
PHYSICAL REVIEW C 75, 035202 (2007)

Dispersion analysis of the nucleon form factors including meson continua
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Dispersion relations provide a powerful tool to analyze the electromagnetic form factors of the nucleon for
all momentum transfers. Constraints from meson-nucleon scattering data, unitarity, and perturbative quantum
chromodynamics (QCD) can be included in a straightforward way. In particular, we include the 2π, ρπ , and KK̄

continua as independent input in our analysis and provide an error band for our results. Moreover, we discuss two
different methods to include the asymptotic constraints from perturbative QCD. We simultaneously analyze the
world data for all four form factors in both the spacelike and timelike regions and generally find good agreement
with the data. We also extract the nucleon radii and the ωNN coupling constants. For the radii, we generally find
good agreement with other determinations with the exception of the electric charge radius of the proton, which
comes out smaller. The ωNN vector coupling constant is determined relatively well by the fits, but for the tensor
coupling constant even the sign cannot be determined.
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I. INTRODUCTION

The electromagnetic (em) form factors of the nucleon
provide an important tool to study strong interaction dynamics
over a wide range of momentum transfers [1,2]. Their
detailed understanding is important for unraveling aspects of
perturbative and nonperturbative nucleon structure. At small
momentum transfers, they are determined by gross properties
of the nucleon like the charge and magnetic moment. At
high-momentum transfers they encode information on the
quark substructure of the nucleon as described by perturbative
quantum chromodynamics (QCD). The form factors also
contain important information on nucleon radii and vector
meson coupling constants. Moreover, they are an important
ingredient in a wide range of experiments from Lamb shift
measurements [3] to determinations of the strangeness content
of the nucleon [4].

With the advent of the new continuous beam electron
accelerators such as CEBAF (Jefferson Laboratory), ELSA
(Bonn), and MAMI (Mainz), a wealth of precise data for
spacelike momentum transfers have become available [5].
Due to the difficulty of the experiments, the timelike form
factors are less well known. Although there is a fair amount
of information on the proton timelike form factors [6,7],
only one measurement of the neutron form factor from the
pioneering FENICE experiment [8,9] exists. Recently, new
precise data on the proton timelike form factors have been
presented by the BES, CLEO, and BABAR Collaborations
[10–12].

In this work, we therefore analyze the nucleon form factors
in both the space- and timelike regions. We use dispersion
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relations that provide a model-independent framework to
consistently analyze the form factor data in both regions. A
complete description of our data base is given in Sec. V.

It has been known for a long time that the pion plays an
important role in the long-range structure of the nucleon [13].
This connection was made more precise using dispersion
theory in the 1950s [14,15]. Subsequently, Frazer and Fulco
have written down partial-wave dispersion relations that relate
the nucleon electromagnetic structure to pion-nucleon (πN )
scattering and predicted the existence of the ρ resonance
[16,17]. Höhler et al. [18] first performed a dispersion analysis
of the electromagnetic form factors of the nucleon, including
the 2π continuum derived from the pion form factor and
πN -scattering data [19]. In the mid-1990s, this analysis was
updated by Mergell, Meißner, and Drechsel [20] and was later
extended to include data in the timelike region [21,22]. The
new precise data for the neutron electric form factor were in-
cluded as well [23]. For recent attempts to calculate the nucleon
form factors in QCD using nonperturbative methods, see, e.g.,
Refs. [24–26].

A recent form factor analysis by Friedrich and Walcher
[27] created some renewed interest in the 2π continuum.
They analyzed the electromagnetic nucleon form factors
and performed various phenomenological fits [27]. Their fits
showed a pronounced bump-dip structure in Gn

E , which they
interpreted as a signature of a very long range contribution
of the pion cloud to the charge distribution in the Breit frame
extending out to about 2 fm. This observation is at variance
with the pion cloud contribution to the nucleon form factors
as given by the 2π continuum—the lowest-mass intermediate
state including pions only [28]. We will discuss a possibility
how to reconcile these findings below.

It is well known that vector mesons play an important
role in the electromagnetic structure of the nucleon, see, e.g.,
Refs. [16,29–34], and the remaining contributions to the

0556-2813/2007/75(3)/035202(13) 035202-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.75.035202


M. A. BELUSHKIN, H.-W. HAMMER, AND ULF-G. MEIßNER PHYSICAL REVIEW C 75, 035202 (2007)

spectral function have usually been approximated by vector
meson resonances. A novel addition in this work is the inclu-
sion of the KK̄ [35,36] and ρπ [37] continuum contributions
similar to the 2π continuum described above. The continuum
contributions provide independent information on the spectral
functions that supplements the electromagnetic form factor
data. Moreover, we enforce the asymptotic constraints from
pQCD. We discuss two different approaches to obtain this be-
havior: superconvergence relations and an explicit continuum
term with the correct pQCD behavior and show results for both
methods.

Our article is organized as follows. Section II A contains
the basic definitions of the nucleon em form factors and a
short discussion of the corresponding dispersion relations. The
various continuum contributions to the spectral functions are
discussed in Sec. III A. The structure of and the constraints on
the spectral functions are given in Sec. IV. The results of our
fits are presented and discussed in Sec. V. We close with a
short summary and outlook in Sec. VI. The fit parameters are
collected in the appendix.

II. PRELIMINARIES

A. Definitions

The em structure of the nucleon is determined by the matrix
element of the vector current operator j em

µ between nucleon
states as illustrated in Fig. 1.

Using Lorentz and gauge invariance, this matrix element
can be expressed in terms of two form factors,

〈p′|j em
µ |p〉 = ū(p′)

[
F1(t)γµ + i

F2(t)

2M
σµνq

ν

]
u(p), (1)

where M is the nucleon mass and t = (p′ − p)2 the four-
momentum transfer squared. For data in the spacelike region,
it is often convenient to use the variable Q2 = −t � 0. The
functions F1(t) and F2(t) are the Dirac and Pauli form factors,
respectively. They are normalized at t = 0 as

F
p

1 (0) = 1, F n
1 (0) = 0, F

p

2 (0) = κp, F n
2 (0) = κn,

(2)

with κp = 1.793 and κn = −1.913 as the anomalous magnetic
moment of the proton and the neutron, respectively, in units of
nuclear magnetons.

It is convenient to work in the isospin basis and to
decompose the form factors into isoscalar and isovector parts,

F s
i = 1

2

(
F

p

i + Fn
i

)
, F v

i = 1
2

(
F

p

i − Fn
i

)
, (3)

jem
µ

pp’

FIG. 1. The nucleon matrix element of the electromagnetic
current j em

µ .

where i = 1, 2 . The experimental data are usually given for
the Sachs form factors

GE(t) = F1(t) − τF2(t),
(4)

GM (t) = F1(t) + F2(t),

where τ = −t/(4M2). In the Breit frame, GE and GM may
be interpreted as the Fourier transforms of the charge and
magnetization distributions, respectively.

The nucleon radii
√

〈r2〉 can be defined from the low-t
expansion of the form factors,

F (t) = F (0)[1 + t〈r2〉/6 + · · ·], (5)

where F (t) is a generic form factor. In the case of the electric
and Dirac form factors of the neutron, Gn

E and Fn
1 , the

expansion starts with the term linear in t and the normalization
factor F (0) is dropped.

B. Dispersion relations and spectral decomposition

Based on unitarity and analyticity, dispersion relations
relate the real and imaginary parts of the electromagnetic
nucleon form factors. Let F (t) be a generic symbol for any
one of the four independent nucleon form factors. We write
down an unsubtracted dispersion relation of the form

F (t) = 1

π

∫ ∞

t0

ImF (t ′)
t ′ − t − iε

dt ′, (6)

where t0 is the threshold of the lowest cut of F (t) (see below)
and the iε defines the integral for values of t on the cut.
The convergence of an unsubtracted dispersion relation for
the form factors has been assumed. We could also use a
once subtracted dispersion relation, because the normalization
of the form factors at t = 0 is known. Using Eq. (6) the
electromagnetic structure of the nucleon can be related to its
absorptive behavior.

The imaginary part Im F entering Eq. (6) can be obtained
from a spectral decomposition [14,15]. For this purpose it is
most convenient to consider the electromagnetic current matrix
element in the timelike region (t > 0), which is related to the
spacelike region (t < 0) via crossing symmetry. The matrix
element can be expressed as

Jµ = 〈N (p)N (p̄)|j em
µ (0)|0〉

= ū(p)

[
F1(t)γµ + i

F2(t)

2M
σµν(p + p̄)ν

]
v(p̄), (7)

where p and p̄ are the momenta of the nucleon and antinucleon
created by the current j em

µ , respectively. The four-momentum
transfer squared in the timelike region is t = (p + p̄)2.

Using the Lehmann-Symanzik-Zimmermann (LSZ) reduc-
tion formalism, the imaginary part of the form factors is
obtained by inserting a complete set of intermediate states
as [14,15]

Im Jµ = π

Z
(2π )3/2N

∑
λ

〈p|J̄N (0)|λ〉

× 〈λ|j em
µ (0)|0〉 v(p̄) δ4(p + p̄ − pλ), (8)
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FIG. 2. (Color online) The spectral decomposition of the nucleon
matrix element of the electromagnetic current j em

µ . |λ〉 denotes a
hadronic intermediate state.

where N is a nucleon spinor normalization factor, Z is the
nucleon wave function renormalization, and J̄N (x) = J †(x)γ0

with JN (x) a nucleon source. This decomposition is illustrated
in Fig. 2. It relates the spectral function to on-shell matrix
elements of other processes.

The states |λ〉 are asymptotic states of momentum pλ.
They carry the same quantum numbers as the current j em

µ :
IG(JPC) = 0−(1−−) for the isoscalar current and IG(JPC) =
1+(1−−) for the isovector component of j em

µ . Furthermore,
they have zero net baryon number. Because of G parity, states
with an odd number of pions only contribute to the isoscalar
part, whereas states with an even number contribute to the
isovector part. For the isoscalar part the lowest mass states are
3π, 5π, . . . , KK̄,KK̄π, . . .; for the isovector part they are
2π, 4π, . . ..

Associated with each intermediate state is a cut starting at
the corresponding threshold in t and running to infinity. As
a consequence, the spectral function ImF (t) is different from
zero along the cut from t0 to ∞, with t0 = 4(9)M2

π for the
isovector (isoscalar) case.

The spectral functions are the central quantities in the
dispersion-theoretical approach. Using Eqs. (7) and (8), they
can in principle be constructed from experimental data. In
practice, this program can be carried out only for the lightest
two-particle intermediate states.

The longest-range, and, therefore, at low momentum
transfer, most important, continuum contribution comes from
the 2π intermediate state, which contributes to the isovector
form factors [19]. A new calculation of this contribution has
recently been performed in Ref. [38]. In this analysis we for
the first time also include the KK̄ and ρπ continua [35–37].1

III. CONTINUUM CONTRIBUTIONS

Our general strategy is to include as much physics in-
formation in the construction of the spectral functions as
possible. In this section, we explicitly contruct the 2π,KK̄ ,
and ρπ continua mentioned above. These continua will be an
important part of our spectral functions.

A. 2π continuum

The 2π contribution has recently been reevaluated in a
model-independent way [38] using the latest experimental data

1Note that the effect of these continua has previously been studied
in Ref. [36] using fits to parametrizations of form factor data.

for the pion form factor from CMD-2 [39], KLOE [40], and
SND [41]. Here we give a short summary of this evaluation.

Following Refs. [38,42], the 2π contribution to the isovec-
tor spectral functions in terms of the pion charge form factor
Fπ (t) and the P-wave ππ → N̄N amplitudes f 1

±(t) can be
expressed as:

Im Gv
E(t) = q3

t

M
√

t
Fπ (t)∗f 1

+(t),

(9)

Im Gv
M (t) = q3

t√
2t

Fπ (t)∗f 1
−(t),

where qt = √
t/4 − M2

π . The imaginary parts of the Dirac
and Pauli form factors can be obtained using Eq. (4). The
2π continuum is expected to be the dominant contribution to
the isovector spectral function from threshold up to masses of
about

√
t ≈ 1 GeV [42].

The P -wave ππ → N̄N amplitudes f 1
±(t) are tabulated

in Ref. [42]. The representation of Eq. (9) gives the ex-
act isovector spectral functions for 4M2

π � t � 16M2
π , but

in practice holds up to t 	 50 M2
π ≈ 1 GeV2. Because the

contributions from 4π and higher intermediate states is small
up to t 	 50 M2

π , Fπ (t) and the f 1
±(t) share the same phase

in this region and the two quantities can be replaced by their
absolute values.

The experimental data for the pion form factor from CMD-2
[39], KLOE [40], and SND [41] show some discrepancies. In
Ref. [38], the 2π continuum given by Eq. (9) was evaluated
for all three sets and the errors from the discrepancy between
the sets were estimated. The resulting difference in the spectral
functions is very small ( <∼1%). It is largest in the ρ-peak region,
but this region is suppressed by the ππ → N̄N amplitudes
f 1

±(t), which show a strong falloff as t increases.
The spectral functions as a function of t have two distinct

features. First, as already pointed out in Ref. [16], they
contain the important contribution of the ρ meson with its
peak at t 	 30M2

π . Second, on the left shoulder of the ρ,
the isovector spectral functions display a very pronounced
enhancement close to the two-pion threshold. This is due
to the logarithmic singularity on the second Riemann sheet
located at tc = 4M2

π − M4
π/M2 = 3.98M2

π , very close to the
threshold. If one were to neglect this important unitarity
correction, one would severely underestimate the nucleon
isovector radii [43]. In fact, precisely the same enhancement
close to the two-pion threshold is obtained at leading one-loop
accuracy in relativistic chiral perturbation theory [44,45]. This
topic was also discussed in heavy baryon chiral perturbation
theory (ChPT) [46,47] and in a covariant calculation based on
infrared regularization [48,49]. Thus, the most important 2π

contribution to the nucleon form factors can be determined by
using either unitarity or ChPT (in the latter case, of course, the
ρ contribution is included in a low-energy constant).

The contribution to the nucleon form factors is obtained by
inserting the 2π contribution to the spectral function into the
dispersion relations Eq. (6). The result can be parametrized as

F
(v,2π)
i (t) = ai + bi(1 − t/ci)−2/i

2(1 − t/di)
, i = 1, 2, (10)

035202-3



M. A. BELUSHKIN, H.-W. HAMMER, AND ULF-G. MEIßNER PHYSICAL REVIEW C 75, 035202 (2007)

0 1 2 3 4 5
Q

2
 [GeV

2
]

-1

-0.5

0

0.5

1

(s,ρπ)
(s,KKbar)
(v,2π)

0 1 2 3 4 5
Q

2
 [GeV

2
]

0

1

2

3

(s,ρπ)
(s,KKbar)
(v,2π)

F
1

F
2

FIG. 3. (Color online) The continuum contributions to the nu-
cleon form factors F1 (left panel) and F2 (right panel) in the space-like
region. The contribution of the 2π continuum to the isovector form
factors is given by the solid line, while the contribution of the KK̄ and
ρπ continua to the isoscalar form factors are given by the dash-dotted
and dashed lines, respectively.

where a1 = 1.10788, b1 = 0.109364, c1 = 0.36963 GeV2,

d1 = 0.553034 GeV2, a2 = 5.724253, b2 = 1.111128, c2 =
0.27175 GeV2, and d2 = 0.611258 GeV2. The errors in
these constants are of the order 4% or less. The form
of the parametrization (10) was first used by Höhler and
Pietarinen [19] but has no special significance other than
being convenient. Of course, it is not necessary to use a
parametrization like Eq. (10) but the numerical evaluation of
the fits becomes much simpler. The form factor contributions
from Eq. (10) are shown in Fig. 3.

B. K K̄ continuum

The KK̄ contribution to the isoscalar spectral function was
evaluated in Refs. [19,35,36] from an analytic continuation of
KN scattering data. In the following, we give a short summary
of this work.

The KK̄ contribution to the imaginary part of the isocalar
form factors is given by [35,36]

ImF
(s,KK̄)
1 (t) = Re

{(
Mqt

4p2
t

) [ √
t

2
√

2M
b

1/2,−1/2
1 (t)

− b
1/2, 1/2
1 (t)

]
FK (t)∗

}
, (11)

ImF
(s,KK̄)
2 (t) = Re

{(
Mqt

4p2
t

) [
b

1/2, 1/2
1 (t)

−
√

2M√
t

b
1/2, −1/2
1 (t)

]
FK (t)∗

}
, (12)

with pt =
√

t/4 − M2 and qt =
√

t/4 − M2
K . FK (t) repre-

sents the kaon form factor, whereas the b
1/2, ±1/2
1 (t) are the

J = 1 partial wave amplitudes for KK̄ → NN̄ [35,36]. Once
these imaginary parts are determined, the contribution of
the KK̄ continuum to the form factors is obtained from the
dispersion relation Eq. (6).

For t � 4M2 the partial waves are bounded by unitarity,√
pt/qt |b1/2, ±1/2

1 (t)| � 1. (13)

In the unphysical region 4M2
K � t � 4M2, however, they are

not constrained by unitarity. In Ref. [35], the amplitudes
b

1/2, ±1/2
1 (t) in the unphysical region have been determined

from an analytic continuation of KN-scattering amplitudes.
The contribution of the physical region t � 4M2 in the disper-
sion integral (6) is suppressed for small momentum transfers
and bounded because of Eq. (13). Using the analytically
continued amplitudes in the unphysical region and the unitarity
bound in the physical region, the contribution of the KK̄

continuum can therefore be calculated. Strictly speaking this
calculation provides an upper bound on the spectral function
because we replace the amplitudes and the form factor in
Eqs. (11) and (12) by their absolute values.

The striking feature in the spectral function is a clear
φ resonance structure just above the KK̄ threshold. The
resonance structure appears in the partial-wave amplitude
b

1/2, 1/2
1 as well as in the kaon form factor FK . In contrast

to the 2π continuum, there is no strong enhancement on the
left wing of the φ resonance which sits directly at the KK̄

threshold.
The resulting contribution to the nucleon form factors can

be parametrized by a pole term at the φ mass:

F
(s,KK̄)
i (t) = 1

π

∫ ∞

4M2
K

ImF
(s,KK̄)
i (t ′)
t ′ − t

dt ′

≈ aKK̄
i

M2
φ − t

, i = 1, 2, (14)

with aKK̄
1 = 0.1054 GeV2 and aKK̄

2 = 0.2284 GeV2. As a
consequence, the contribution of the KK̄ continuum to
the electromagnetic nucleon form factors can conveniently
be included in the analysis via Eq. (14). The form factor
contributions from Eq. (14) are also shown in Fig. 3.

C. ρπ continuum

Drawing on a realistic treatment of the correlated ρπ ex-
change in the Bonn-Jülich NN model [50], the ρπ contribution
to the isoscalar spectral function was calculated in Ref. [37].
The contribution of the ρπ continuum can be evaluated in
terms of a dispersion integral that in turn can be represented
by an effective pole term for a fictitious ω′ meson with a mass
Mω′ = 1.12 GeV [37]:

F
(s,ρπ)
i (t) = 1

π

∫ ∞

(Mπ +Mρ )2

ImF
(s,ρπ)
i (t ′)
t ′ − t

dt ′

≈ a
ρπ

i

M2
ω′ − t

, i = 1, 2 (15)

with a
ρπ

1 = −1.01 GeV2 and a
ρπ

2 = −0.04 GeV2. In our form
factor analysis, we use this effective pole instead of the full
spectral function.

There is very little sensitivity in our fits to a
ρπ

2 , which can
vary between −0.04 and −0.4 without affecting the outcome
of the fit. If the ω′ pole is treated as a real resonance, the
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latter value is consistent with fω′ ∼ 10 for a
ρπ

1 = −1.01 if the
coupling constants gi

ω′NN (i = 1, 2) from Ref. [37] are used as
input.

In Fig. 3, we show the contribution of the 2π,KK̄ , and ρπ

continua to the electromagnetic nucleon form factors F1 and
F2. The 2π contributes to the isovector form factors, whereas
the KK̄ and ρπ continua contribute to the isoscalar form
factors. The KK̄ and ρπ contributions have opposite sign
and partially cancel each other. The dominant contribution to
F s

1 comes from the ρπ continuum, whereas for F s
2 the KK̄

contribution is larger. Although the KK̄ and ρπ contributions
can be represented by simple pole terms, the expressions for
the 2π continuum Eq. (10) are somewhat more complicated.
This is related to the strong enhancement close to the 2π

threshold on the left wing of the ρ resonance discussed above.
Finally, note that these continuum contributions enter as an
independent input in our analysis. They are not fitted to the
form factor data.

IV. SPECTRAL FUNCTIONS

A. Structure

As discussed above, the spectral function can at present
only be obtained from unitarity arguments and experimental
data for the lightest two-particle intermediate states (2π and
KK̄) [19,35,36]. The ρπ continuum contribution has been
calculated in the Bonn-Jülich NN model [37].

The remaining contributions to the spectral function can be
parametrized by vector meson poles. On one hand, the lower
mass poles can be identified with physical vector mesons such
as the ω and the φ. In the the case of the 3π continuum, e.g.,
it has been shown in ChPT that the nonresonant contribution
is very small and the spectral function is dominated by the
ω [46]. The higher mass poles, on the other hand, are simply
an effective way to parametrize higher mass strength in the
spectral function. Different parametrizations are possible and
an explicit example will be discussed below in relation to the
pQCD behavior.

In all our fits the spectral function includes the 2π,KK̄ , and
ρπ continua from unitarity and the ω pole. Note that we also
include a pole at the φ mass to account for explicit φ strength
not included in the KK̄ and ρπ continua. In addition to that
there are a number of effective poles at higher momentum
transfers in the isoscalar (s1, s2, . . .) and isovector channels
(v1, v2, . . .). The spectral function has the general structure

Im F s
i (t) = Im F

(s,KK̄)
i (t) + Im F

(s,ρπ)
i (t)

+
∑

V =ω,φ,s1,...

πaV
i δ

(
M2

V − t
)
, i = 1, 2, (16)

Im Fv
i (t) = Im F

(v,2π)
i (t) +

∑
V =v1,...

πaV
i δ

(
M2

V − t
)
, i = 1, 2.

(17)

The masses of the effective poles are fitted to the form factor
data. We generally do not include widths for the effective poles.
However, in some of the fits we allow a large width for the

highest mass effective pole to mimick the imaginary part of
the form factors in the timelike region. We have performed
various fits with different numbers of effective poles and
including/excluding some of the continuum contributions. In
Sec. V, we will discuss the results of these efforts.

B. Constraints

The number of parameters in the fit function is reduced
by enforcing various constraints. The first set of constraints
concerns the low-t behavior of the form factors: We enforce
the correct normalization of the form factors as given in Eq. (2).
The nucleon radii, however, are not included as a constraint.
In some earlier fits, we had also constrained the neutron
charge radius to the value from low-energy neutron-atom
scattering experiments [51,52]. In the fits discussed below,
this constraint is dropped because the fit value is compatible
with the empirical range from Refs. [51,52].

Perturbative QCD constrains the behavior of the nucleon
electromagnetic form factors for large momentum transfer.
Brodsky and Lepage [53] find for Q2 → ∞,

Fi(t) → 1

Q2(i+1)

[
ln

(
Q2

Q2
0

)]−γ

, i = 1, 2, (18)

where Q0 	 QCD. The anomalous dimension γ ≈ 2 depends
weakly on the number of flavors [53]. The asymptotic behavior
of the form factors has recently also been studied in connection
to the unexpected behavior of the ratio Q2F2(Q2)/F1(Q2) for
the proton measured at Jefferson Lab and different expressions
for the logarithmic corrections were found [54,55]. (For a
further discussion of the asymptotic behavior of the nucleon
form factors for large spacelike and timelike momenta, see
Ref. [56].) In the current analysis we implement only the
leading power behavior of the form factors and details of
the logarithmic correction are not relevant. Note that the
logarithmic term in Eq. (18) was included in some of our
earlier analyses [20,21,23] but had little impact on the fit. The
particular way this constraint was implemented, however, lead
to an unphysical logarithmic singularity of the form factors
in the timelike region that we want to avoid in the current
analysis.

The power behavior of the form factors at large t can
be easily understood from perturbative gluon exchange. To
distribute the momentum transfer from the virtual photon to all
three quarks in the nucleon, at least two massless gluons have
to be exchanged. Because each of the gluons has a propagator
∼1/t , the form factor has to fall off as 1/t2. In the case of F2,
there is additional suppression by 1/t because a quark spin has
to be flipped. The power behavior of the form factors leads to
superconvergence relations of the form∫ ∞

t0

Im Fi(t) tndt = 0, i = 1, 2, (19)

with n = 0 for F1 and n = 0, 1 for F2.
The pQCD power behavior can be enforced in various ways.

To obtain some information about the induced theoretical
uncertainty, we discuss two different methods in more detail:
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(i) Superconvergence (SC) approach: The asymptotic be-
havior of Eq. (18) is obtained by choosing the residues of
the vector meson pole terms such that the leading terms in
the 1/t expansion cancel. This leads to a spectral func-
tion consistent with the superconvergence relations in
Eq. (19) and the asymptotic behavior [Eq. (18)]. This
method is similar to what was used in earlier works
[20,21,23]. Here we add a very broad resonance of the
structure

F
(I,broad)
i (t) = aI

i

(
M2

I − t
)

(
M2

I − t
)2 + �2

I

,

i = 1, 2, I = s, v, (20)

in both the isovector and isoscalar form factors. The
resonance parametrizes continuum contributions in ad-
dition to the 2π,KK̄ , and ρπ continua and generates
an imaginary part of the form factors in the timelike
region for t � 4M2. The residue aI

i as well as the mass
and width parameters MI and �I are fit to the data. The
width parameter �I is of the same order of magnitude as
the mass MI and comes out typically of the order of a
few GeV in our fits.

(ii) Explicit pQCD continuum approach: In addition to
satisfying the superconvergence relations, Eq. (19), a
term of the form

F
(I,pQCD)
i = aI

i

1 − c2
i t + b2

i (−t)i+1
,

i = 1, 2, I = s, v, (21)

which explicitly enforces the pQCD behavior, Eq. (18),
is added to the fit function. Such a term behaves like
an effective resonance pole for small values of t and
restores pQCD behavior explicitly at high values of t .
The superconvergence relations cancel the leading-order
terms in the 1/t expansion. This explicit pQCD term
is consistent with a nonvanishing imaginary part of
the form factors in the timelike region. Note that the
parameters bi and ci are the same in the isoscalar and
isovector channels, whereas the residue aI

i depends
on the channel. This method allows for a smoother
interpolation between the low-t and large-t regions
compared to the SC approach. Because of this feature,
one might expect obtaining fits with fewer parameters.

The number of effective poles in Eqs. (16) and (17) is
determined by the stability criterion discussed in detail in
Ref. [57]. In short, we take the minimum number of poles
necessary to fit the data. The number of free parameters
is strongly reduced by the various constraints (unitarity,
normalizations, superconvergence relations). More details will
be given together with the fits in the next section.

V. FIT RESULTS

The fits have been performed using the Fletcher-Reeves and
the Polak-Ribiere conjugate gradient algorithms implemented
in the GSL library [58]. To ensure initial convergence sta-
bility, Monte Carlo sampling was performed over the whole

physically acceptable parametric volume to obtain a number
of parameter sets with acceptable starting χ2 values.

The constraints dictated by the normalization and the pQCD
conditions have been represented in terms of a set of linear
equations for the resonance residua. The equations are solved
each iteration using the LU decomposition.

Soft constraints on composite variables that depend on a
set of fit parameters allow us to impose an exponential well
for the set of parameters as a whole, limiting deviations of
the composite variable from its desired central value. These
constraints are implemented as additive χ2 terms of the general
form

χ̃2 = p[x − 〈x〉]2 exp(p[x − 〈x〉]2), (22)

where 〈x〉 is the desired central value and p is the constraint
strength parameter that allows us to stabilize fit convergence
over the whole range of iterations adaptively, regulating the
steepness of the exponential well. This method was used in
some earlier fits to constrain the neutron radius [59].

The error bands are obtained by allowing the total χ2/DOF
of the fit to be in the interval [χ2

min, χ
2
min + δχ2], where χ2

min
is the χ2 value of the best fit, and δχ2 is obtained from the 1σ

confidence interval p-value equations, δχ2 	 1.04.
The data basis used in the fits is taken from Ref. [27]

and in addition includes the new data that have appeared
since 2003 and the timelike data [7–12,60–70]. The CLAS
Collaboration at Jefferson Lab has performed measurements
of the neutron magnetic form factor for momentum transfers
0.6 � Q2 � 5 GeV2 [71]. These data are still preliminary and
are therefore generally not included in our fits. In Section V D,
however, we discuss a fit where these preliminary data are
included. The results for Gn

M,G
p

E,G
p

M are normalized to the
phenomenological dipole fit:

GD(Q2) =
(

1 + Q2

m2
D

)−2

, (23)

where m2
D = 0.71 GeV2.

Additionally, certain features of the form factor behavior in
specific Q2 ranges can be enhanced during the fitting procedure
by artificially decreasing the errors on the experimental data
in that region as seen by the fit. This allows us to, for example,
explore the conditions necessary to produce a pronounced
bump-dip structure in Gn

E , discussed in Sec. V E.
In the timelike region, the neutron data do not participate

in the fit as they are obtained from a single experiment. They
are therefore a genuine prediction.

A. Superconvergence (SC) approach

In Fig. 4, we show the results in the SC approach for all
four form factors in the spacelike region compared to the
world data. In general, we get a good description of all data
within our error bands. For G

p

E there is some inconsistency
in the data points around Q2 ≈ 1 GeV2. Our fit favors the
lower data points in this region. As can be seen from the
inset, the data at low momentum transfers are well described.
In addition to the ω and the residual φ, this fit has two
more isoscalar poles (Ms1 ≈ 1.1 GeV, Ms2 ≈ 2.0 GeV) and
five isovector poles with masses ranging from 1 to 3 GeV.
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FIG. 4. (Color online) The nucleon electro-
magnetic form factors for space-like momentum
transfer in the SC approach. The solid line gives
our best fit while the dashed lines indicate the
error band obtained by the 1σ deviation as
discussed above.

The heaviest poles in both channels are broad resonances
[cf. Eq. (20)] with width parameters ranging from 5 GeV
(isoscalar) to 19 GeV (isovector). All other poles have zero
widths. The fit has 17 free parameters and a total χ2/DOF of
1.8. The fit parameters are listed in detail in Table II in the
Appendix.

Note also that we do not obtain a pronounced bump-dip
structure in Gn

E as observed in Ref. [27]. However, all data for
Gn

E are described within our error band and the experimental
error. We will come back to this bump-dip structure in Sec. V E
and discuss the modifications in the spectral function required
to produce this structure.

In Fig. 5, we show our fit results for the SC approach
in the timelike region. As in the spacelike region we get a
good description of the world data within our error bands.
Our best fit, however, cannot reproduce the strong rise of the
data for G

p

M near threshold. The data for Gn
M are also well

described. Note that the neutron data do not participate in
the fit and the corresponding curves are therefore genuine
prediction of the dispersion analysis based on data in the other
channels.

B. Explicit pQCD continuum approach

In Fig. 6, we show our results in the explicit pQCD contin-
uum approach for spacelike momentum transfers compared to
the world data.

Again, we get a good description of all data within our
error bands. In contrast to the superconvergence approach, our
fit now favors somewhat larger values of G

p

E in the region
around Q2 ≈ 1 GeV2. For Gn

E the situation is the same as
before: we describe all data within our error band and the
experimental errors but see no pronounced bump-dip structure
in the fits. In addition to the ω and the residual φ, this fit has
one more isoscalar pole (Ms1 ≈ 1.8 GeV) and three isovector
poles (Mv1 ≈ 1.0 GeV, Mv2 ≈ 1.6 GeV, and Mv3 ≈ 1.8 GeV).
Moreover, it contains an explicit pQCD continuum term,
Eq. (21), as discussed above. This fit has 14 free parameters and
a total χ2/DOF of 2.0. In general, we cannot get a satisfactory
description of all data using fewer parameters. The parameters
of this fit are given in detail in Tables III and IV in the
Appendix.

In Fig. 7, we show the results in the timelike region. As
before we describe the timelike data within our error band,

FIG. 5. (Color online) The nucleon electro-
magnetic form factors for timelike momentum
transfer in the SC approach [(right panel) GM

n ;
(left panels) GM

p ]. The proton data participate in
the fit, whereas the neutron data are a genuine
prediction. The solid line shows our best fit,
whereas the dashed lines indicate the error band
obtained by the 1σ deviation as discussed above.

035202-7



M. A. BELUSHKIN, H.-W. HAMMER, AND ULF-G. MEIßNER PHYSICAL REVIEW C 75, 035202 (2007)

FIG. 6. (Color online) The nucleon electro-
magnetic form factors for spacelike momentum
transfer with the explicit pQCD continuum. The
solid line shows our best fit, whereas the dashed
lines indicate the error band obtained by the 1σ

deviation as discussed above.

but the errors increase strongly close to threshold. Our best
fit turns over very close to threshold and cannot describe
the two lowest data points. The error band is even larger for
the neutron data that do not participate in the fit. But within
the 1σ band the neutron data are well described by this fit.
Due to the strong increase of the 1σ band, however, we cannot
make precise predictions for the timelike form factors close to
threshold.

C. Nucleon radii and coupling constants

In Table I, we give the nucleon radii extracted from our fits
in the SC and explicit pQCD approaches.

The first number gives the value for our best fit, whereas
the numbers in parentheses indicate the range from the 1σ

band. Our values are compared to the results of Ref. [23]
and other recent determinations from low-momentum transfer
data [52,72–76].

The nucleon radii are generally in good agreement with
other recent determinations using only low-momentum trans-
fer data given in the table. In particular, the squared neutron
charge radius is in good agreement with the experimental
value. In previous analyses [20,23], this radius was constrained
to the experimental value and not a prediction. Our result
for the proton charge radius, however, is somewhat small.

This was already the case in the earlier dispersion analyses of
Refs. [20,23]. We speculate that the reason for this discrepancy
lies in inconsistencies in the data sets. In this type of global
analysis all four form factors are analyzed simultaneously
and both data at small and large momentum transfers enter.
This can be an advantage or a disadvantage depending on the
question at hand.

The discrepancy is not likely to be explained by 2γ physics.
In Ref. [77], it was shown that 2γ exchange (including
intermediate nucleons only) has a very tiny effect on the
extraction of the proton radius from ep scattering data. We have
also performed various fits where the proton charge radius was
constrained to values between 0.88 and 0.90 fm. The quality
of these fits is not quite as good as for our best fits but still
acceptable (χ2/DOF ≈ 2.6). The fits exhibit a pronounced
bump-dip structure in G

p

E . However, they are on the low
side of the data in the interval Q2 = 0.3 . . . 0.8 GeV2. These
conclusions remain valid if we use a 2γ corrected data basis
for the proton form factor (including intermediate nucleons in
the 2γ exchange only) [78].

We have also extracted the ωNN couplings from our fit.
The ωNN coupling constant is related to the residua via

gi
ωNN = fω

M2
ω

aω
i , i = 1, 2, (24)

TABLE I. Nucleon radii extracted from our fits in the SC (second column) and explicit pQCD approaches (third column).
The first number gives the value for our best fit, whereas the numbers in parentheses indicate the range from the 1σ band. For
comparison, we give the results of Ref. [23] (fourth column) and other recent determinations from low-momentum transfer
data [52,72–76] (fifth column).

SC approach Explicit pQCD app. Ref. [23] Recent determ.

r
p

E (fm) 0.844 (0.840 . . . 0.852) 0.830 (0.822 . . . 0.835) 0.848 0.886(15) [72–74]

r
p

M (fm) 0.854 (0.849 . . . 0.859) 0.850 (0.843 . . . 0.852) 0.857 0.855(35) [73,75]

(rn
E)2 (fm2) −0.117 (−0.11 . . . −0.128) −0.119 (−0.108 . . . − 0.13) −0.12 −0.115(4) [52]

rn
M (fm) 0.862 (0.854 . . . 0.871) 0.863 (0.859 . . . 0.871) 0.879 0.873(11) [76]
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FIG. 7. (Color online) The nucleon electro-
magnetic form factors for time-like momen-
tum transfer with the explicit pQCD continuum
[(right panel) GM

n ; (left panels) GM
p ]. The proton

data participate in the fit, whereas the neutron
data are a genuine prediction. The solid line
shows our best fit, whereas the dashed lines
indicate the error band obtained by the 1σ

deviation as discussed above.

where fω = 17 is the electromagnetic coupling of the ω. The ω

resonance couplings, e.g., play an important role in addressing
the issue of isospin violation in the nucleon form factors [79].
Although the vector residua of the ω are fixed relatively
well by the fits, a1

ω = 0.60 . . . 0.83 GeV2, even the sign
of the tensor residua cannot be determined, a2

ω = −0.13 . . .

0.37 GeV2. This leads to the following range for the ωNN

coupling constants:

g1
ωNN = 16.7 . . . 23.1, and g2

ωNN = −3.6 . . . 10.3.

(25)

In the literature, one also uses the vector coupling g1
ωNN and

the tensor-vector coupling ratio

κω = g2
ωNN

g1
ωNN

(26)

to specify the coupling of the ω to the nucleon. We have not
extracted a coupling constant for the φ to the nucleon because
the φ strength appears also in the KK̄ and ρπ continua and
the interpretation of the residual φ pole strength is ambiguous.

D. Inclusion of the preliminary CLAS data

The CLAS Collaboration at Jefferson Lab has recently
taken new data for Gn

M in the range 0.6 � Q2 � 5 GeV2 [71].

These data are still preliminary and were not included in the
fits discussed above. In the this subsection, we present a fit in
the explicit pQCD continuum approach where the preliminary
CLAS data are included. In Fig. 8, we show our results for
spacelike momentum transfers compared to the published
world data (blue circles) and the preliminary CLAS data (green
triangles) [71].

Again, we get a good description of most data within
our error bands. In the region 0.5 GeV2 <∼ Q2 <∼ 1.0 GeV2 the
preliminary CLAS data differ significantly from most of the
published world data. The reason for this discrepancy is not yet
understood. Our fit prefers the CLAS data in this region. Some
of the world data are even out of our 1σ band. The description
of the timelike data and the nucleon radii in this fit is of similar
quality as for the fits described in Secs. V A and V B.

In addition to the ω, this fit has two more isoscalar poles
(Ms1 ≈ 1.1 GeV and Ms2 ≈ 1.4 GeV) and three isovector
poles (Mv1 ≈ 1.0 GeV, Mv2 ≈ 1.6 GeV, and Mv3 ≈ 1.8 GeV).
Moreover, it contains an explicit pQCD continuum term,
Eq. (21), as discussed above. This fit has 15 free parameters
and a total χ2/DOF of 2.2. The slight increase in the total
χ2 compared to the similar fit in Sec. V B is due to the
inconsistency between the preliminary CLAS data and the
older data in the region 0.5 GeV2 <∼ Q2 <∼ 1.0 GeV2.

FIG. 8. (Color online) The nucleon electro-
magnetic form factors for spacelike momentum
transfer with the explicit pQCD continuum. The
blue circles indicate the published world data,
whereas the green triangles show the preliminary
CLAS data for Gn

M [71]. The solid line shows
our best fit, whereas the dashed lines indicate
the error band obtained by the 1σ deviation as
discussed above.
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The parameters of this fit are given in detail in Tables V and
VI in the Appendix.

E. Pion cloud of the nucleon

Friedrich and Walcher (FW) recently analyzed the em nu-
cleon form factors and performed various phenomenological
fits [27]. Their fits showed a pronounced bump-dip structure
in Gn

E , which they interpreted using an ansatz for the pion
cloud based on the idea that the proton can be thought of as a
virtual neutron-positively charged pion pair. They found a very
long range contribution to the charge distribution in the Breit
frame extending out to about 2 fm, which they attributed to the
pion cloud. Although naively the pion Compton wave length
is of this size, these findings are indeed surprising if compared
with the “pion cloud” contribution due to the 2π continuum
contribution to the isovector spectral functions discussed in
Sec. III A.

As was shown by Hammer, Drechsel, and Meißner [28],
the 2π continuum contributions to the long-range part of the
nucleon structure are much more confined in coordinate space
and agree well with calculations in ChPT [47] and earlier (but
less systematic) calculations based on chiral soliton models,
see, e.g., Ref. [80]. In the dispersion-theoretical framework, the
longest-range part of the pion cloud contribution to the nucleon
form factors is given by the 2π continuum—the lowest-mass
intermediate state including only pions.

As a consequence, it remains to be shown how the proposed
long-range pion cloud can be reconciled with what is known
from dispersion relations and ChPT. To clarify this issue, we
performed various fits to understand what structures in the
spectral function are required to reproduce the bump in Gn

E .
We find that the structure can be reproduced only if additional
low-mass strength in the spectral function below t <∼ 1 GeV2

is allowed beyond the 2π,KK̄ , and ρπ continua and the ω

pole. (See also Ref. [59] for some preliminary results on this
question.) Because the spectral function is well understood
in this region in terms of meson continua and vector meson

dominance, such strength was explicitly excluded in the fits of
Sec. V.

In Fig. 9, we show the results in the explicit pQCD approach
with additional low-mass strength allowed. In this fit, all
constraints were removed, the neutron charge form factor
behavior in the region of the bump-dip structure was enhanced
by artificially lowering the error bars on the experimental data
as seen by the fit. The results for all four form factors in the
spacelike region are compared to the world data.

In general, we get a good description of all data within
our error bands. In particular, we obtain the desired bump-dip
structure in Gn

E at the cost of low-mass poles, which appear
close to the ω mass in the isoscalar channel and close to the
three-pion threshold in the isovector channel. The latter pole is
weakly coupled. The behavior of the proton charge form factor
around Q2 ∼ 1 GeV2 is not resolved. The fit has 22 parameters
and two effective poles (one isoscalar and one isovector) come
out below 1 GeV. In addition to the ω, this fit has three isoscalar
poles and four isovector poles. One of the isovector poles is a
broad resonance with a width parameter of order 13 GeV. The
timelike data are not included in the fit. For the spacelike data
alone the total χ2/DOF is 0.9. The parameters of this fit are
listed in detail in Tables VII and VIII in the Appendix.

Although this fit gives a good description of the spacelike
data, it is in contradiction to much of what is known about
the structure of the spectral function below 1 GeV. Finally, we
note again that the error bars of the data on Gn

E in the region
of the bump-dip structure had to be lowered artificially to
obtain the desired structure. Taking it seriously requires over-
coming the constraints imposed by unitarity and analyticity in
the spectral function below 1 GeV.

VI. SUMMARY AND OUTLOOK

Dispersion theory simultaneously describes all four nucleon
form factors over the whole range of momentum transfers
in both the spacelike and timelike regions. It allows for
the inclusion of constraints from other physical processes,

FIG. 9. (Color online) The nucleon electro-
magnetic form factors for spacelike momentum
transfer with bump-dip structure for Gn

E . The
solid line shows our best fit, whereas the dashed
lines indicate the error band obtained by the 1σ

deviation as discussed above.
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unitarity, and ChPT and therefore is an ideal tool to analyze
the form factor data.

We have presented the results of our new form factor
analysis. The spectral function has been improved compared
to earlier analysis in various respects. (i) It contains the
updated 2π continuum [38], as well the KK̄ [35,36] and ρπ

continua [37] as independent input. (ii) The pQCD behavior of
the form factors at large momentum transfer has been included
in two different ways: using superconvergence relations and a
broad resonance to mimic the QCD continuum (SC) and by
including an explicit pQCD continuum term. Moreover, we
have generated 1σ error bands for all our fits by performing
a Monte Carlo sampling of all fits with a total χ2/DOF in the
interval [χ2

min, χ
2
min + 1.04].

Our fits give a consistent description of the world data in
the spacelike and timelike regions. We find that some residual
φ pole strength is still required in addition to the KK̄ and
ρπ continua. The FENICE data for the neutron timelike form
factors do not participate in the fit but are reproduced within the
errors bands. This is an improvement over our earlier studies
[21,22]. The nucleon radii are generally in good agreement
with other determinations with the exception of the proton
charge radius, which comes out smaller for our best fits. As
discussed in Sec. V C, enforcing a larger radius r

p

E 	 0.88 fm
leeds to acceptable fits with a slightly higher χ2. Although
the ωNN vector coupling constant is determined relatively
well by the fits, even the sign of the tensor coupling constant
cannot be determined. We have also performed fits including
the preliminary data for Gn

M from the CLAS Collaboration at
Jefferson Lab [71]. For lower Q2 these data are in conflict with
earlier data; our fits seem to prefer the trend set by the CLAS
data. The bump-dip structure in Gn

E advocated by Friedrich
and Walcher [27] can be obtained only by artificially lowering
the error bars of the data and allowing additional strength in
the spectral function below 1 GeV.

There are two important extensions of this work. First, one
could fit directly to the Coulomb-corrected cross-section data,
which would eliminate possible inconsistencies in the form
factor data basis [75]. This could be further refined by consis-
tently removing the full 2γ exchange from the cross-section
data. The latter, however, remains a formidable challenge
because of the contribution of the nucleon excited states.
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APPENDIX: FIT PARAMETERS

In this Appendix, we give the values of the fit parameters
for the various fits. Table II contains the parameter values for
the fit in the SC approach.

TABLE II. Fit parameters in the SC approach. This fit has 17 free
parameters and a total χ 2/DOF of 1.8.

Resonance Mass (GeV) a1 (GeV2) a2 (GeV2) � (GeV)

ω 0.782 0.755960 0.370592 –
φ 1.019 −0.776537 −2.913229 –
s1 1.124860 0.902379 2.484859 –
s2 2.019536 0.022798 −0.130622 5.158635
v1 1.062128 −0.127290 −2.162533 –
v2 1.300946 −1.243412 3.704233 –
v3 1.493630 4.191380 −7.091021 –
v4 1.668522 −3.176013 3.723858 –
v5 2.915451 0.048987 0.075965 19.088297

TABLE III. Resonance parameters for the fit with explicit pQCD
continuum. This fit has 14 free parameters and a total χ2/DOF of 2.0.

Resonance Mass (GeV) a1 (GeV2) a2 (GeV2)

ω 0.782 0.616384 0.114681
φ 1.019 0.159562 −0.329255
s1 1.799639 0.128654 0.026174
v1 1.000000 −0.309199 −1.078695
v2 1.627379 3.695960 −4.301057
v3 1.779245 −3.693109 3.630255

TABLE IV. Parameters of the explicit pQCD term for the fit with
explicit pQCD continuum. This fit has 14 free parameters and a total
χ 2/DOF of 2.0.

as
1 av

1 b1 [GeV−2] c1 [GeV−1]

0.002321 −0.028391 0.152903 0.161871
as

2 av
2 b2 [GeV−3] c2 [GeV−1]

−0.126598 −0.011693 1.159998 1.150000

TABLE V. Resonance parameters for the fit including the prelim-
inary CLAS data for Gn

M [71]. This fit has 15 free parameters and a
total χ 2/DOF of 2.2.

Resonance Mass (GeV) a1 (GeV2) a2 (GeV2)

ω 0.782 0.669166 −0.135957
s1 1.045277 −0.025807 0.001144
s2 1.400423 0.261240 −0.053588
v1 1.022008 −0.279441 −1.215307
v2 1.644552 3.823047 −4.561225
v3 1.770845 −3.849954 4.027035
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TABLE VI. Parameters of the explicit pQCD term for the fit,
including the preliminary CLAS data [71] for Gn

M . This fit has 15
free parameters and a total χ 2/DOF of 2.2.

as
1 av

1 b1 [GeV−2] c1 [GeV−1]

−0.000186 −0.026941 0.219241 0.169695
as

2 av
2 b2 [GeV−3] c2 [GeV−1]

0.000527 −0.001835 0.004155 0.106343

TABLE VII. Resonance parameters for the fit with the bump-dip
structure. This fit has 22 free parameters and a total χ2/DOF of 0.9
(spacelike data only). Note that s2 and v1 are the additional low-mass
poles necessary to generate the bump-dip structure.

Resonance Mass (GeV) a1 (GeV2) a2 (GeV2) � (GeV)

ω 0.782 −3.088199 1.516336 –
s1 1.087524 −9.309347 5.152311 –
s2 0.857075 7.969599 −3.102716 –
s3 1.145783 5.332548 −3.754331 –
v1 0.315028 0.002785 −0.008642 –
v2 1.523890 −3.257202 3.767630 –
v3 1.323997 2.770486 −5.497436 –
v4 2.834388 0.177584 −0.011050 13.477161

TABLE VIII. Parameters of the explicit pQCD term for the fit
with bump-dip structure. This fit has 22 free parameters and a total
χ 2/DOF of 0.9 (spacelike data only).

as
1 av

1 b1 [GeV−2] c1 [GeV−1]

−0.786259 −0.320320 0.971368 1.235451
as

2 av
2 b2 [GeV−3] c2 [GeV−1]

−0.000484 0.033410 0.091209 0.994702

In Table III we list the resonance parameters for the fit in
the explicit pQCD approach.

The parameters for the explicit pQCD term are given in
Table IV.

In Table V we list the resonance parameters for the
fit including the preliminary data for Gn

M from the CLAS
Collaboration at Jefferson Lab [71] in the range 0.6 GeV2

<∼ Q2 <∼ 5 GeV2.
The parameters for the explicit pQCD term for the fit

including the preliminary CLAS data for Gn
M are given in

Table VI.
In Table VII, we list the resonance parameters for the fit

with the bump-dip structure and additional low-mass strength
allowed.

The parameters for the explicit pQCD term in this fit are
given in Table VIII.
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