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Two-flavor QCD phases and condensates at finite isospin chemical potential
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We study the phase structure and condensates of two-flavor QCD at finite isospin chemical potential in the
framework of a confining, Dyson-Schwinger equation model. We find that the pion superfluidity phase is favored at
high enough isospin chemical potential. A new gauge-invariant mixed quark-gluon condensate induced by isospin
chemical potential is proposed based on operator product expansion. We investigate the sign and magnitude of
this new condensate and show that it is an important condensate in QCD sum rules at finite isospin density.
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I. INTRODUCTION

The phase structure of QCD at nonzero temperature and
baryon chemical potential has been intensively investigated
throughout the past decade. In reality, dense baryonic matter
obeys isospin asymmetry; that is, in the case of two light
flavors, the densities of u and d quarks are different. For QCD
to adequately describe isotopically asymmetric matter (such
as in a compact star), isospin asymmetric nucleon matter,
and heavy-ion collisions, the isospin chemical potential µI =
(µu − µd ) is usually introduced in the theory [1,2]. Different
approaches—such as lattice QCD [3,4], chiral perturbation
theory [1,2,5,6], ladder QCD [7], a Nambu-Jona-Lasinio-type
model [8–12], and a random matrix model [13]—have been
used to explore the QCD phase structure at finite isospin
density. It has been widely confirmed that there is a phase
transition from the normal phase to the pion superfluidity phase
that is characterized by a pion condensate 〈d̄γ5u + H.c.〉 at
high enough isospin chemical potential. It is also found that
the kaon superfluidity phase characterized by kaon condensate
〈s̄γ5u + H.c.〉 appears at high isospin and strangeness chemi-
cal potential in the three light-flavors case [2,11].

The previous studies on the effects of finite isospin chemical
potential and strangeness are mostly focused on two types
of condensates, 〈ūγ5d + H.c.〉 and 〈s̄γ5d + H.c.〉, which are
order parameters for the corresponding superfluidity phase
transitions. It is generally believed that the vacuum of QCD has
complicated structure and it is expected that all gauge-invariant
Lorentz singlet local operators built of quarks and/or gluons
have nonvanishing vacuum expectation values according to
QCD sum rules [14,15]. For example, the well-known low-
dimensional condensates, such as quark condensate 〈q̄q〉,
gluon condensate g2〈GG〉, mixed quark gluon condensate
g〈q̄σGq〉, and four-quark condensate 〈q̄�1qq̄�2q〉, play
significant roles in the hadronic studies based on QCD sum
rules.

Because of the presence of the flavor mixed conden-
sates 〈ūγ5d + H.c.〉 and 〈s̄γ5d + H.c.〉 at finite isospin and
strangeness chemical potential, it is natural to expect that
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there should exist other new types of flavor-mixed conden-
sates induced by isospin chemical potential and strangeness
chemical potential according to operator product expansion
(OPE). Besides the pion condensate and kaon condensate,
the possible low-dimensional flavor-mixed condensates are
mixed quark-gluon condensate g〈d̄γ5σGu + H.c.〉 induced by
isospin density and g〈s̄γ5σGu + H.c.〉 induced by strangeness
density. (For convenience, we call the former pion mixed
quark-gluon condensate and the later kaon mixed quark-gluon
condensate.) In addition, new forms of four-quark condensates,
such as 〈q̄γ5τi�1qq̄�2q〉, may also appear in OPE. We expect
that these induced low-dimensional condensates also play
important roles on the hadronic physical observables in the
framework of QCD sum rules.

It is well known that, in the chiral limit, both chiral conden-
sate and mixed quark-gluon condensate are ideal order param-
eters for the chiral phase transition of QCD. Similarly, pion
mixed quark-gluon condensate and kaon mixed quark-gluon
condensate can play the roles of order parameters for the pion
superfluidity phase transition and the kaon superfluidity phase
transition at finite isospin chemical potential and strangeness
chemical potential, respectively. Though both pion condensate
and pion mixed quark-gluon condensate can be used as order
parameters to describe the pion superfluidity phase transition,
they reflect different aspects of the nonperturbative structure of
the ground state: The former reflects the correlation between
different flavors with color-singlet component, whereas the
later reflects the correlation between different flavors with
color-octet components. Therefore, pion mixed quark-gluon
condensate will give new and important information on the
pion superfluidity phase transition. The same thing is true for
kaon condensate and kaon mixed quark-gluon condensate.

Therefore, it is interesting to investigate the thermal and
dense properties of these new types of low-dimensional con-
densates and their effects on the physical hadronic observables.
Since the global color model (GCM) [16–19] is an effective
quark and gluon field theory and has been successfully used to
investigate the property of the traditional mixed quark-gluon
condensate [20,21] and other QCD condensates [22], we will
adopt this model to explore the thermal and dense properties
of these induced mixed condensates. In this paper, we only
consider the possible pion superfluidity phase transition and
pion mixed quark-gluon condensate.
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II. MEAN-FIELD THEORY OF GCM AT FINITE ISOSPIN
CHEMICAL POTENTIAL

In the Euclidean metric, with {γµ, γν} = 2δµν and γ +
µ =

γµ, the generating functional of GCM with quark and gluon
degrees is

Z[J, η̄, η] =
∫

Dq̄DqDA exp
( − SGCM

[
q̄, q, Aa

µ

]
+ η̄q + q̄η + J a

µAa
µ

)
(1)

with the action

SGCM
[
q̄, q, Aa

µ

] =
∫ [

q̄

(
γ · ∂ + M − igAa

µ

λa

2
γµ

)
q

+ 1

2
Aa

µD−1
µν (i∂)Aa

ν

]
. (2)

The essence of GCM is that it models the QCD local gluonic
action

∫
Fa

µνF
a
µν , which has local color symmetry, by a highly

nonlocal action that has a global color symmetry. The main
aspects of GCM have been reviewed in Refs. [17–19].

By integrating over the gluon degrees, the partition function
of the GCM with two quark flavors at finite baryon and isospin
chemical potential has the form

Z(µ,µI ) =
∫

Dq̄(x)Dq(x) exp

[
−

∫
x

q̄(x)(γµ∂µ

+M − µγ4 − δµτ3γ4)q(x)

− 1

2

∫
x

∫
y

ja
µ(x)g2Dµν(x − y;µ,µI )ja

ν (y)

]
, (3)

where M = diag(mu,md ),
∫
x

= ∫
d4x, and ja

µ(x) = q̄(x)γµ

λa
C

2 q(x). (Note that we only consider the case with temperature
T = 0 in this paper.) In Eq. (3), τi(i = 1, 2, 3) are the Pauli
matrices in flavor space, µ ≡ µB/3 is the chemical potential
associated with baryon number, and the quantity δµ is half of
the isospin chemical potential (i.e. δµ = µI/2). (In this paper,
we only consider µI > 0.) The effective gluon propagator
g2Dµν(x − y; µ,µI ) is generally a (µ,µI )-dependent func-
tion, which is parametrized to model the low-energy dynamics
of QCD.

In this study, we will take mu = md = m. Evidently, the
Lagrangian here is invariant under the baryon UB(1) symmetry
and the parity symmetry transformation P. In the case with
µI �= 0, the traditional isospin SUI (2) symmetry is reduced
to UI3 (1) symmetry. Usually, the quark condensate 〈q̄q〉 is
responsible for the chiral symmetry breaking of the ground
state and does not spoil the parity and isotopical symmetry,
whereas the nonzero pion condensate 〈q̄γ5τ1q〉 breaks both
the parity and isotopical symmetry of the ground state.

Within the GCM formalism, the ground state of QCD is
defined by the saddle point of the action and the quark gap
equation at the mean-field level is determined by the rainbow
truncated quark Dyson-Schwinger equation (DSE)


(p) = 4

3

∫
d4q

(2π )4
g2Dµν(p − q)γµS(q)γν. (4)

(The application of the DSE model to finite temperature and
density is reviewed in Ref. [23].) At finite (µ,µI ) with u and

d quarks, the inverse of the quark propagator can be written in
the form

S−1(p,µ,µI ) = S−1
0 (p,µ,µI )

+
(


uu(p,µ,µI ) 
ud (p,µ,µI )

du(p,µ,µI ) 
dd (p,µ,µI )

)
, (5)

where

S−1
0 (p,µ,µI )

=
(

i �γ · �p + iγ4wu + m

i �γ · �p + iγ4wd + m

)
, (6)

with

wu = (p4 + iµ + iδµ), wd = (p4 + iµ − iδµ),


aa(p,µ,µI ) = i �γ · �pAa( �p,wu,wd )

+ iγ4waBa( �p,wu,wd ) + Ca( �p,wu,wd ),

(7)


ud (p,µ,µI ) = 
du(p,µ,µI ) = iγ5D( �p,wu,wd ), (8)

and where Aa,Ba, Ca, and D are momentum-dependent scalar
functions. Nonzero Ca and D are responsible for the dynamical
chiral symmetry breaking and isotopical symmetry breaking,
respectively.

Note that the possible diquark condensation is not consid-
ered here and only single Lorentz structure is concerned in

ud and 
du. The four matrix elements of the momentum-
dependent quark propagator

S(p,µ,µI ) =
(

Suu(p,µ,µI ) Sud (p,µ,µI )
Sdu(p,µ,µI ) Sdd (p,µ,µI )

)
(9)

take the form

Suu = [(XdCu + D2Cd ) − i �γ · �p(XdAu + D2Ad )

− iγ4(XdwuBu + D2wdBd )]/H,

Sdd = [(XuCd + D2Cu) − i �γ · �p(XuAd + D2Au)

− iγ4(XuwdBd + D2wuBu)]/H,
(10)

Sud = −iD
[
γ5Y − iγ5 �γ · �pS

γ5 �γ
ud − iγ5γ4S

γ5γ4
ud

+ γ5 �γ · �pγ4S
γ5 �γ γ4
ud

]
/H,

Sdu = −iD
[
γ5Y − iγ5 �γ · �pS

γ5 �γ
du − iγ5γ4S

γ5γ4
du

− γ5 �γ · �pγ4S
γ5 �γ γ4
du

]/
H,

with

S
γ5 �γ
ud = −S

γ5 �γ
du = AuCd − CuAd,

S
γ5γ4
ud = −S

γ5γ4
du = wuBuCd − wdBdCu, (11)

S
γ5 �γ γ4
ud = −S

γ5 �γ γ4
du = AuwdBd − AdwuBu,

and

Xa = A2
a �p2 + B2

aw
2
a + C2

a ,
(12)

Y = CuCd + AuAd �p2 + wuwdBuBd + D2,

H = XuXd + D4 + 2D2(CuCd + AuAd �p2 + wuwdBuBd ).

(13)
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With these decomposition, the gap equation can be expressed
as


ij (p) = 4

3

∫
d4q

(2π )4
g2Dµν(p − q)γµSij (q)γν. (14)

Since each term of Eq. (11) is nonzero at finite µI , more
Lorentz structures with new scalar functions should also be
considered in 
ud and 
du to guarantee the self-consistent
treatment of the gap equation. However, introducing more
Lorentz structures will complicate resolution of the gap
equations. Just as the Lorentz tensor structure is not concerned
in 
aa at the traditional treatment of DSE at finite (T ,µ) [23],
we suppose that iγ5D is the leading order term of 
ud and

du and other Lorentz structures have a small impact on
the determination of quark self-energy. Because there are
no structures γ5 �γ , γ5γ4, and γ5 �γ γ4 in 
ud and 
du, the
corresponding structures associated with Eq. (11) in Sud and
Sdu are ignored in the following. At least, this is a good
approximation in the case with small µI .

Because of the phenomenological nature of this effe-
ctive theory, for simplicity, the Feynman-like gauge
g2Dµν(p − q) = δµνg

2D(p − q) was adopted in our calcu-
lation. With this approximation, the gap equation (14) is
reduced to seven coupled integral equations, which are still
complicated to solve. To get a qualitative understanding of the
phase diagram and the structure of the ground state at finite
µI , a pedagogical model first introduced by Munczek and
Nemirovsky [24] for the modeling of confinement in QCD is
favored in this study. The Munczek-Nemirovsky (MN) model
has been extensively used to explore the properties of strong
QCD both at zero (T ,µ) and nonzero (T ,µ) [21,25], which
can always give qualitatively consistent results with the more
sophisticated models. The effective gluon propagator of the
MN model takes the form

g2Dµν(p − q) = δµν

3

16
(2π )4η2δ4(p − q), (15)

with the single parameter η determined by π and ρ masses in
vacuum. The scale parameter η is related to the string tension
of QCD, and in the more real world, it should be a function of
T and µ. Using Eq. (15) simplifies the complete expressions
of Eq. (14) as seven-coupled algebraic equations:

(Au − 1) = 1

2
η2[XdAu + D2Ad ]/H,

(16)

(Ad − 1) = 1

2
η2[XuAd + D2Au]/H,

(Bu − 1) = 1

2
η2

[
XdBu + wd

wu

D2Bd

]/
H,

(17)

(Bd − 1) = 1

2
η2

[
XuBd + wu

wd

D2Bu

]/
H,

Cu − m = η2[XdCu + D2Cd ]/H,
(18)

Cd − m = η2[XuCd + D2Cu]/H,

D = η2D[CuCd + AuAd �p2 + wuwdBuBd + D2]/H.

(19)

Equation (19) illustrates that there are two distinctive solutions
to D: one characterized by D ≡ 0, which describes the normal

phase, and the alternative, characterized by D �= 0, which
describes the pion superfluidity phase. The phase with small
free energy is favored in nature.

III. THERMAL POTENTIAL AND CONDENSATES

In the GCM/DSE formalism, whether the normal phase
or the pion superfluidity phase is stable is determined by
evaluating the (µ,µI )-dependent pressure difference

δP (µ,µI ) = P [µ,µI , S[D �= 0]] − P [µ,µI , S[D = 0]],

(20)

where the pressure is calculated by using a steepest-descent
approximation [26]:

P [T ,µ,µI , S] = − 
[S] = 1

βV
Tr ln[βS−1] − 1

βV
Tr ln[
S].

(21)

Using the technique

det

(
A B

C D

)
= det (A) det (B) det (C) det (C−1DB−1 − A−1),

(22)

one can express the pressure at finite (µ,µI ) as

P [S] =
∫

p

2 ln[H ] + 2Nc

∫
p

[
D2[ �p2(Au + Ad )

+wuwd (Bu + Bd )] + Xu

[ �p2Ad + w2
dBd

]
+Xd

[ �p2Au + w2
dBu

] + m[XdCu

+XuCd + D2(Cu + Cd )]
]
/H, (23)

where
∫
p

= ∫
d4p

(2π)4 . Note that a constant term has been ignored
in Eq. (23). Though the pressure (or thermal potential) calcu-
lated through Eq. (23) is ultraviolet divergent, the pressure
difference or the “bag constant” δP [16] is finite.

From the GCM generating functional, it is straightforward
to calculate the vacuum expectation value (VEV) of any quark
operator with the forms

On ≡ (
q̄j1�

(1)
j1i1

qi1

)(
q̄j2�

(2)
j2i2

qi2

) · · · (q̄jn
�

(n)
jnin

qin

)
(24)

in the mean-field vacuum. Here �(i) stands for an operator in
Dirac, flavor, and color space. The VEV of the operator On

has the form [27]

〈On〉 = (−1)n
∑

p

(−)p
[
�

(1)
j1i1

· · · �(n)
jnin

Si1jp(1) · · ·Sinjp(n)

]
, (25)

where p stands for a permutation of the n indices. Based on
formula (25), the low-dimensional condensates, such as chiral
condensate and pion condensate can been expressed as

〈ūu〉 = −TrD,C[Suu(x, x) − σUV (x, x)]

= −Nc

∫
p

TrD[Suu(p) − σUV (p)], (26)

〈d̄d〉 = −TrD,C[Sdd (x, x) − σUV (x, x)]

= −Nc

∫
p

TrD[Sdd (p) − σUV (p)], (27)
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〈q̄iγ5τ1q〉 = −TrD,C,F [iγ5τ1S(x, x)]

= −Nc

∫
p

TrD[iγ5Sud (p) + iγ5Sdu(p)]. (28)

To get a convergent condensate integral, a subtracting term
σUV(p), which simulates the ultraviolet behavior of the
quark propagator, is introduced in the definition of the quark
condensate. In the case with nonzero current quark mass and
zero chemical potential, for MN model one has, with s = p2,

A(s) = B(s) = 1 + 1

2s
, C(s) = m

(
1 + 2

s

)
, (29)

with corrections of high order in (1/s). From these approxi-
mate expressions one can construct

σUV(s) = C(s)

sA(s)2 + C(s)2
. (30)

Since σUV(s) → m/s as s → ∞ and σUV(s) → 0 as s → 0,
this prescription will provide an absolutely convergent result
with no need for a cutoff. This definition can be generalized
to the case with nonzero quark chemical potential. There is no
need to introduce a subtracting term in the definition of the pion
condensate since D(p) remains zero in the large-momentum
region in the MN model. The formula for evaluating the
six-dimensional four-quark condensates can also be directly
derived from Eq. (25), which is consistent with the vacuum
saturation approximation at zero quark chemical potential. At
finite isospin density, the new type four-quark condensates,
such as 〈q̄iγ5τ1qq̄q〉, will appear in OPE. It is easy to prove
that 〈q̄iγ5τ1qq̄q〉 ∼ 〈q̄iγ5τ1q〉〈q̄q〉 with the approximation
that only γ5 structure holds in 
ud(du) and Sud(du), with
〈q̄q〉 = 〈ūu + d̄d〉.

Since the functional integration over the gluon field Aa
µ is

quadratic in the framework of GCM, one can perform the
integration over the gluon field analytically. By using the
technique introduced by Meissner [20], through the following
integral formulas:∫

DAe− 1
2 AD−1A+jA = e

1
2 jDj ,

∫
DAAe− 1

2 AD−1A+jA = (jD)e
1
2 jDj ,

(31)∫
DAA2e− 1

2 AD−1A+jA = [D + (jD)2]e
1
2 jDj ,

· · ·
the gluon fields vacuum average can be replaced by the quark
current ja

µ with the effective gluon propagator D(x − y). At
the mean-field level, according to Eq. (25), one can in principle
obtain the VEVs for any gluon fields. This technique provides
a feasible way to calculate the VEVs of operators with low-
dimensional gluon fields such as the traditional mixed quark-
gluon condensate and the isospin-density-induced pion mixed
quark-gluon condensate. Since the number of terms produced
by Eq. (25) will increase rapidly with the number of gluonic
fields, this technique is not suitable for the evaluation of the
VEV of the operator involving high powers of gluonic field A.
For instance, for the gluon condensate 〈GG〉, which contains
an A4 term, the calculation already gets rather involved.

Applying the method just described, we obtain the expres-
sion

g

〈
q̄iγ5τ1σµνG

a
µν

λa
c

2
q

〉

= −2iNc

∫
y

4

3
[∂x

µg2D(y − x)]TrD,F

× [S(y − x)iγ5τ1σµνS(x − y)γν]

+ 4iNc

∫
y

∫
z

g2D(y − x)g2D(z − x)TrD,F

× [S(z − x)iγ5τ1σµνS(x − y)γµS(y − z)γν]. (32)

A similar expression for evaluating the traditional quark-gluon
condensate g〈q̄σµνG

a
µν

λa
c

2 q〉 can be obtained by replacing the
structure iγ5τ1σµν in Eq. (32) with σµν .

Using Eq. (14) and the formulas

Trc

[
λa

c

2

λb
c

2

λc
c

2
− λa

c

2

λc
c

2

λb
c

2

]
= i

2
f abc, f abcf abc = Ncδ

aa,

(33)

we can simplify the expression for the pion mixed quark-gluon
condensate as

g

〈
q̄iγ5τ1σµνG

a
µν

λa
c

2
q

〉
= I1 + I2 + I3 + I4 + I5 + I6 + I7,

(34)

where

I1 = −72
∫

p

D

H
Y

[
(Au + Ad − 2) �p2

+ (Bu − 1)w2
u + (Bd − 1)w2

d

]
, (35)

I2 = 36
∫

p

D

H
[XdAu + D2Ad + XuAd + D2Au] �p2, (36)

I3 = 36
∫

p

D

H

[
XdBuw

2
u + D2wuwdBd

+XuBdw
2
d + D2wuwdBu

]
, (37)

I4 = 81

2

∫
p

D

H
Y [D2 − (Cu − m)(Cd − m)], (38)

I5 = 81

2

∫
p

D

H
[(Cu − m)(XdCu + D2Cd )

+ (Cd − m)(XuCd + D2Cu)], (39)

I6 = 81

2

∫
p

D

H
[(Au − 1)(XdAu + D2Ad )

+ (Ad − 1)(XuAd + D2Au)] �p2, (40)

I7 = 81

2

∫
p

D

H

[
(Bu − 1)

(
XdBuw

2
u + D2Bdwuwd

)

+ (Bd − 1)
(
XuBdw

2
d + D2Buwuwd

)]
. (41)

Note that the scalar functions Aa, Ba, Ca, and D are all
momentum dependent in the DSE formalism. These integral
expressions explicitly show that the pion mixed quark-gluon
condensate is a order parameter for the pion superfluidity
phase transition. It should be mentioned that the expression in
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Eq. (34) for pion mixed quark-gluon condensate is only valid
in Feynman-like gauge.

IV. NUMERICAL RESULTS AND DISCUSSION

To get a qualitative understanding of the finite µI effects on
the ground state, the numerical studies in the following are all
based on the MN model. Because of the defect of the supposed
Lorentz structure of quark self-energy, the isospin chemical
potential has been limited within the range |µI/2| < 0.2 GeV.
In this paper, for simplicity, we only concern ourselves with
the case of zero temperature and baryon chemical potential.

A. The critical isospin chemical potential for pion condensate

Effective field theory arguments [1] indicate that critical
isospin chemical potential µc

I for the pion superfluidity phase
is exactly the vacuum pion mass mπ at T = µB = 0. Whether
the MN model can algebraically reproduce this result within
our formalism is discussed next.

For the solution with D �=0, the gap equation (19) is
reduced to

H = η2[CuCd + AuAd �p2 + BuBdwuwd + D2]. (42)

In the neighborhood of µI c, one can probably neglect the D2

and D4 in this expression. According to gap equations (16)
and (17), Au(d) and Bu(d) are identical for D = 0. Therefore,
the gap equation (42) can be further reduced to

X

(
p + P ′

2

)
X

(
p − P ′

2

)
= η2

[
C

(
p + P ′

2

)
C

(
p − P ′

2

)

+A

(
p + P ′

2

)
A

(
p − P ′

2

)

×
(

p + P ′

2

)
·
(

p − P ′

2

)]
,

(43)

where P ′ = (�0, iµc
I ) and the flavor subscript has been ignored.

Within the Feynman-like gauge and only considering the γ5

structure, the Bethe-Salpeter equation (BSE) for the vacuum
pseudoscalar amplitude �

j
π (p, P ) in GCM takes the form [17]

�πj
(p, P ) = −2

9

∫
d4q

(2π )4
D(p − q)TrD,C,F

[
iγ5τj

+

× S

(
q + P

2

)
iγ5τjS

(
q − P

2

)]
�πj

(q, P ),

(44)

where P 2 = −m2
π . By using TrF [τ+

j τj ] = 2, the BSE (44) is
greatly simplified in the MN model:

X

(
p + P

2

)
X

(
p − P

2

)
= η2

[
A

(
p + P

2

)
A

(
p − P

2

)

×
(

p + P

2

)
·
(

p − P

2

)

+C

(
p + P

2

)
C

(
p − P

2

)]
,

(45)

which has the same form as the gap equation (43). Therefore,
if the BSE (44) can produce the vacuum pion mass, we
algebraically prove −P ′2 = m2

π and get the conclusion µc
I =

mπ at T = µ = 0.
However, this proof is only true for the chiral limit case

since the MN model does not support the pion bound state
beyond the chiral limit if only the γ5 structure is considered
in the pseudoscalar meson Bethe-Salpeter amplitude [24].
Therefore, to produce the result µc

I = mπ beyond the chiral
limit in the MN model, other Dirac amplitudes beyond γ5D

should also be included in the off-diagonal term of the inverse
quark propagator, which will make solving the gap equation
more involved.

Note that for other improved effective gluon propagators
such as those used in Refs. [20,28,29], the pion Bethe-Salpeter
amplitude with only γ5 structure is a good approximation
to obtain the vacuum pion mass. In principle, using these
improved effective gluon propagators to explore the pion
superfluidity within the DSE formalism should give more
quantitatively reasonable results in contrast with the simple
MN model. However, the set of seven coupled algebraic gap
equations (16)–(19) will be replaced by a set of seven coupled
integral equations, which leads to a more difficult numerical
calculation.

For simplicity and to get a qualitatively understanding of the
pion superfluidity within the DSE formalism, we still use the
MN model in the following that only contains the γ5 structure
in the off-diagonal term of the inverse quark propagator.

B. The chiral limit

In the chiral limit, there are four possible solutions
according to the gap equations (16)–(19):

Cu = Cd = 0,D = 0; Cu �= 0, Cd �= 0,D = 0;
(46)

Cu = Cd = 0,D �= 0; Cu �= 0, Cd �= 0,D �= 0;

these characterize four possible phases of QCD at finite isospin
density, respectively. However, the solution with both nonzero
quark condensate and nonzero pion condensate is not found
in our numerical study. By comparing the corresponding
free energies of the former three possible phases, it is
found that the pion superfluidity phase is favored in the
chiral limit at nonzero isospin chemical potential. It seems
that this is a universal result and has been confirmed by
many former studies [1,2]. In this case, chiral symmetry is
not broken and both quark condensate and mixed quark-
gluon condensate disappear in OPE. In contrast with these
vanishing chiral condensates, new condensates induced by
isospin density—such as the pion condensate and the pion
mixed quark-gluon condensate—appear. Note that the new
four-quark condensates, such as 〈q̄iγ5τ1qq̄q〉, also vanish in
this case because these condensates factorize at the mean-field
level within our formalism with the approximation used in
Sec. II.

The µI dependence of the pressure difference between the
pion superfluid phase and the normal phase, pion condensate,
and pion mixed quark-gluon condensate is shown in Fig. 1.
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0 0.05 0.1 0.15 0.2
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0

0.5

1

1.5

2

T 0, µB 0

δP B0
π qq 0
Mix Mix0

FIG. 1. The pressure difference δP , pion condensate π, and
pion mixed quark-gluon condensate Mix in the chiral limit. B0 =
(0.1η)4, 〈q̄q〉0 = 〈ūu + d̄d〉0, and Mix0 = 310 (MeV)5 are the bag
constant, chiral condensate, and mixed quark-gluon condensate of the
vacuum obtained from the MN model with m = 0 and η = 1.06 GeV,
respectively.

For the case with µI = 0, the zero pressure difference of δP

suggests that the nonzero pion condensate and nonzero quark
condensate correspond to equivalent but distinct vacua, which
is guaranteed by chiral symmetry (i.e., a small quark mass will
destabilize the superfluidity phase). In contrast with this event,
for the whole domain of nonzero µI concerned, the positive
pressure difference δP suggests that the pion superfluidity
phase is the stable ground state in the chiral limit for two-flavor
QCD. Figure 1 shows that the magnitudes of both induced
condensates and the pressure difference are monotonically
increasing functions of µI .

Figure 2 shows the µI -dependent behavior of the ratio
of pion mixed quark-gluon condensate to pion condensate
from the MN model. In Fig. 2, the ratio ranges from 1.56
to 1.66 (GeV)2, which suggests that the induced mixed quark-
gluon condensate has the same magnitude of the traditional
mixed condensate in the domain of µI of concern. (In the
MN model, the ratio of the mixed quark-gluon condensate
and the chiral condensate is 1.92 in the vacuum [21].) Note
that numerical study suggests that the pion mixed quark-gluon

0 0.05 0.1 0.15 0.2

µI 2 GeV

1.56

1.58

1.6

1.62

1.64

M
ix

π
G

eV
2

T 0,µB 0

FIG. 2. The isospin chemical potential dependence of the ratio
between pion mixed quark-gluon condensate and pion condensate
from the MN model with m = 0 and η = 1.06 GeV.

condensate defined in Eq. (32) is positive, which is consistent
with the sign of the traditional mixed quark-gluon condensate.

C. Finite current mass

With finite current quark mass m = 12 MeV [24], appar-
ently, only two types of solutions exist: the normal phase
with nonzero quark condensate and zero pion condensate and
the pion superfluidity phase with nonzero pion condensate
and nonzero quark condensate. In contrast to the chiral
limit, for finite current mass, there is no solution with zero
quark condensate to the gap equations owing to the explicit
chiral-symmetry-breaking term in the Lagrangian.

According to the numerical study, in the small isospin
chemical potential region µI < 64 MeV, only the normal
phase solution exists. For the region µI > 64 MeV, there also
exists a solution corresponding to the pion superfluidity phase.
The stable ground state in the region µI > 64 MeV is again
determined by the difference of the pressure δP in Eq. (23).

It is shown in Fig. 3 that at the point µI = 64 MeV, the
scaled pressure difference of the two solutions is close to zero
and for the region µI > 64 MeV, the pressure difference is
positive and monotonically increases with increasing isospin
chemical potential, which suggests that the pion superfluidity
phase is favored in the µI > 64 MeV region. From the
µI -dependent behavior of both pressure difference δP and the
two order parameters, pion condensate and pion mixed quark-
gluon condensate, one can judge that the phase transition from
normal phase to pion superfluidity phase is second order. This
conclusion is consistent with the result obtained from lattice
simulation and other model studies.

Note that at zero µ, the scalar functions A(B,C)u in
Suu and A(B,C)d in Sdd at the same point ( �p,wu,wd ) are
complex conjugates; therefore the relation 〈ūu〉 = 〈d̄d〉 always
holds. Figure 3 shows that the magnitude of quark condensate
monotonically increases with an increase of µI in the normal
phase region, which is consistent with the dependence of the
chiral condensate on the baryon chemical potential obtained
within DSE formalism [23]. In the pion superfluidity phase,

0 0.05 0.1 0.15 0.2

µI 2 GeV

0

0.5

1

1.5

2

2.5

3

3.5
T 0, µB 0

Mix Mix0

π qq 0

uu uu 0

δP B0

FIG. 3. The pressure difference δP (plotted only in the region
µI � µC

I ), quark condensate 〈ūu〉, pion condensate π, and pion mixed
quark-gluon condensate Mix obtained from the MN model with m =
12 MeV and η = 1.06 GeV.
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FIG. 4. The µI dependence of the ratio between pion mixed
quark-gluon condensate and pion condensate obtained from the MN
model with m = 12 MeV and η = 1.06 GeV.

the magnitude of quark condensate monotonically decreases
with an increase of µI , which is an anticipated result due to
the monotonically increasing behavior of pion condensate with
respect to µI . This behavior is similar to the dependence of
the chiral condensate on the baryon chemical potential for
the appearance of diquark condensate [23]. It is expected
that the traditional mixed quark-gluon condensates, g〈ūσGu〉
and g〈d̄σGd〉, have similar µI -dependent behavior. Figure 3
manifests a competitive relationship between the induced
condensates and their corresponding traditional partners.

In Fig. 4, we display the numerical result of the isospin
chemical potential dependence of the ratio of the pion mixed
quark-gluon condensate to pion condensate. Such a value
ranges from 2.2 to 1.7 (GeV)2, which is also close to the
ratio of the traditional mixed quark-gluon condensate to quark
condensate obtained in the vacuum [21]. The large magnitude
of the ratio suggests that the induced mixed quark-gluon
condensate is an important parameter within the QCD sum
rules at finite µI . In addition, in contrast with the chiral
limit case, the nonzero pion condensate and nonzero quark
condensate suggests that the new four-quark condensates also
have nonzero value in the superfluidity phase, even at the
mean-field level.

The critical chemical potential of 64 MeV is relatively
small in contrast with the vacuum pion mass. As previously
mentioned, the main reason for this discrepancy arises from the
fact that only the γ5 structure is considered in the off-diagram
part of the inverse quark propagator, whereas the MN model
does not support the pseudoscalar bound state beyond the
chiral limit when only the γ5 structure is contained in the
pseudoscalar meson Bethe-Salpeter amplitude. One can expect
that this discrepancy will become small when we either
adopt the other improved effective gluon propagators in the
calculation or include other allowed Dirac structures such as
γ5 �γ · �p in the off-diagonal part of the inverse quark propagator
within the MN model.

The dependence of the critical isospin potential µc
I on the

current quark mass is plotted in Fig. 5, which shows that µc
I

monotonically increases with the value of the current quark
mass. Though µc

I obtained in the MN model with only the γ5

structure considered is markedly smaller than mπ , the critical

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

m GeV
1
2

0

0.02
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0.08

µ
Ic

G
eV

T 0, µB 0

FIG. 5. The dependence of the critical isospin potential µc
I on

the current quark mass from the MN model with η = 1.06 GeV. The
current quark mass ranges from 0 to 20 MeV.

point is still roughly proportional to the square root of the
current quark mass in the range 0–20 MeV.

V. SUMMARY AND REMARKS

Using a pedagogical confining model within the framework
of GCM, we have qualitatively investigated the phase structure
and condensates of two-flavor QCD at finite isospin density
with zero temperature and baryon chemical potential. By
solving the quark gap equation through the DSE formalism,
we obtained that the truncated DSE-type model supports the
pion superfluidity phase transition at high enough isospin
chemical potential. In contrast with the previous model studies,
the obtained gaps responsible for both the chiral condensate
and pion condensate are all momentum dependent within
the DSE formalism, which are closer to the real world. In
addition, some new types of low-dimensional condensates
of QCD induced by finite isospin chemical potential, such
as pion mixed quark-gluon condensate and mixed four-quark
condensate, are proposed and investigated in this paper.

In the chiral limit with finite isospin chemical potential, the
normal phase is unfavored and the pion superfluidity phase is
the stable ground state. For the case with finite current quark
mass, only the solution corresponding to the normal phase is
found in the gap equations in the region µI < µc

I , whereas
for the region µI > µc

I , the normal phase is unfavored and
the pion superfluidity phase is the stable ground state. The
distinctly different phase structure between the chiral limit
and the finite current quark mass suggests that the value of the
critical isospin chemical is closely related to the pion mass.
Even though for the simplicity of numerical study, the obtained
critical point µc

I in this paper is not exactly the pion mass for
the case beyond the chiral limit, we point out that the improved
(more involved) calculation within the DSE formalism should
confirm µc

I = mπ .
Furthermore, our calculation shows that in the chiral

limit with finite isospin chemical potential, both quark
condensate and traditional mixed quark-gluon condensate
vanish in OPE with the appearance of isospin-density-induced
pion condensate and pion mixed quark-gluon condensate. In
the real world, for µI < µc

I , quark condensate and mixed
quark-gluon condensate exist in OPE with the vanishing of
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pion and pion mixed quark-gluon condensate; for µI > µc
I ,

the magnitudes of both isospin-density-induced condensates
increase with increasing isospin chemical potential, whereas
the magnitude of quark condensate decreases with increasing
isospin chemical potential. (It is expected that the mixed quark-
gluon condensate has similar behavior.) Meanwhile, numerical
calculations suggest that the induced pion condensate and pion
mixed quark-gluon condensate have the same signs as their
corresponding traditional chiral condensates. We also obtained
that the magnitude of the ratio of pion mixed quark-gluon
condensate to pion condensate is close to the one of traditional
quark-gluon condensate to quark condensate in the vacuum,
both for the chiral limit and for the real world in the pion
superfluidity phase.

Since there is no fermion sign problem at finite isospin
chemical potential with zero baryon chemical potential, in
principle, the evaluation of the induced mixed quark-gluon
condensate and four-quark condensate can be investigated
through the lattice Monte Carlo method. The effect of these
isospin chemical potential induced condensates on the hadron

properties can be investigated in the framework of QCD sum
rules. However, such effects on the hadron properties can more
directly be explored using suitable Bethe-Salpeter equations
in conjunction with the solutions of the quark gap equation.
A natural extension of the present work is to investigate
the two-flavor QCD phase diagram, condensates, and hadron
properties at finite isospin chemical potential for both nonzero
temperature and baryon chemical potential.
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