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Partial-wave analysis of K+-nucleon scattering
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We have performed a partial-wave analysis of K+-nucleon scattering in the momentum range from 0 to
1.5 GeV/c addressing the uncertainties of the results and comparing them with several previous analyses. It is
found that the treatment of the reaction threshold behavior is particularly important. We find a T = 0 scattering
length which is not consistent with zero, as has been claimed by other analyses. The T = 0 phase shifts for � > 0
are consistent with a pure spin-orbit potential. Some indications for the production of a T = 0 pentaquark with
spin-parity-D5/2+ are discussed.
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I. INTRODUCTION

The interaction of the K+ meson with the nucleon has a
number of interesting features. Because of lack of annihilation
of the meson antiquark there is no three-quark intermediate
state possible so 3-q resonances are not possible. This lack
of three-body states leads to a feeble interaction, among the
smallest among the strong forces.

This fact has been useful for probing the possible changes
in nucleon structure and/or K+N interaction in the nuclear
medium [1–8]. Following the measurement of the ratio of
total cross sections [4,5], a number of suggestions were made
to explain the results, among the principal ones being a
partial deconfinement of quarks, an interaction with exchanged
mesons in the nucleus and a modification of the K+N

interaction through exchanged mesons. In order to understand
which of these possible scenarios might be the right one, a
detailed comparison with experiment is in order. One element
in making calculations of the multiple scattering corrections
which are crucial for this comparison is the availability of
reliable phase shifts.

Of equal importance is the use of the KN system to test
fundamental theories of hadronic interaction. There have been
a number of theoretical studies of the K+N system using a
variety of approaches [9–14]. The phase shifts from K+N

scattering provide the principal data with which they compare.
There have been very little data taken (however see [4,

5]) in an ordinary sense since the most recent partial-wave
analyses [15–28]. The suggestion of the existence of a possible
pentaquark resonance (see Ref. [29] for a list of experiments
claiming to see it, some of which have been withdrawn) might
change the point of view of any analysis. The existence of the
pentaquark is now considered doubtful by many.

A partial-wave analysis is particularly interesting in the
region of the reaction threshold. The production of pions in
the collision of two nucleons is often calculated with the
“rescattering” diagram which describes the formation of the
�33 resonance by the exchange of one pion. In the case of
K+ scattering this simple rescattering process does not exist
since the K+ cannot emit a single pion, and other mechanisms
must be considered. The excitation by exchange of a ρ meson
might be a natural process to consider, at least from the point of
view of the exchange of heavy mesons. Additional information

on this process can be obtained from a phase shift analysis
which indicates which partial waves are participating in the
production.

Section II describes our fitting method, Sec. III gives a
description of the T = 1 analysis, Sec. IV discusses the results
of the T = 1 analysis, and Sec. V gives the method for the
T = 0 analysis. Section VI discusses the results of the T = 0
analysis and Sec. VII gives an overall summary and discussion
of the results.

II. FITTING PROCEDURE

In the heart of any amplitude analysis lies the search for the
(or a) minimum in a χ2 (or similar) measure for the best fit to
the data. It is normally assumed that the numerical procedure
for this minimization is straightforward and does not pose any
problems, but that may not be the case. The technique that
we use is very pedestrian but seemingly very sure. The χ2

is minimized on each parameter in turn sweeping through a
significant number of them (88 for the T = 1 case and 61 for
the T = 0 case including data normalizations). To minimize
χ2, each parameter is stepped by a fixed interval until the
value of χ2 increases. At this point in the search three values
of χ2 are known at three values of the parameter. A parabola
is then passed through the three points and the position of
the minimum is predicted. This procedure, in some form, is
common to most methods of minimization although several
methods treat the full parameter space as a vector. There is a
difficulty that arises due to the fact that χ2 as a function of
the parameter is very often not a perfect parabola. This means
that the prediction of the minimum position (and hence χ2

value) is not the true minimum in this region and the value
of χ2 predicted may exceed the one at the central (lowest)
point. Since the middle point is very often the value obtained
in the search on the previous parameter in the sequence, if the
predicted value is always accepted, the “current minimum”
χ2 will increase in some cases. In our algorithm we test the
predicted value of χ2 against the central value and if it is
greater, the central (previous best) value is used instead.

This incorrect prediction is not a rare occurrence. We
observed that it happened about 4% of the time when
the search was far from the minimum and up to 40–50%
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of the time when it was close to the minimum. If one
decreases the step size, the deviation from a parabolic
shape can be lessened, but there is a limit to this process
since the difference between values of χ2 needed to predict
the new minimum becomes small compared with their values
and with finite precision another source of error becomes
important, even with double precision (which we use). Hence,
there is an inherent limit to how well the minimum can be
found.

This limit depends on the details of the method used, of
course, but also on the parametrization of the phase shifts.
Different parameterizations will have different functions to
replace the parabola, or perhaps more practically, will have a
different importance of third order terms.

This inability to find perfectly the minimum (or minima)
translates to a dependence of the final result on the starting
values. Tests of the dependence on starting point were made
by perturbing some of the parameters (typically two or three)
until the χ2 was very large. For χ2 of the order of 100,000 the
search usually was unable to find a sensible minimum but for
χ2 in the range 10,000 to 20,000 a minimum was found near,
but not identical, to the principal fit. A large number of sweeps
through the parameters was needed (several tens of thousands).
The results of these tests are given in the discussions of the
T = 1 and T = 0 analyses.

A χ2 corresponding to each normalization was included in
the total χ2 of the fit by adding

(
N − 1

�N

)2

(1)

for each normalizing parameter, N, to the χ2 coming from the
individual data points. The value of 0.03 was chosen for �N

since it is a typical value for normalization errors.
The philosophy behind this procedure is that the normal-

ization should be treated as an independent data point. In a
typical model experiment the number of counts is registered
in a set of counters and then those counts are multiplied by
a normalization factor determined by the effective number
of target particles, the beam flux, etc. The errors in this
normalization factor will be common to the cross sections
for every counter. While this would appear to be the right
statistical procedure, some care is needed in the interpretation
of the results. Even if a significant discrepancy occurs in the
normalization, it can be hidden if one simply looks at the total
χ2 per data point in the case that there are a large number
of points which accompany a single normalization. The large
number of points dilute the total χ2 so that it is only slightly
larger than the number of degrees of freedom. A distinction
based solely on total χ2 requires the separation of a value of
the reduced χ2 closer and closer to unity from unity. Practical
difficulties arise since one can assume that the experimental
errors have been estimated correctly only up to a certain level
(experience would suggest something of the order of 5%).
Hence the square of the errors in the denominator of the
definition of χ2 leads to a sufficient error in its value that this
method is impractical. This does not mean that a problem with
the normalizations cannot be found, however. It simply means

that one must examine the normalizations separately to verify
that the χ2 from the normalizations alone is not excessive.

III. K+ PROTON (T = 1) ANALYSIS

The T = 1 database used consists of 1880 data points
including 1501 angular distribution points, 91 total cross
section points, 265 polarization points, and 23 reaction
cross section points. Much of these data are available from
compilations [30–32] but we try to give references to the
original data as much as possible [33–53].

Of these points, four were removed because they were
outliers. These were two points from Ref. [38] at 0.686 and
0.717 GeV/c, and two from Ref. [34] at 0.713 and 1.029
GeV/c. The error on Ref. [33] polarization at 1.330 GeV/c
and cosθ = 0.242 was doubled. The errors were doubled on
the polarization set at 1.430 GeV/c [33] since the variation
from point to point is greater than the errors quoted.

Partial waves through F7/2 were considered. The G and
H waves were not needed to get a good fit. We write the
partial-wave amplitudes as

F�± = (S�± − 1)e2iσ�

2i
; S�± = η�±e2iδ�± , (2)

where the sign ± corresponds to j = � ± 1
2 and σ� is the

Coulomb phase shift. No “inner” Coulomb corrections were
made, the Coulomb effect being very small for the energies
considered here.

The differential cross section, polarization and total cross
section are expressed in terms of the amplitudes in the standard
manner (see, e.g., Hashimoto [15]) and will not be repeated
here. The reaction cross section (essentially pion production)
can be written as

σR = 10π

q2
f

∑
�

[
�
(
1 − η2

�−
) + (� + 1)

(
1 − η2

�+
)]

(3)

so is independent of the phase shifts and can be particularly
important in determining the η�±. Here, and in what follows, q
denotes the momentum in the center of mass (in GeV/c unless
otherwise noted) and qf is q/h̄c, i.e., in femtometers.

We have taken for the S- and P -wave phase shifts the form

δ�± = tan−1


 a�±q2�+1

1 +
∑

i
bi,�±q2i


 . (4)

The index i, runs from 1 to 2 for the S wave and 1 to 3 for the
P 3/2 wave. There is only one term in the sum for the P 1/2
wave.

For the D waves a simple polynomial is used

δ2± = q5(c± + d±q2 + e±q4) (5)

and only the lowest order was used for the F waves

δ3± = q7f±. (6)

The η�± were parametrized allowing a different threshold,
qR , for each partial wave. Below the threshold the values were
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TABLE I. Parameters for the representation of the inelasticity,
η�,j for T = 1 using the form of Eq. (7) except for the D3/2 wave
where Eq. (8) is used.

L J qR (GeV/c) γ1 γ2 γ3 Eq.

S1/2 0.4134 0.0858 0.5030 (7)
P 1/2 0.3858 0.1811 −0.0163 (7)
P 3/2 0.4809 1.0794 2.1643 −3.9024 (7)
D3/2 0.6758 2.1264 (8)
D5/2 0.4304 0.3604 −0.2723 (7)
F5/2 0.5286 0.1778 (7)

unity and above threshold the form

η = 1 −
n∑

i=1

γi

(
q

qR

− 1

)i

(7)

was used except for the D3/2 partial wave which was
represented by

η = cos

[
n∑

i=1

γi

(
q

qR

− 1

)i
]

. (8)

The highest power of j varied with partial wave, the greatest
being 3 in the case of the P 3/2 wave. For the F7/2 wave η

was taken as unity. The values of the parameters for our best
fit are given in Tables I and II.

The normalizations of 55 of the data sets was varied in
the fitting procedure and their distribution is given in Fig. 1.
The standard deviation of the normalizations was 2.2%, less
than the 3% used for �N in Eq. (1). The mean normalization
was 1.0004 and only two normalizations gave an adjustment
greater than 5%. The total χ2 is 2051 for a χ2 per data point
of 1.09.

The phase shifts for the best fit are shown in Fig. 2 compared
with three other analyses discussed below. At low energy
(below threshold) the results are very similar to those of
Martin [19].

Aside from the main fit, we performed tests for the degree
of uniqueness of the minimum. Values of the parameters were
altered in varying degrees such that the χ2 values were very
large (generally of the order of 10,000) and the minimum

FIG. 1. Distribution of the normalization factors for isospin 1.

search was restarted. This was done six times and the values
of χ2 at the minima found are given in Table III. The values of
χ2 were about nine above the best fit except for case d where
χ2 was about 20 above the best fit.

The fits found at these other minima are very similar to
the original fit. The comparison is shown in Fig. 3. There it
is seen that the fits are nearly identical below threshold (with
the possible exception of case d) but above threshold there is
a noticeable variation. In principle one can eliminate all fits
but the principal solution on the grounds that the difference
in χ2 is considerably larger than unity. In practice, however,
since one can never be sure that the “true” minimum has been
found, we consider the variation among the fits (excluding fit
d) as a conservative estimate of the error in the determination
of the phase shifts and inelasticities.

A. Other Work for T = 1

Leaving aside many of the earlier analyses [16–18,23–28]
there are three modern analyses with which we compare.

1. Analysis of Hashimoto

Hashimoto [15] performed an energy-independent analysis
for momenta from 0.6 to 1.5 GeV/c. Such an analysis has
the advantage that no theoretical prejudices are inserted
in the parametrization of the energy dependence but the

TABLE II. Parameters for the representation of the phase shifts for T = 1 using the form of Eq. (4)
for the S and P waves, Eq. (5) for the D waves and Eq. (6) for the F waves.

L J a(GeV/c)−(2�+1) b1,�±(GeV/c)−2 b2,�±(GeV/c)−4 b3,�±(GeV/c)−6 Eq.

S1/2 −1.562 −1.108 0.217 (4)
P 1/2 −12.002 31.139 (4)
P 3/2 13.357 126.676 −666.951 1276.123 (4)

L J c±(GeV/c)−5 d±(GeV/c)−7 e±(GeV/c)−9

D3/2 −2.984 4.119 (5)
D5/2 −1.702 6.571 −7.462 (5)

L J f±(GeV/c)−7

F5/2 −0.415 (6)
F7/2 0.089 (6)
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FIG. 2. T = 1 phase shifts and η’s obtained in the present work (solid line) compared with VPI (dotted line), Hashimoto (dots), and Martin
(dashed line). The vertical lines show the thresholds; dash-dot: pion production threshold, long-dashed: threshold for production of a theta
particle and a pion, dotted: threshold for production of a delta and a K+, and short-dashed: production by a K∗(892) nucleon.

disadvantage that S-matrix elements obtained at one energy do
not share information from nearby energies which can result
in large fluctuations from one energy to another. Observables
sometimes have to be grouped to have enough data at a given
energy. When amplitudes are slowly changing this does not
lead to problems but at the threshold for pion production,
where some of the amplitudes change rapidly, it can. Structure
was seen in this analysis in the P 3/2 and other partial
waves.

TABLE III. Values of χ 2 for the best fit and the variations made
in the present work for T = 1. The columns labeled P 1/2 and P 3/2
contain scattering volumes.

Case χ 2 χ 2/N Scatt.
Len. (fm)

P 1/2(fm3) P 3/2(fm3)

Best Fit 2031.05 1.080 −0.308 −0.092 0.103
a 2042.47 1.086 −0.311 −0.055 0.046
b 2039.94 1.085 −0.310 −0.067 0.058
c 2040.00 1.085 −0.310 −0.066 0.057
d 2051.98 1.091 −0.313 −0.029 0.009
e 2039.67 1.085 −0.308 −0.084 0.094
f 2039.02 1.085 −0.311 −0.060 0.051

2. Analysis of the VPI group

The VPI group [20–22] has published three analyses. In
these fits the S-matrix elements for each partial wave were
parametrized in the form of a K-matrix with one elastic and
one inelastic channel. Structure is seen in these fits in the
P 3/2 wave very similar to that of Hashimoto. This led the
group to suggest that there was a resonance in this wave and
two analyses give the mass pole at 1.780 and 1.796 GeV/c2,
corresponding to beam momenta of 0.971 and 1.005 GeV/c.

The onset of one-pion inelasticity was assumed to come
about by the production of intermediate particles which then
decayed to the KNπ system. Such a model is made very
plausible by the experimental fact that pion production does not
start at its threshold but some 200 MeV/c higher in momentum
(see Figs. 4 and 5). Since the � threshold is 340 MeV/c above
pion threshold and the delta has considerable width, so that the
production can start below that, it was the prime candidate. The
K∗(892) was considered as well but it has a higher threshold.

The VPI work [21,22] allowed renormalization in much the
same way as described above in the present work. However,
unlike the present case, substantial renormalization occurred
with a number of the data sets being renormalized by more
than 5%.

We inserted the VPI solution (including the G and H waves)
into our program to compare with the data base used here
to find a χ2 of 2810 for the 1880 points (a ratio of 1.49),
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FIG. 3. T = 1 phase shifts and η’s obtained in the present work (solid line) compared with the variations. The solid line is the principal fit,
the dashed lines correspond to fits a, b, c, e, and f, and the dash-dot line to the poorer fit d. The designations of the cases correspond to those in
Table III.

which implies a fit very similar in quality to the original fit
which was 1.73 or 1.25 depending on the case. Two points
in the threshold of the reaction cross section (at 0.735 and
0.785 GeV/c) contribute 270 to the χ2. If we remove these
two points the ratio drops to 1.35. One cannot expect a closer
agreement since their parameters were not fit to our data base
and the phase shifts taken from the paper [22] (or the website)
are quoted with a limited accuracy.

3. Analysis of Martin

Martin performed an analysis in which the partial-wave
amplitudes were parameterized directly. The result is equiv-
alent to the partial-wave expansion in terms of δ�± and η�±
discussed above and the correspondence is easily made.

Suppressing the partial-wave index, the Martin amplitudes
have the form

F = C(q)

A(q) + i[1 + θ (q − q0)R2(q)]C(q)
, (9)

C�± = q2�+1

1 + (q/q0)2�+1 . (10)

A(q) was approximated by a polynomial in q/qm and R(q)
a polynomial in ( q−q0

qm−q0
) where q0 is the reaction (pion

production) threshold (0.3106 GeV/c in the center of mass)
and qm is the maximum c.m. momentum considered in the fit.

Thus, the inelasticity (expressed in terms of R) has a form
similar to that used in the present work but only a single
threshold (q0) was used for all partial waves.

In his fit Martin used G and H waves which were estimated
by means of a dispersion relation calculation [54]. He did not
give these values and they are no longer available so we were
forced to set them to zero. These waves are only important at
the higher energies so did not affect the calculations done for
the nuclear scattering [1,2]. However, for momenta above ≈
1.2 GeV/c the Kaon-nucleon amplitude can not be accurately
obtained from Martin’s phase shifts alone.

Martin listed several renormalizations chosen by hand. The
average value of these renormalizations was 0.98 and the
standard deviation was 0.067. Since these normalizations were
changed by hand, no χ2 was accorded to them by Martin.
With a fixed error of 0.03 they would have contributed 64.7 to
the χ2.

The Martin solution was also compared with our data base
and we found a χ2 of 3023 for a ratio of 1.61. The same two
reaction cross section points which contributed large χ2 in the
case of the VPI group give a contribution to the χ2 of 446. If
we remove these two points, the ratio becomes 1.37. Since the
normalizations for the data were refit the test is not completely
valid. The major discrepancy occurs for large beam momenta
where the lack of G and H partial waves used in the original
fit is most important. Removing the two reaction cross section
points and all data above 1.2 GeV/c, we find a χ2 of 1372 for
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FIG. 4. Top: Contribution of the various partial waves to the
reaction cross section. Bottom: Comparison of the reaction cross
section from the present work with that of the VPI group and
Martin.

FIG. 5. Partitioning of the T = 1 reaction cross sections among
partial waves for Hyslop et al. [22] and Martin [19].

the 1132 points of the reduced data set or a ratio of 1.21 so
that the quality of the fit approaches that quoted in the original
paper which was 1.08.

IV. DISCUSSION FOR T = 1

The values of the phase shifts and inelasticities for the ob-
tained partial waves are given, compared with other analyses,
in Fig. 2. The behavior of the amplitudes is also given in an
Argand diagram in Fig. 6. We note that there is no counter
clockwise behavior in the P 3/2 partial wave as was observed
in Nakajima et al. [25] or Arndt et al. [20,21].

A. Reaction cross section

The partitioning of the reaction cross section among the
partial waves is given in Fig. 4. The lower part of Fig. 4 gives
the comparison of the reaction cross sections calculated with
those from Arndt et al. [20] and Martin [19]. One notices that
just above the threshold for pion production the reaction cross
section remains very small for about 200 MeV/c. A similar
thing is seen in nucleon-nucleon scattering and the usual
interpretation is that pion production proceeds primarily by
� production with the threshold for the reaction cross section
being governed by the mass of the �.

In the present reaction, the threshold behavior can perhaps
be explained again by � production although the exchange

FIG. 6. Argand plot of the T = 1 partial waves.
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FIG. 7. T = 1P 3/2 phase shift in the region just above threshold.
The vertical line marks the � threshold. The chain-dash curve, taken
from the paper by Wyborny et al. [56] and is the result of a calculation
of the final-state interaction between the K+ and the �. The other
curves have the same meaning as in Fig. 2.

of a single pion to form the � is not possible since a pion
cannot couple to the kaon. Another possibility is for the
reaction to proceed by the excitation of the K∗(892). The
VPI group [21] used these two intermediate states to model
the threshold behavior. As can be seen from the insert in
Fig. 4 they obtain a rise in the reaction cross section very sim-
ilar to that obtained by Martin, neither of which is sufficiently
rapid. In the case of the VPI group [21] this is because the
K∗(892) has a higher threshold (1.077 GeV/c in the laboratory)
and, while the � has about the right threshold (0.886 GeV/c
in the Lab), it has a significant width which causes the onset
of the reaction cross section to be gradual. However, Oset and
Vicente Vacas [55] had a reasonable success in reproducing
the data by combining this mechanism with a chiral symmetry
calculation.

Wyborny et al. [56] included final-state interactions be-
tween the � and kaon in the pion production channel and
were able to produce a maximum in the P 3/2 phase shift very
similar to the one observed. Their result gives a shape closer
to our results (or Martin’s) than to those of Hashimoto [15] or
Watts et al. [28] with which they compared. Figure 7 shows
the comparison of their calculation with the four sets of phase
shifts considered here.

In order to have a rapid onset for the reaction cross section
through the mechanism of an intermediate particle production,
that particle must have a small width. An interesting possibility
is pion production by the intermediate step of K+N → θ++π

where θ+ is the much discussed pentaquark. Hyodo et al.
[57] have considered pion production in this reaction by this
mechanism. The mass of the proposed pentaquark is thought to
be around 1.54 GeV/c2 and its width very small. The threshold
for production by this means (0.758 GeV/c in the Lab) is
slightly lower than the � threshold. The diagrams for these
three possibilities are given in Fig. 8.

The separation of the reaction cross section into its partial-
wave components may be of some help in sorting out the
reaction mechanisms (see Figs. 4 and 5). If one assumes that
the intermediate particle is produced at rest in the center of

FIG. 8. Diagrams for pion production. Compound objects are
indicated by the double line.

mass then it should be in a relative s-wave. For the case of
the � (with spin-parity-3/2+) in an s-wave, the only incident
partial wave allowed is D3/2. It is interesting to note that in
the present work, and in Martin’s analysis, this partial wave
has very little reaction cross section and the VPI analysis [21]
has only a moderate contribution. One possible explanation is
that the production mechanism does not allow the formation of
the �-kaon final state in a relative s-wave. If we assume that it
is produced in a relative p-wave then possibilities for the initial
partial wave are P 1/2, P 3/2 and F5/2. We see that the P 1/2
partial wave contributes a significant reaction cross section
and the P 3/2 partial wave also contains strength, although at
slightly higher energies.

It is interesting to note that the D5/2 partial wave is
important and, at least in the present work, dominates in the
region 0.8 to 1.0 GeV/c. The Martin analysis also gives the
dominant waves to be P 3/2, P 1/2 and D5/2 (Fig. 16). In our
work it seems to be the D5/2 partial wave which accounts
for the rapid rise in the region 0.8 to 0.9 GeV/c. If one were
to assume that this increase corresponds to the threshold for
θ+ production in the s-wave then the θ+ would have to have
spin-parity-5/2+.

Bland et al. [47] measured the angular dependence of the
pion production directly and found that � production is in the
P 1/2 and P 3/2 waves. They attempted a partial-wave analysis
of the production although it was only possible to include a
limited number of amplitudes. Their analysis indicated that the
two P waves contributed about equally. They did not include
the D5/2 wave in their study. In this same work [47] a model of
� formation by ρ exchange was also presented which indicated
that the expected ratio of P 3/2 to P 1/2 formation was 5:1,
similar to what we find (Fig. 4).

Bland et al. [47] also found strong evidence for interference
with an even parity partial wave. This effect became much
larger for low beam momenta and invariant masses away from
the central mass of the �. This even partial wave was only
present in the final charge states K0pπ+ and K+nπ+ and not
in the state K+pπ0 where the kaon-nucleon system has isospin
unity. Also observed in this paper was a strong asymmetry in
the Daliz plot which, again, was not seen in the K+pπ0 final
state. These observations suggest that the asymmetry may be
linked to the production of a T = 0 KN final state, again
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consistent with the presence of an isospin 0 particle. They [47]
also studied the K∗(892) production and were able to say that it
occurred in a low angular momentum state consistent with our
observation of a rise in the s-wave contribution in the region
of the K∗(892) threshold.

B. Scattering length

The value of the T = 1 scattering length has been very
stable over the years. Lévy-Leblond and Gourdin [58] obtained
a scattering length of −0.34 fm in what was probably the first
analysis. Hyslop et al. [22] obtained a value of −0.33 fm,
Cutkosky et al. [27] found −0.28 ± 0.06 fm and Martin [19]
found −0.32 fm.

We obtain a central value of the s-wave scattering length
of −0.308 fm from the best fit. One can estimate from the
variation of minima in Table III an error of ±0.002 fm. Fixing
the scattering length at various values and refitting the rest
of the parameters, one finds again an error of ±0.002 fm.
Adding the two errors in quadrature we can quote a value of
−0.308 ± 0.003 fm. While this error is that obtained with the
present data set, it is so small that one would have to expect
that the addition of new data would lead to a change of the
same order or larger. We note that the average from Refs.
[19,22,27] is −0.031 fm so our central value is what might be
expected.

On the theory side, Barnes and Swanson [9] obtained,
in a quark Born approximation, a scattering length of
−0.35 fm. When this value was corrected for unitarity, by
solving for scattering from a potential, the value became
−0.22 fm.

C. Scattering volumes

The scattering volumes have always been estimated to be
very small and are poorly determined. In early work, the
p-waves were often neglected as input to the T = 0 deter-
minations. Cutkosky et al. [27] obtained −0.04 ± 0.03 fm3

for the P 1/2 wave and 0.02 ± 0.02 fm3 for the P 3/2 wave,
for example. The values obtained in the present work are very
dependent on the minimum found, unlike the scattering length.
For the higher values of χ2 the scattering volumes are small,
in agreement with Cutkosky et al. [27] but for the best fit, the
volumes are somewhat larger in magnitude.

V. ANALYSIS FOR T = 0

A. Data treatment

The treatment of the isospin zero amplitude is more
difficult since there exist no free neutron targets. What is
normally used is scattering from the neutron contained in
the deuteron. Modern analyses [59,60] suggest that scattering
from the meson cloud is not a problem. There are only
slightly more than half of the number of data points compared
to the T = 1 case and the reliability of the data is less,
given that it must be extracted from deuteron data with
corrections. Again most of the data can be obtained from

compilations [30–32] but we try to give references to original
papers [28,45,46,53,61–72]. Normally the neutron result is
obtained assuming that the interactions of the kaon with the
proton and neutron are independent. This is usually a good
approximation except at low energies. However, the T = 1
reaction dominates the deuteron [for example the total cross
section on the deuteron is 3

2σ (T = 1) + 1
2σ (T = 0)] so a

good knowledge of the T = 1 amplitudes is needed. We used
T = 1 amplitudes from out best fit as input to the T = 0
determination.

The data used in our standard fit are all from incoherent
K+ deuteron scattering and K+ deuteron total cross sections.
There are 92 points of total cross section data, 17 points of
one and two pion production data, 336 points of elastic cross
sections from the neutron, 43 points of elastic polarization
from the neutron, 657 points of charge exchange cross section
data and 44 points of charge exchange polarization data for a
total of 1189 points.

As might be expected, the pruning of the T = 0 data is
more significant and problematic than the T = 1 case. In
order to choose which points to eliminate, a preliminary fit
was made with all data included. By binning the values of
χ2 (bins of unit size were chosen) a distribution was obtained.
This distribution, along with the expected distribution obtained
from a χ2 distribution with one degree of freedom is shown in
Fig. 9. We see that the expected number of counts in a bin of
unit size falls to 0.1 around χ2 = 15. For this reason, the 19
points with χ2 � 15 were removed leaving 1170 data points
to be fit. It is clear that there is still an excess of points below
χ2 = 15 but it is impossible to tell which points to remove
so no further pruning was done and we must expect to have
a higher χ2. However, we did make one run with all points
giving a χ2 > 10 being removed. The results of this fit are
shown in Table IV.

B. Double scattering

At very low energies, double scattering in the deuteron
gives an important contribution to the total cross section. Other
observables are not sufficiently well measured that it will have
a significant effect.

FIG. 9. Distribution of the values of χ 2 for isospin 0 for all data.
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TABLE IV. Values of χ 2 for the best fit and the variations made in the present work for T = 0.
Cases a–f show different fits obtained with the full code. Case “No Krauss/Weiss” corresponds to
a fit in which the data of Refs. [4] and [5] were left out. In case “No Double” the double scattering
correction was omitted and in case “Alter. Reaction” the reaction data was replaced by the average
as explained in the text. The case “Stenger Full” gives the results with the full Stenger data [76]
included and case “Stenger Partial” the results where the most forward points were omitted. For
the case “No Damerell” the Damerell et al. data [72] were omitted from the fit. For the line labeled
“K0p” the data of Armitage et al. [77] were included in the fit.

Case χ 2 N χ 2/N Scatt. Len.
(fm)

P 1/2(fm3) P 3/2(fm3)

Best 1670.561 1170 1.428 −0.1048 0.183 −0.029
a 1671.214 1170 1.428 −0.1015 0.183 −0.028
b 1670.561 1170 1.428 −0.1053 0.182 −0.029
c 1670.758 1170 1.428 −0.1055 0.182 −0.029
d 1671.085 1170 1.428 −0.1055 0.183 −0.030
e 1675.274 1170 1.432 −0.1067 0.181 −0.022
f 1675.301 1170 1.432 −0.1003 0.181 −0.022
χ 2<10 1540.480 1162 1.326 −0.1027 0.182 −0.028
No Krauss/Weiss 1649.073 1155 1.428 −0.0988 0.177 −0.027
No Double 1662.132 1170 1.421 −0.1166 0.200 −0.038
Alter.reaction 1665.105 1170 1.423 −0.0957 0.183 −0.021
Stenger full 1714.224 1190 1.441 −0.1096 0.174 −0.036
Stenger partial 1692.632 1186 1.427 −0.1036 0.181 −0.029
No Damerell 1284.174 1008 1.274 −0.0997 0.205 −0.025
K0p 1895.322 1319 1.437 −0.1069 0.173 −0.032

The double scattering amplitude at 0◦ is given by [73]

fD(θ = 0) = fD(k, k)

= 1

2π2

∫
dqfb(q, k)fa(k, q)

q2 − k2 − iε
z (|k − q|) , (11)

where k is the initial and final (on-shell) momentum of the
scattering meson, z(p) is the two-body form factor, and f (k, q)
and f (q, k) are half-off-shell basic scattering amplitudes.

For the scattering amplitudes we write the off-shell depen-
dence as

f (q, q′) = f0v(q)v(q ′);

v(k) = 1 where the form v(q) =
(

k2 + �2

q2 + �2

)2 (12)

will be assumed.

fD(θ = 0) = ik

4π

∫
dqfb(q, k)fa(k, q)z (|k − q|)

+ 1

2π2
P

∫
dωqq

2dqfb(q, k)fa(k, q)

q2 − k2

× z (|k − q|) . (13)

We will consider only the s- and p-waves for this correction.
The isospin 1 s-wave is the strongest so we consider the double
scattering between it and the s- and p-waves of the neutron.

With these assumptions

fD(θ = 0) = ikf p

0 f n
0

4π

∫
dqz (|k − q|)

+ f
p

0 f n
0

2π2
P

∫
dωqq

2dq

q2 − k2
z (|k − q|)

+ ikf p

0 f n
1

4π

∫
dqxz (|k − q|)

+ f
p

0 f n
1

2π2
P

∫
dωqq

2dqx

q2 − k2
z (|k − q|) , (14)

where x is the cosine of the angle between q and k. The double
scattering contribution to the total cross section will be

σT = 2 Im

[
if

p

0 f n
0

∫
dqz(|k − q|) + 2f

p

0 f n
0

πk

×P
∫

dωqq
2dq

q2 − k2
z(|k − q|) + if

p

0 f n
1

∫
dqxz

× (|k − q|) + 2f
p

0 f n
1

πk
P

∫
dωqq

2dqx

q2 − k2
z(|k − q|)

]
,

(15)

where the factor of 2 comes from the fact that there are
two orders of scattering possible. To include charge-exchange
scattering we can replace

f
p

0 f n
0 → f

p

0 f n
0 − 1

2f 2
0x. (16)

Near zero energy the amplitudes become real (so the
principal value terms become very small) and the p-wave
amplitude goes to zero so that only the first term remains
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FIG. 10. Partitioning of the T = 0 reaction cross sections among
partial waves for the present work with the standard reaction data.

and gives a contribution of 8πf
p

0 f n
0 . Since the fourth term is

small for both reasons we have neglected it. The function z

was computed using the one-pion-exchange deuteron wave
function [74] which gives a good representation of the
momentum distribution in the deuteron [75]. While we believe
that this correction is needed to get a proper fit, the results with
it being left out are shown in Table IV.

C. Reaction cross sections

Aside from the values given by Hirata et al. [64], the
principal reaction cross sections (one and two pion production)
are from Giacomelli et al. [62]. They used their deuteron and
proton pion production data to extract the neutron data. A more
consistent way for us is perhaps to use our fit to the proton
results with their deuteron production data to obtain directly
the T = 0 reaction cross section. These can be obtained
directly in the single scattering impulse approximation from
the following equations:

σR(T = 1) = σR(proton);

σR(deuteron) = σR(proton) + σR(neutron)

= 3
2σR(T = 1) + 1

2σR(T = 0). (17)

FIG. 11. Partitioning of the T = 0 reaction cross sections among
partial waves for the present work with alternate reaction data.

FIG. 12. Distribution of the normalization factors for isospin 0.

With not much to choose between the two one might hope
to improve the errors by averaging the two determinations.
Figures 10 and 11 show the result of a fit with the original
reaction data and the alternate reaction data. Table IV shows
the effect of using this alternative reaction data.

D. Normalizations

We maintained the constant error of 3% for most of the
normalizations although, for the reasons mentioned above, we
might expect it to be larger. Figure 12 shows the distribution
of normalizations. The distribution is wider than for the T = 1
case and there is a slight bias. The calculated width of the
distribution is influenced by one outlier from the Damerell
et al. elastic data [72].

E. Other work

1. Analysis of Hashimoto

Hashimoto [15] observed a resonance-like structure in the
T = 0,D3/2 wave which had been seen before [19,25,26].
While we see a loop in the Argand diagram, it is less
pronounced than what he saw.

2. Analysis of Martin

Martin’s database was somewhat smaller than the one used
here. He used, in addition to the direct deuteron data, real parts
of the amplitude obtained from a dispersion relation analysis
using the K+ and K− total cross sections. The dispersion
relations were once subtracted with the subtraction point was
taken at zero energy which means that the scattering lengths
were input. He assumed that the isospin 0 scattering length
was 0±0.04 fm based on previous analyses. His fit resulted in
a scattering length of −0.035 fm in agreement with his small
input value.

We inserted Martin’s solution in our code to compare with
our database. Since he had a smaller amount of data and the
parameters were not fit to the present data base, one cannot
expect a reduced χ2 very close to what he obtained. We find
(for 1170 points) a χ2 of 2849 or a ratio of 2.44 for the full
data set. Restricting the comparison to data below 1.2 GeV/c
(because of the missing high partial-waves problem mentioned
before) we find a χ2 of 1430 for 827 points for a ratio of 1.73.
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His original fit (number 2) found a χ2 of 924.5 for 760 points
or 1.22.

3. Analysis of the VPI group

Hyslop et al. [22] use � production as a model for
inelasticity in spite of the fact that the K+� final state is
forbidden in the T = 0 channel. Comparing their amplitudes
with our data base we find a χ2 of 2776 on 1170 points for
a ratio of 2.37. They found 3181 for 1746 data points for a
ratio of 1.82. Again, we remark that their parameters were
not adjusted to our data base and phase shifts of only limited
accuracy are available so the same value cannot be expected.

VI. RESULTS FOR T = 0

Figure 13 shows the phase shifts obtained for the T = 0 fit
compared with three other analyses and Tables V and VI show
the parameters which give the phase shifts and inelasticities.
Figure 14 shows the behavior of the T = 0 phase shifts in
Argand plots. There is some structure in the plots but nothing
that can surely be associated with resonances. The results for
different fits are summarized in Table IV (cases a–f ) and plots
of the resulting phase shifts are shown in Fig. 15.

TABLE V. Parameters for the representation of the inelas-
ticity, η�,j for T = 0 using the form of Eq. (8) for all the partial
waves except the F5/2 wave which uses Eq. (7). The threshold
for the D5/2 wave is PLab = 1.55 GeV/c so the η for this
partial wave can be taken as unity over our fitted range.

L J qR(GeV/c) γ1 γ2 γ3 Eq.

S1/2 0.4350 3.581 −4.349 (8)
P 1/2 0.2515 −0.689 0.822 (8)
P 3/2 0.5303 −9.101 46.593 −79.735 (8)
D3/2 0.3351 0.887 (8)
D5/2 0.7120 (8)
F5/2 0.6352 1.485 (7)

A. Reaction channels

The isospin 0 channel is quite interesting from the point
of view of the mechanism for pion production. Because of
isospin, � production is not allowed, nor is the production of
the isoscalar θ+. Indeed, the reaction cross section is seen to
be smooth in the region of these two thresholds, unlike the
T = 1 case. The K∗(892) production is permitted and one
does observe a rapid rise around where it would be expected
(Figs. 10 and 11). This is particularly true of our results
but is consistent with the reaction cross sections of the VPI
group and Martin as is seen in Fig. 16. Since the K∗(892) has

FIG. 13. T = 0 phase shifts and η’s obtained in the present work (solid line) compared with VPI [22] (dotted line), Hashimoto [15] (dots),
and Martin [19] (dashed line). The vertical lines show the relevant thresholds, dash-dot: pion production threshold, dashed: threshold for
production of a K+.
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FIG. 14. Argand plots of the real and imaginary parts of S−1
2i

for
T = 0.

spin-parity-1−, if it is produced with the nucleon in a relative
s-state, the spin-parity-values possible are 1/2− and 3/2−
which correspond to the incident waves of S1/2 and D3/2.
Indeed, we see the S1/2 wave giving an important contribution
to the reaction cross section at the threshold and the D3/2
wave is the largest single contributor. Somewhat surprising is
the dominance (or at least importance) of the D3/2 channel.
This is the partial wave expected for the (isospin forbidden)
production of a � in the s-wave. However, this wave may be

simply the dominant wave for the nonisobar production as well
as receiving a contribution for the K∗(892) production.

B. Scattering length

The T = 0 scattering length has a rather checkered
history. Lévy-Leblond and Gourdin [58] obtained a value of
−0.05 fm, with large but unspecified errors. Stenger et al. [76]
found a value of +0.04 fm (a value which was commonly
used in dispersion relation work [17]). There were also
suggestions that it might be positive and large [54]. Presumably
based on this previous work, Martin [19] set the scattering
length to zero with an error of 0.04 fm as the subtraction
point for his dispersion relation constraint. Martin’s fit gives
−0.035 fm, although he states that it has a large error. Later
Martin gave [18] a value of 0.02 fm and then in still later
work [23] he found −0.23 ± 0.18 fm.

Barnes and Swanson [9] obtained a theoretical scattering
length of −0.12 fm from a Born quark model. To compare with
the experimental value they performed their own extrapolation
to zero energy based on single-energy analyses and found
−0.09 or −0.17 fm depending on which analysis they
used.

From Hyslop et al. we extrapolate a value of −0.019
although they quote in the paper a value of zero. It can be
seen from Fig. 13 that the behavior of the isospin 0 s-wave
in their fit is rather different from ours and has a great deal
of variation in the low-energy region where there are no data.
It can only be assumed that the variation in this case is a
result of a fit at higher energies. It is seen that the trend of the
curve above 1.1 GeV/c is noticeably different from the other
determinations.

For the T = 0 s-wave scattering length we adopt for the
central value our best fit value of −0.105 fm from Table IV.
The error for the uncertainty in the minimum is estimated from
Table IV to be 0.002 fm. In order to estimate the statistical error
the fit was redone for several fixed values of the scattering
length varying all other parameters. From the resulting χ2

curve the error can be estimated to be 0.01 fm. For values
of scattering length close to the central value, the χ2 curve
is symmetric but for larger deviations it is not, rising steeply
for small values. For the value of −0.035 fm given by Martin

TABLE VI. Parameters for the representation of the phase shifts for T = 0 using the form of Eq. (4)
for the S and P waves, Eq. (5) for the D waves and Eq. (6) for the F waves.

L J a(GeV/c)−(2�+1) b1,�±(GeV/c)−2 b2,�±(GeV/c)−4 b3,�±(GeV/c)−6 Eq.

S1/2 −0.531 −1.206 1.362 (4)
P 1/2 23.765 3.690 (4)
P 3/2 −3.808 2.919 −10.042 212.021 (4)

L J c±(GeV/c)−5 d±(GeV/c)−7 e±(GeV/c)−9

D3/2 12.548 −22.412 (5)
D5/2 −7.528 32.262 −37.422 (5)

L J f±(GeV/c)−7

F5/2 2.836 (6)
F7/2 −1.731 (6)
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FIG. 15. T = 0 phase shifts and η’s obtained in the present work (solid line) compared with the variations. The solid line is the best fit, the
dashed lines correspond to fits a, b, c, and d, and the dash-dot lines to the poorer fits e and f where the labeling of the cases are indicated in
Table IV.

[19], the χ2 corresponds to 8.6 standard deviations from our
central value. Since the statistical error dominates, we take
the scattering length as −0.105 ± 0.01 fm. This error does
not include possible errors from the variations in the database.
Observations on the change in value from the omission of data
sets as shown in Table IV suggest that the error from this source
can be expected to be of the same order or slightly smaller.

C. Scattering volumes

The P 1/2 scattering volume is well determined by the
fit to be 0.183 ± 0.005 fm3 where the error comes from an
examination of Table IV assuming that there is no reason to
exclude the double scattering correction or the Damerell data.

The P 3/2 scattering volume is smaller and more poorly
determined. Again from Table IV we take the value of
−0.029 ± 0.008 fm3.

D. Spin-orbit splitting

The phase shifts for � > 0 shown in Fig. 13 display a
remarkable symmetry below threshold. All phase shifts for j =
� − 1

2 are positive and all of those for j = � + 1
2 are negative.

In order to see how far a pure spin-orbit interaction would
go toward explaining this behavior, we calculated a simple

model consisting of scattering from a square well potential
with strength V where

V = V0L · S =




1
2V0� j = � + 1

2

− 1
2V0(� + 1) j = � − 1

2
.

(18)

The radius of the well was taken to be R = 0.85 fm
(corresponding to an rms radius of 0.66 fm). and the strength,
V0 was chosen to be 0.36 GeV. The results are shown in Fig. 17
with the dashed line. The angular momentum barrier changes
a great deal from one value of � to another and the potential
strength also changes over a significant range. The rather
remarkable agreement indicates that for � > 0 the phase shifts
in the lower energy region are described by a pure spin-orbit
interaction.

Such a potential gives no contribution to the s-wave. If we
introduce a central potential (independent of �) in all partial
waves of strength 0.04 GeV we obtain an s-wave scattering
length of −0.11 fm (in agreement with our determination from
the data). The result for the higher partial waves is shown in
Fig. 17 by the dash-dot lines. Thus, including a central potential
of sufficient strength to give the moderate s-wave scattering
length does not destroy the good agreement seen before.
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E. Variations in the fit

As in the T = 1 case, a number of different minima
were found corresponding to different starting points. The
basic properties of the different fits are given in Table IV
(cases a–f ) and the variations of the phase shifts are shown in
Fig. 15.

The elastic data by Stenger et al. [76] was not included in
the general fit. These data were among the first to find a very
small scattering length for the T = 0 channel. They consist
of charge exchange and elastic scattering from the deuteron.
In the elastic scattering there was no separation of scattering
from the neutron or proton or, indeed, coherently from the
deuteron (leaving it intact). Thus, for the elastic scattering
the cross section from the proton should be added to that
of the neutron and coherence must be taken into account as
well. The contamination from coherent scattering is largest
for small angles. For the charge-exchange cross section small
angle scattering (small momentum transfer) tends (without
spin-flip) to leave two protons in a triplet s-wave state. Since
this state is blocked by the Pauli principle and the spin-flip
amplitude is small at small angles, this effect leads to a very
large suppression of the charge-exchange cross section such
that it is far from charge exchange on a free neutron. The
data were taken in large angle bins (0.4 in cosθ ). In order
to estimate the effect of leaving out this data set we made
two runs, one in which the two lowest energies were fully
included in the fit and one in which the most forward points
(at cosθ = 0.8) were excluded. The results are summarized in
Table IV.

FIG. 16. Partitioning of the T = 0 reaction cross sections among
partial waves for Hyslop et al. [22] and Martin [19].

FIG. 17. Square-well spin-orbit model. The solid line gives the
results of the present amplitude analysis, the dotted lines the model
described in the text without a central term and the dash-dot lines
the model with the central potential which gives the correct s-wave
scattering length.

There are two modern data sets of total cross section data,
those of Krauss et al. [4] and Weiss et al. [5]. In the fitting
process these data suffer a renormalization (down) of about
4% which is greater than might be expected. To see the effect
of these data on the fit, a run was made with them left out. The
result is shown in Table IV.

Martin [19] comments that the Damerell et al. [72] data fit
poorly with the rest of the data base. For this reason we made
a fit with this data removed. Since there is no a priori reason to
mistrust these data they were used in all of the other fits. The
results of this fit are shown in Table IV. The normalization of
the elastic scattering (K+n) is greater than 20% and there is
some shift in the low-energy parameters obtained.

Two experiments have been performed [77,78] using the
inverse charge-exchange reaction on proton targets with K-
long beams. It has been recognized for some time that
there is great difficulty in controlling the normalization of
these beams because of regeneration of K-short mesons. For
this reason we did not use these data in the principal fit.
However, we did include one of the sets [77] in a run to
see the possible effect. The results are shown in Table IV.
Table VII gives the normalization factors which result from
the fit. The normalization errors in the fit were taken as 0.1
through 0.95 GeV/c and 0.2 above that as suggested in the
experimental paper [77].
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TABLE VII. Normalization factors
for the data of Armitage et al. [77].

PLab(GeV/c) Normalization factor

0.65 0.769
0.75 1.025
0.85 0.684
0.95 0.667
1.05 0.695
1.15 0.881
1.25 1.082
1.35 1.210
1.45 1.356

VII. SUMMARY AND CONCLUSIONS

We have presented an easy-to-use parametrization of the
K+ Nucleon amplitudes. As mentioned in the introduction,
there is a need for reliable amplitudes for several purposes.

Our representation for s- and p-waves is equivalent to the
effective-range expansion which, for s-waves, reads

k cot δ = 1/a + 1
2 r0k

2 · · · . (19)

This form was derived originally for a potential interaction but
was shown to be valid for an effective field theory [79,80].
More recently it has been shown to arise from renormalization
group calculations [81]. Since one would tend to believe that
this is an appropriate expansion it would seem to be ill advised
to set the scattering length to zero.

We now discuss several points which are particularly
interesting for their physics potential.

(i) The ratio of the scattering length for T = 1 to that of T =
0 may be an interesting quantity. For example, in the work
of Barnes and Swanson [9] this ratio depends only on the
ratio of the sizes of the kaon and nucleon and the strange
quark mass, being independent of the absolute size of
the hadronic systems. While this is only approximately

true in their work (i.e., only in Born approximation), it
indicates that this may be a quantity which is sensitive
to only a restricted set of physical parameters. Our value
for this ratio is 2.9 ± 0.3.

(ii) The reaction cross section in the T = 0 state may
provide an interesting piece of data for the calculation of
pion production. Here the usual dominant mechanism (�
production) is isospin forbidden so that other mechanisms
will be more apparent. Calculations of the type of Oset
and Vicente Vacas [55] might be interesting for the T =
0 channel.

(iii) The simple form of the � > 0 phase shifts for the T =
0 amplitude is remarkable. To date, no theoretical model
has been able to reproduce this feature although the work
of Büttgen et al. [56] was able to get a moderately
good representation of the data with some degree of
phenomenology.

(iv) The presence of a narrow pentaquark state would facil-
itate the understanding of pion production in the T =
1 channel. In fact, the best way to look for a narrow
resonance may be to produce it and look for a sudden
change in the inelastic cross section. This was the way
in which the existence of the J/� was first indicated.
If this is indeed the explanation of the rapid rise in
pion production and if the final � − π state has relative
angular momentum zero, then the spin-parity-of the �

must be D5/2+. Thus, the resonance, as seen directly in
the T = 0 channel, would be in the F5/2 partial wave.
We have seen that this partial wave is very attractive
with a large angular momentum barrier so that a narrow
“molecular” state is possible.

ACKNOWLEDGMENTS

We thank Jean-Pierre Dedonder for comments after a
careful reading of the manuscript. This work was supported
by the National Science Foundation under contract PHY-
0099729.

[1] P. B. Siegel, W. B. Kaufmann, and W. R. Gibbs, Phys. Rev. C
30, 1256 (1984).

[2] P. B. Siegel, W. B. Kaufmann, and W. R. Gibbs, Phys. Rev. C
31, 2184 (1985).

[3] G. E. Brown, C. B. Dover, P. B. Siegel, and W. Weise, Phys.
Rev. Lett. 60, 2723 (1988).

[4] R. A. Krauss, J. Alster, D. Ashery, S. Bart, R. E. Chrien, J. C.
Hiebert, R. R. Johnson, T. Kishimoto, I. Mardor, Y. Mardor,
M. A. Moinester, R. Olshevsky, E. Piasetzky, P. H. Pile,
R. Sawafta, R. L. Stearns, R. J. Sutter, R. Weiss, and A. I.
Yavin, Phys. Rev. C 46, 655 (1992).

[5] R. Weiss, J. Aclander, J. Alster, M. Barakat, S. Bart, R. E.
Chrien, R. A. Krauss, K. Johnston, I. Mardor, Y. Mardor,
S. May Tal-beck, E. Piasetzky, P. H. Pile, R. Sawafta, H. Seyfarth,
R. L. Stearns, R. J. Sutter, and A. I. Yavin, Phys. Rev. C 49, 2569
(1994).

[6] A. Gal and E. Friedman, Phys. Rev. C 73, 015208 (2006).
[7] A. Gal and E. Friedman, Phys. Rev. Lett. 94, 072301

(2005).

[8] L. Tolos, D. Cabrera, A. Ramos, and A. Polls, Phys. Lett. B632,
219 (2006).

[9] T. Barnes and E. S. Swanson, Phys. Rev. C 49, 1166 (1994).
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