

k2

(a)

k2′

k4′

k1′

k3′

k1

k3

k4

k2

(b)

FIG. 3. Examples of disconnected diagrams.

correlation line, veff
ij for the interaction line, eik�·ri /

√
�

for each state line � emerging from a point ri and
e−ik�′ ·rj /

√
� for each state line �′ ending in rj .

The two-body (2b) direct (d) and exchange diagrams (e)
representing the nondiagonal matrix elements (30) are shown
in Fig. 1. The contributions of the 2b.veff diagrams are given by

2b.veff · d = 1

�

∫
d3rij exp

(
−i

1

2
(k1′ − k2′ ) · rij

)

× veff(r) exp

(
i
1

2
(k1 − k2) · rij

)
, (33)

2b.veff · e = − 1

�

∫
d3rij exp

(
−i

1

2
(k2′ − k1′ ) · rij

)

× veff(r) exp

(
i
1

2
(k1 − k2) · rij

)
, (34)

for spin independent v (and f ). The contributions of 2b.F2

diagrams are obtained by replacing veff by F2 − 1. All 2b

diagrams have a contribution of order 1/�.
The change in energy, δEI , [Eq. (26)] contains products of

the 2b.veff and 2b.F2 diagrams. These products are of order
1/�2. The total contribution of the leading 2b cluster terms
to δEI is obtained by summing over the states k1, k2, k1′ , k2′ .
Each allowed combination of these states corresponds to a
many-body state in the set M0. The quasiparticle states k1
and k2 can be any two of those occupied in I . Thus the sum
over these gives a factor of order N2. Next we sum over k1′

and k2′ . The total momentum k1′ + k2′ is determined from
Eq. (29). The magnitude of the relative momentum,

k1′2′ = 1
2 (k′

1 − k′
2), (35)

is constrained by energy conservation,

εV (k1) + εV (k2) = εV (k1′ ) + εV (k2′ ), (36)

required for J to be in the set M0. Thus the sum over states
allowed for k1′ and k2′ corresponds to an integration over the
direction of k1′2′ . It gives a factor of order �1/3. Hence

δeI .2b = 1

N
δEI .2b (37)

∼ 1

N

1

�2
N2�1/3 (38)

∼ ρ�−2/3, (39)

i.e., δeI .2b → 0 as N → ∞. Note that with the constraint
of momentum conservation alone we can integrate over the
magnitude of k1′2′ . This integration gives a factor of order �

and makes δeI .2b of order 1. The equal energy constraint
in the ECMC M0 [Eq. (24)] makes δeI .2b vanish in the
thermodynamic limit.

The above analysis can be carried out for the contributions
of clusters with three or more particles to δEI . Consider,
for example, states J which differ from I in occupation
numbers of three quasi particles. These states can be reached
by scattering three quasiparticles in I in states k1, k2, k3

to states k1′ , k2′ , k3′ occupied in J . The relevant, direct 3b

diagrams are shown in Fig. 2. Each diagram is of order
1/�2. The contribution of three body cluster terms to δEI

are products of veff and F2 − 1 diagrams. Each of these
products is of order 1/�4. We get a factor of order N3 by
summing over states k1, k2 and k3, and a factor �4/3 by
summing over k1′ , k2′ , k3′ with constraints of momentum and
energy conservation. Thus their total contribution to δeI is
of order N−1(�−4N3�4/3) ∼ ρ2�−2/3 which vanishes in the
thermodynamic limit just like the contribution from the leading
two body cluster terms. Similarly the contribution from all
connected terms can be shown to give a vanishing contribution
to δeI in the thermodynamic limit.

The terms of Eq. (26) will also contain disconnected
diagrams like those shown in Fig. 3. These diagrams by
themselves will give rise to unphysical divergent (nonexten-
sive) contributions to the energy. To extract any physically
meaningful result from the theory, these diagrams must cancel
identically.

Disconnected diagrams in the expansion for the shift in
energy (δEI ) can be classified into two types.

(i) Diagrams in which each connected cluster conserves
energy.

(ii) Diagrams in which only the whole diagram conserves
energy, i.e., each connected cluster does not conserve
energy.

Let us, consider the first case.
Consider the simplest possible divergent diagrams, i.e.,

Fig. 3. Let us denote the CBS |�J ), |�K ) and |�L) by

|�J ) = |k1′ , k2′ , k3′ , k4′ : I − k1, k2, k3, k4),

|�K ) = |k1′ , k2′ : I − k1, k2), (40)

|�L) = |k3′ , k4′ : I − k3, k4).

Let k1, k2 and k1′ , k2′ conserve momentum and energy
amongst themselves and similarly for k3, k4 and k3′ , k4′ ,

k1 + k2 = k1′ + k2′ , (41)

k3 + k4 = k3′ + k4′ , (42)

and

εV (k1) + εV (k2) = εV (k1′ ) + εV (k2′), (43)

εV (k3) + εV (k4) = εV (k3′ ) + εV (k4′). (44)

An inspection of the series on the right hand side of
Eq. (26) will show that 13 terms in total will give rise to an inte-
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TABLE I. The contribution of all the terms which give
rise to a term like Fig. 3.

Term Prefactor

(�I |veff |�J )(�J |�I ) − 1
2

(�I |veff |�J )(�J |�L)(�L|�I ) 3
8

(�I |veff |�K )(�K |�L)(�L|�I ) 3
8

(�I |veff |�J )(�J |�K )(�K |�I ) 3
8

(�I |veff |�K )(�K |�J )(�J |�I ) 3
8

(�I |veff |�K )(�K |�J )(�J |�K )(�K |�I ) − 5
16

(�I |veff |�K )(�K |�J )(�J |�L)(�L|�I ) − 5
16

(�I |veff |�K )(�K |�I )(�I |�L)(�L|�I ) − 5
16

(�I |�L)(�L|veff |�J )(�J |�I ) 1
4

(�I |�L)(�L|veff |�K )(�K |�I ) 1
4

(�I |�L)(�L|veff |�J )(�J |�L)(�L|�I ) − 3
16

(�I |�L)(�L|veff |�J )(�J |�K )(�K |�I ) − 3
16

(�I |�L)(�L|�I )(�I |veff |�K )(�K |�I ) − 3
16

Total 0

gral which will be represented by products of diagrams shown
in Fig. 3. In Table I we list the terms and also their correspond-
ing prefactor in the series. As one can see, the sum of the pref-
actors is identically zero. Thus products of diagrams of the type
shown in Fig. 3 have no contribution to the change in energy
per particle (δeI ). The cancellation of corresponding exchange
diagrams and all other divergent diagrams of this order with
three or more body connected pieces can also be shown to can-
cel with analogous book keeping. The divergent diagrams of
the next highest order can also be shown to cancel identically.

Now consider the case when the individual clusters do
not conserve energy, i.e., Eqs. (41), (42) are still true but
Eqs. (43), (44) are not true. Instead,

εV (k1) + εV (k2) + εV (k3) + εV (k4)

= εV (k1′ ) + εV (k2′ ) + εV (k3′) + εV (k4′ ). (45)

In this case the states K and L no longer belong to the same
ECMC as I and J . Thus, none of the terms in Table I, except
for the first, will be included in the sum, i.e., the divergent
terms, (�I |veff|�J )(�J |�I ) and its complex conjugate will
not get cancelled. The total contribution of terms like these to
δEI is of order ρ4�4/3, i.e., the shift in the energy per particle,
δeI ∼ ρ3�1/3, diverges in the thermodynamic limit.

The survival of divergent terms is rather artificial and arises
from the sharp energy conservation constraint that we imposed
on the states in M0. This provides the motivation to define a
ensemble where this constraint is relaxed slightly. In what
follows we will show that this can be done consistently where
none of the divergent terms are present while the diagonal
matrix elements of the Hamiltonian are preserved.

B. The set of most probable distributions (MPD)

Consider an ideal gas of fermions in a box of volume
L3(= �). The single particle energy levels are given by

εV (ni) = h̄2

2m

n2
i

2πL2
, (46)

where m is the mass of the fermions and ni is a vector with
integer components. In what follows we will use units where
h̄2

4πm
= 1. Let the total number of particles in the box be N .

The density of states at any single particle energy εV is
given by

g(εV ) ∼ L3ε
1/2
V . (47)

Now consider a cell with an energy width of �
L2 , around an

energy level εV . Then the number of single particle energy
levels in this cell is

ω(εV ) ∼ g(εV )
�

L2
∼ L3ε

1/2
V

�

L2
. (48)

The exact value of � is not important, except for the fact that it
is dimensionless and of order 1 or less. We can always choose
� so that ω(εV ) is large,

ω(εV ) � 1. (49)

Let the total number of particles in the energy cell around
εV be n(εV ). Let S(n(εV )) be the entropy corresponding to
the configuration (distribution) n(εV ). It can be easily shown
that the entropy, SV corresponding to the most probable
distribution of number of particles per energy cell, subject
to the constraints ∑

n(εV ) = N (50)

and ∑
εV n(εV ) = EMC, (51)

is given by Eq. (12), i.e., the distribution n(εV ) in addition
to satisfying Eqs. (50), (51) also satisfies the maximization
condition,

S(n(εV )) = Maximum(S(n(εV ))). (52)

The temperature and the chemical potential are the Lagrange
multipliers of the minimization procedure. Now we will define
our microcanonical ensemble as the setM of all configurations
whose cell distribution is n(εV ). We will call this the set of
most probable distributions (MPD). Please note that this is
different from defining an ensemble with total energy EMC, but
is roughly the same as defining an ensemble with an average
energy EMC and a small non zero energy width δEMC,

M ≡
⋃

(All states with the distribution n (εV )). (53)

It should be emphasized here that none of the conclusions that
follow depend explicitly on the actual single particle spectrum
given by Eq. (46). All the conclusions remain unchanged as
long as the single particle energy levels produce a continuum
in the thermodynamic limit. However we will continue to use
Eq. (46) because the calculations are more transparent this
way.

The probability of fluctuations about the most probable
distribution is given by Einstein’s relation,

P (δn) ∼ e−δS, (54)

where P (δn) is the probability of a fluctuation of size δn and
δS is the corresponding decrease in entropy. Around the most
probable distribution,

δS ∼ δn2, (55)
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i.e., the probability of fluctuations vanishes exponentially with
the size of the fluctuations.

In addition, the fluctuation (standard deviation) in the value
of the total energy, EV

I , in M, can be easily shown to be

δE <
�

L2

√
N, (56)

i.e., δE is nonmacroscopic; the fluctuation in the energy
per particle vanishes in the thermodynamic limit. Thus, the
ensemble we have defined is a consistent one in the statistical
sense.

Now let us discuss the allowed scattering processes within
the set M . For two states to be in M, they must have the
same populations n(εV ) in all the energy bins (cells). What this
means is that they must be connected to each other through
excitations within cells. For example let I and k1′ , k2′ : I −
k1, k2, be elements of M. Let

εV (k1) � εV (k2) (57)

and
εV (k1′ ) � εV (k2′). (58)

Then, we need to have

|εV (k1′) − εV (k1)| <
�1

L2
(59)

and

|εV (k2′ ) − εV (k2)| <
�2

L2
, (60)

where �1
L2 and �2

L2 are the widths of the cells containing k1
and k2, respectively. Please note that this, in general, means
that there is no exact energy conservation, but that there is
approximate energy conservation for each individual particle.

Let us discuss the orthogonalization correction in M.
Consider the disconnected diagrams first. Following the
discussion before, let us define states J,K and L as in
Eq. (40), with

εV (k1) � εV (k2) � εV (k3) � εV (k4),
(61)

εV (k1′) � εV (k2′) � εV (k3′ ) � εV (k4′ ).

Let us assume that they obey Eqs. (41), (42), i.e., they form
two disconnected momentum conserving clusters.

Now it is crucial to observe that if I and J belong to M
then k1 and k1′ must belong to the same energy cell; similarly
for k2 and k2′ , k3 and k3′ , and k4 and k4′ . This implies that K

and L must also belong to M. This was not the case when we
had merely imposed overall exact energy conservation.

Thus, in this case all the terms in Table I will contribute
to the sum in Eq. (26). As such the disconnected diagrams
will cancel each other and we will be left with a connected,
nondivergent sum, i.e.,

δEdisconnected
I = 0 (62)

identically. The problem with disconnected diagrams that we
encounter in ECMC is resolved in MPD.

For the sake of completeness, we show that the connected
diagrams also have a vanishing contribution towards the energy
in the thermodynamic limit. Consider the two body cluster
contributions to δEI . The δEI [Eq. (26)] contains products of

the 2b.veff and 2b.F2 diagrams. These products are of order
1/�2. The total contribution of the leading 2b cluster terms
to δEI is obtained by summing over the states k1, k2, k1′ and
k2′ . Each allowed combination of these states corresponds to
a many-body state in the set M. The quasiparticle states k1
and k2 can be any two of those occupied in I . Thus, the sum
over k1 and k2 gives a factor of order N2. Next we sum over
k1′ and k2′ . The total momentum k1′ + k2′ is determined from
Eq. (29). The magnitude of the relative momentum,

k1′2′ = 1
2 (k′

1 − k′
2), (63)

is constrained by Eqs. (59), (60).
The sum over states allowed for k1′ and k2′ corresponds to

an integration over k1′2′ . But k1′2′ is constrained to lie in a shell
of width �, where � ∼ min(�1,�2). Thus, the sum over k1′

and k2′ gives a contribution ∼� �
L2 up to a factor of order 1

(the factor of � comes from the density of states). Therefore
the total contribution of the 2b diagrams after summing over
k1, k2, k1′ , k2′ is

δEI .2b ∼ �ρ2 �

L2
. (64)

Thus, the shift in the energy per particle is

δeI .2b ∼ ρ
�

L2
, (65)

which vanishes in the thermodynamic limit.
The above analysis can be easily carried out for contribution

of connected clusters with three or more particles to the
δEI . Consider for example states J which differ from I in
occupation numbers of three quasi particles. These states can
be reached by scattering three quasiparticles in I in states
k1, k2, k3 to states k1′ , k2′ , k3′ occupied in J . For example
consider the direct 3b term shown in Fig. 2. Each is of order
1/�2, thus their contribution to δEI is of order 1/�4. We
get a factor of order N3 by summing over k1, k2, k3, and a
factor �2( �

L2 )2 by summing over k1′ , k2′ , k3′ with constraints
of momentum and (approximate) energy conservation. Thus
their total is of order �ρ3( �

L2 )2. The contribution to the shift
in energy per particle is δeI ∼ ρ2( �

L2 )2 which vanishes in
the thermodynamic limit: similarly for higher order clusters.
Therefore, for connected clusters we see that

δeconnected
I → 0, (66)

in the thermodynamic limit.
Thus, as claimed earlier in the section we have shown that

it is possible to define a statistically consistent microcanonical
ensemble such that Eq. (19) is true for the elements in the
microcanonical ensemble M.

C. Discussion

The simplest choice for a microcanonical ensemble is the
ECMC. The ECMC has the following properties:

(i) The states in ECMC have exact energy conservation; this
imposes a sharp energy cutoff.
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(ii) Arbitrarily high single particle energy transfers are
allowed while still remaining in the same ECMC.

It is due to the second property that clusters in disconnected
diagrams can have arbitrary energy transfers and hence
divergent contributions. These contributions are normally (in a
canonical ensemble, when all states are included) canceled by
contributions from higher order terms. But by imposing exact
energy conservation we exclude the states which lead to these
higher order terms which cancel the divergent part. Thus, we
are left with a divergent series.

In MPD on the one hand we relax the energy conservation
slightly, and on the other hand we limit single particle energy
transfers to the width of the energy cells. We showed that this
leads to a convergent series. Also, we showed that the total
energy is well defined in a MPD and that states with large
deviations from the MPD (i.e., states with large single particle
energy transfers) are exponentially improbable.

The main difference between ECMC and MPD is that
one follows from a conservation law and the other from
a distribution. There can be states in the ECMC whose
population distribution in the energy cells is very different
from the MPD n(εV ), but as long as the total energy of the
state, EV = EMC, this state is a valid member of the ECMC.
However, the number of these states is negligible as compared
to the total number of states which have the MPD, and hence
they can be safely neglected in the thermodynamic limit. On
the other hand, those states whose total energy EV differ
from EMC by a non macroscopic amount and have the same
population distribution as the MPD should be included in
the microcanonical ensemble. We have shown that, for our
purposes, a typical state in a microcanonical ensemble is
given by the (most probable) distribution and not by an exact
conservation law.

Thus, we have shown that a consistent choice for M does
exist. We have also shown that the most obvious choice,
namely, the ECMC leads to divergences in the theory. We
traced these divergences to the existence of the sharp cutoff
due to the exact energy conservation imposed on the states.
Then we showed that these unphysical divergences can be
removed by relaxing the energy conservation slightly, with
the set of MPDs. We showed that MPDs can be consistently
treated as microcanonical ensembles and that the diagonal
matrix elements of the Hamiltonian remain unchanged upon
orthogonalization in this ensemble.

In practical calculations, a microcanonical sample, M of
CBS is given by

|�MC) = |�{nMC(k, σz)}), (67)

nMC(k, σz) = 1with probability n(k, σz); else zero. (68)

The state |�MC) [Eq. (67)] belongs to the MC ensemble with
energy

EV,MC =
∑
σz

∫
d3k

(2π )3
nMC(k, σz)εV (k, σz). (69)

Since the Hamiltonian HV can be easily solved, we can find
the temperature corresponding to this energy. In the N → ∞
limit it is just that used to find the n(k, σz) [Eq. (10)]. All

the MC states belonging to this set can be found by allowing
particles in |�MC) to scatter into allowed final states. Each
scattering produces a new CBS belonging to the same MC set.
We denote this set by M. If the quantum liquid is contained
in a thin container with negligible specific heat, then it passes
through the states in M when in equilibrium at temperature T

and density ρ.
Equations (67), (68) have been recently used to calculate

the rates of weak interactions in hot nuclear matter [28]. Note
that |�MC) is a CBS since nMC(k, σz) are either 1 or 0. When
the number of particles in |�MC) is large the fluctuations
due to sampling the probability distribution n(k, σz) are
negligible, and this state has the desired densities ρ± and
energy per particle appropriate for the desired temperature T

and Hamiltonian HV used to calculate the n. Neglecting these
fluctuations in the limit N → ∞ we obtain the variational
estimate for the free energy,

FV (ρ, T ) = minimum of [(�MC|H |�MC) − T SV (ρ, T )],

(70)

where the minimum value is obtained by varying the G
and εV (k, σz). The (�MC|H |�MC) can be calculated with
standard cluster expansion and chain summation methods used
in variational theories of cold quantum liquids [14,20]. At
low temperatures (�TF ) this method is particularly simple
because the zero temperature G and ε(k, σz) provide very good
approximations to the optimum. The main concerns raised in
past applications [16,17] of the SP scheme is that it neglects the
nonorthogonality of the CBS, and provides only upperbounds
for the free energy. Here we address only the first. At zero
temperature the difference between the variational and the
exact ground state energy has been estimated with correlated
basis perturbation theory [21]. It may be possible to extend
these methods to finite temperatures.

III. ORTHONORMALIZATION OF THE
QUASIPARTICLE-QUASIHOLE EXCITATIONS

In the calculation of nuclear response functions one needs
to use the diagonal matrix elements of the Hamiltonian in the
quasiparticle-quasihole states [22]. At least at zero temperature
the leading contribution to the dynamic structure function
comes the 1p-1h states. Here we will limit our discussion to
the diagonal matrix elements of the Hamiltonian in the 1p-1h
excitations from the states in M.

Consider a OCBS |�I 〉, I ∈ M, where the single quasi-
particle state with momentum h is occupied but the single
quasiparticle state with momentum h + k is not. We will de-
note the quasiparticle-quasihole OCBS where the quasiparticle
state with momentum h is replaced by one with momentum
h + k by |h + k : I − h〉, and the corrresponding CBS by
|h + k : I − h). The CBS |h + k : I − h) is orthogonal to all
the states in M, because they have different total momenta.
Thus it only needs to be orthonormalized with all the other
quasiparticle-quasihole excitations with the same momentum,
via the Löwdin method. The excitations with two or more
quasiparticles and quasiholes should be orthonormalized with
the quasiparticle-quasihole states using a sequential method.
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But this does not have any effect on the quasiparticle-quasihole
states, so we do not discuss them any further.

The quasiparticle-quasihole OCBS is given by

|h + k : I − h〉 = |h + k : I − h) − 1

2

∑
I ′∈M

|h′ + k : I ′ − h′)

× (h′ + k : I ′ − h′|h + k : I − h) + · · · ,
(71)

where h′ ∈ I ′. The diagonal matrix elements of H are given
by

〈h + k : I − h|H |h + k : I − h〉
= (h + k : I − h|H |h + k : I − h)

− 1

2

∑
I ′∈M

[(h + k : I − h|H |h′ + k : I ′ − h′)

× (h′ + k : I ′ − h′|h + k : I − h) + c.c.] + · · · . (72)

In actual calculation of response functions one needs
the difference between 〈h + k : I − h|H |h + k : I − h〉 and
〈�I |H |�I 〉. Let us define

Eph = [〈h + k : I − h|H |h + k : I − h〉 − 〈�I |H |�I 〉].
(73)

At zero temperature, in accordance with Landau’s theory,
one can define single particle energies for quasiparticle and
quasiholes as done in Eq. (3). The quantity Eph is analogous
to (i.e., is a finite temperature generalization of) the difference
between the quasiparticle energy, ε0(h + k), and the quasihole
energy, ε0(h). We will show that Eph has no orthogonality
corrections.

The orthogonality correction to Eph is given by

δEph = [〈h + k : I − h|H |h + k : I − h〉 − 〈�I |H |�I 〉]
− [(h + k : I − h|H |h + k : I − h) − (�I |H |�I )]

(74)

=
[

1

2

∑
I ′∈M

[(h + k : I − h|veff|h′ + k : I ′ − h′)

× (h′ + k : I ′ − h′|h + k : I − h) + c.c.] + · · ·
]

−
[

1

2

∑
I ′∈M

[(h : I − h|veff|h′ : I ′ − h′)

× (h′ : I ′ − h′|h : I − h) + c.c.] + · · ·
]

(75)

The nondiagonal matrix elements of the Hamiltonian (veff) and
unity in the second equation are of order 1/� or less.

The shift δEph will contain both connected and discon-
nected terms. The disconnected terms can be shown to cancel
exactly using arguments similar to the ones used in the last
section. We will consider the connected terms only.

The state |h′ + k : I ′ − h′) can be of the following types:

(i) Type 1 : h′ = h, I ′ �= I

(ii) Type 2 : h′ �= h.

For Type 1 terms, the terms of the matrix elements (h + k :
I − h|veff|h + k : I ′ − h′) and (h + k : I ′ − h|h + k : I − h)
do not depend on k. (The contribution of the terms which
contain the exchange line h + k vanishes in the thermody-
namic limit as compared to the leading order terms. This
can be easily seen by explicitly writing down the cluster
expansion for the matrix elements.) Thus the contribution of
these matrix elements is canceled by the corresponding terms
(h : I − h|veff|h : I ′ − h) and (h : I ′ − h|h : I − h).

Consider the Type 2 CBS. Let h1 be the single quasiparticle
state in I ′ which is in the same energy cell (as defined in the
last section) as h, and let h′

1 be the single quasiparticle state in
I which is in the same energy cell as h′. Since both I and I ′
belong to M, there will be at least one choice for h1 and h′

1,
although in general their choice is not unique,

|h′ + k : I ′ − h′) ≡ |h′ + k, h1 : I ′ − h′, h1). (76)

Similarly |h + k : I − h) can be written as |h + k, h′
1 :

I − h, h′
1). For Type 2 CBS the leading contribution to

Eq. (74) comes from states where I ′ − h′, h1 ≡ I − h, h′
1.

In this case each of the matrix elements (h + k, h′
1 :

I − h, h′
1|veff|h′ + k, h1 : I ′ − h′, h1) and (h′ + k, h1 : I ′ −

h′, h1|h + k, h′
1 : I − h, h′

1) are of order 1/�. Also, h′
1 can

be any of the occupied quasiparticle states in I . Hence
summing over h′

1 gives a factor of N . The sum over h′ and h1
along with momentum conservation and approximate energy
conservation gives a term of order � �

L2 . Note that there is no
summation over h. Thus the total leading order contribution
from the Type 2 states is of order ρ �

L2 , which vanishes in the
thermodynamic limit. Thus,

δEph → 0. (77)

There is no orthogonality correction to the energy differ-
ences which enter the calculations of response functions.

IV. CONCLUSION

We have developed a variational theory for hot quantum
liquids. We have shown that the correlated basis states which
provide a reasonable description of the ground state of
quantum liquids can be used to describe quantum liquids at
finite temperature. Although the correlated basis states are
not orthogonal to each other by construction, the free energy
calculated in a suitably defined microcanonical ensemble of
the correlated basis does not have any corrections due to
nonorthogonality. As such the powerful cluster expansion and
chain summation methods developed for zero temperature
quantum liquids can be used at finite temperature without any
reformulation. We have also shown that the energy differences
which are needed for calculating response functions do not
need any orthogonality corrections either.

We wish to emphasize that the arguments used in this work
do not depend on the detailed form of the correlation functions
or the choice of the trial single quasiparticle spectrum. The
correlated functions are merely required to be sufficiently well
behaved so that all the integrals used in the Secs. II and III
are finite. Any reasonable form for the correlation functions
can be expected to satisfy this requirement. Although we have
used only two body correlation functions without any state
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dependence or backflow terms to illustrate our results, the argu-
ments can be easily extended to include both of the above and
also three body correlations. Similarly, the arguments can also
be extended for any trial single particle spectrum which has a
vanishing energy level spacing in the thermodynamic limit.

We have not addressed the problem of nondiagonal matrix
elements, which are required for certain applications. One
such case is presented in the calculation of weak interaction
rates, where the relevant matrix elements are the nondiagonal
matrix elements of one body operators. Work is in progress
to calculate the nondiagonal matrix elements of these one
body weak interaction operators including the orthogonality
corrections.

We have also not discussed the actual forms for the
correlation functions or the trial single quasiparticle spectrum
which may be useful for calculating the free energy at finite
temperature. At low enough temperatures the zero temperature
forms may provide good approximations, but at higher
temperature this is probably not true. Methods to optimize free
energy computations at finite temperature are being developed.
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